Finite field multiplication combining AMNS and DFT approach for pairing cryptography

Nadia El Mrabet 1 Christophe Negre 2, 1
1 DALI - Digits, Architectures et Logiciels Informatiques
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier, UPVD - Université de Perpignan Via Domitia
Abstract : Pairings over ellitpic curve use fields GF(p^k) with p >= 2^{160} and 6 < k <=32. In this paper we propose to represent elements in GF(p) with AMNS (Bajard et al. SAC04). For well chosen AMNS we get roots of unity with sparse representation. The multiplication by these roots are thus really efficient in GF(p). The DFT/FFT approach for multiplication in extension field GF(p^k) is thus optimized. The resulting complexity of a multiplication in GF(p^k) combining AMNS and DFT is about 50\% less than the previously recommended approach.
Document type :
Preprints, Working Papers, ...
Complete list of metadatas

Cited literature [16 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-00360280
Contributor : Christophe Negre <>
Submitted on : Monday, August 10, 2009 - 7:00:08 AM
Last modification on : Thursday, May 24, 2018 - 3:59:23 PM
Long-term archiving on : Tuesday, June 8, 2010 - 10:11:57 PM

File

FFpairing14.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00360280, version 1

Collections

Citation

Nadia El Mrabet, Christophe Negre. Finite field multiplication combining AMNS and DFT approach for pairing cryptography. 2009. ⟨hal-00360280⟩

Share

Metrics

Record views

364

Files downloads

791