

Psychophysical study of LCD motion-blur

Sylvain Tourancheau Patrick Le Callet

University of Nantes IRCCyN-IVC Lab (France) Kjell Brunnström Börje Andrén

Acreo AB Video and Display Quality Lab (Sweden)

Introduction

LCD motion-blur

 LCD motion-blur occurs on the edges of moving objects

Combination of two factors:

- LCDs are hold-type displays: light is maintained on the screen during the frame period
- Eye-tracking / Smooth pursuit

LCD motion-blur is not only a technical issue but also a perceptual matter

Introduction

Problematic

 Motion-blur measurements are now wellestablished

Is perception correlated with measurements ?

 In current recommendations (VESA), motion-blur value is taken as the average of motion-blur measurements over transitions

Is this relevant regarding perception ?

Introduction

Objective

- Perception of LCD motion-blur is explored through a blur-matching experiment
- 3 different displays, 20 transitions, and up to 9 speeds
- Goal is to compare perceived motion-blur with measured motion-blur

Psychophysical study of LCD motion-blur

- Objective measurements of motion-blur
- Psychophysical experiments
- Results
- Conclusion

Psychophysical study of LCD motion-blur

- Objective measurements of motion-blur
- Psychophysical experiments
- Results
- Conclusion

Methods of measurements

Spatio-temporal measurements:
 high-speed camera picturing a moving edge

- tracking camera
- rotating mirror
- stationary camera + motion compensation
- etc.
- Temporal measurements: edge profile is obtained from the temporal step-response

H. Pan, X.-F. Feng, and S. Daly, "LCD motion blur modeling and analysis," ICIP 2005 A. B. Watson, "The SSO: A human vision model for display inspection," SID 2006

Choice of the method

Both methods have been compared and have shown very similar results

Tourancheau *et al.*, "LCD motion-blur estimation using different measurement methods," Journal of the SID, Vol.17, 2009

• Temporal method have been chosen:

- high sample-rate => high resolution edge profile
- easy to carry out and less time-consuming
- reproducible from one lab to another

Apparatus

- Fast photo-diode
- Sample-rate: 10 kHz (Ts = 0.1 ms)
- Data acquired on oscilloscope

HVEI 2009 - 01.21.2009 Sylvain Tourancheau - Psychophysical study of LCD motion-blur

Blurred edge profile

 Obtained by a convolution of the temporal step-reponse with a unit-window with a width of one frame period

Blurred edge time

• Blurred edge profile in the temporal domain

 Blurred edge time (*BET*) is computed from 10% to 90% of the edge dynamic

Blurred edge time

Measured blur vs speed

- Time domain → Space domain
 by scaling time axis with speed V
- Blurred edge width (*BEW*):

 $BEW_m = BET.V$

Measured *BEW* is proportional to speed *V* with a factor equal to *BET*

Psychophysical study of LCD motion-blur

- Objective measurements of motion-blur
- Psychophysical experiments
- Results
- Conclusion

Description

- Blur matching experiment
- Task: Observers have to adjust the blur of a stationary edge until it matches their perception of the motion-blur occurring on a moving edge

Viewing conditions

- Psychophysics test room:
 - surrounding luminance set to 10 lux
 - D65 chromaticity
- Viewing distance such as:
 1 pixel + 1.5' visual angle
- Background luminance on the screen:
 L_{mean} = sqrt(L_{min}.L_{max})

HVEI 2009 - 01.21.2009 Sylvain Tourancheau - Psychophysical study of LCD motion-blur

Stimuli

- Moving edge:
 - from left to right
 - 20 grey-to-grey transitions tested
 (grey levels: 0, 63, 127, 191, 255)
- Stationary edge:
 - from the measured blurred edge profile for the same transition
 - adjustement of blur quantity by up- or downscaling this measured edge profile

Displays under test

• Three displays have been tested

Apple cinema display	26″	1920x1200@60Hz	300 cd/m ²
Philips LCDTV	37″	1920x1080@60Hz	440 cd/m ²
LG monitor	30″	2560x1600@60Hz	160 cd/m²

- Experiments have been conducted:
 - in IRCCyN (France) with Apple and Philips displays
 - in Acreo (Sweden) with LG display

Observers

- Three subjects have participated to the experiments for each display
- All possessed normal or corrected-to-normal vision (visual acuity of 0.9 or better on both eyes)
- Subjects were familiar with the procedure after several training sessions

HVEI 2009 - 01.21.2009 Sylvain Tourancheau - Psychophysical study of LCD motion-blur

Psychophysical study of LCD motion-blur

- Objective measurements of motion-blur
- Psychophysical experiments
- Results
- Conclusion

Results Perceived blur vs Speed

Transition 0->63

Transition 63->191

Perceived blur vs Speed

 For each transition (and display) the perceived blur BEW_p is proportional to the speed V

$$BEW_{p} = k.V$$

• Linear correlation between this model and subjective data is always higher than 0.982

Perceived vs Measured

- Measured motion-blur:
- Perceived motion-blur:

 $BEW_m = BET.V$ $BEW_p = k.V$

• As a result, the relationship between perceived blur and measured blur is linear:

$$BEW_p = A.BEW_m$$

with A = k/BET

HVEI 2009 - 01.21.2009 Sylvain Tourancheau - Psychophysical study of LCD motion-blur

Perceived vs Measured

- A is the ratio between perceived motion-blur and measured motion-blur
- For almost all transitions and displays: A < 1
- Perceived edge is actually sharper than the edge obtained from objective measurements

This result may be related to motionsharpening phenomenon

Perceived vs Measured

Transition 0->63

Transition 0->255

Ratio vs Contrast

 How does this sharpening effect vary with transitions ?

• Is it affected by contrast or luminance ?

Ratio vs Contrast

HVEI 2009 - 01.21.2009 Sylvain Tourancheau - Psychophysical study of LCD motion-blur

Ratio vs Contrast

Ratio vs Contrast

- For rising transitions, ratio A is decreasing as the luminance/contrast decreases.
- Linear correlation coefficient between A and some luminance/contrast values:

Display	Lmax	(Lmax+Lmin)/2	Lmax – Lmin
Apple	0.9495	0.8823	0.8681
Philips	0.6744	0.6142	0.6648
LG	0.7337	0.6120	0.7794

Ratio vs Contrast

- For rising transitions, ratio A (between perceived motion-blur and measured motionblur) is lower as the contrast of the edge is decreasing
- Sharpening effect is stronger for low contrast conditions
- However, no particular relationship has been found for falling transitions

Psychophysical study of LCD motion-blur

- Objective measurements of motion-blur
- Psychophysical experiments
- Results
- Conclusion

Conclusion Summary Objective measured motion-blur and perceived motion-blur are highly correlated BUT perceived blur is lower than measured blur This may be related to motion-sharpening phenomenon

HVEI 2009 - 01.21.2009 Sylvain Tourancheau - Psychophysical study of LCD motion-blur

Conclusion

Summary

- The ratio between perceived and measured motion-blur is decreasing with contrast for rising transitions
- This indicates that sharpening is stronger for low contrast edges
- Motion-blur measurements should be weighted as a function of transitions: HVS is less sensitive to blur for low contrast transitions

Conclusion

Future work

- Test more transitions to confirm this behaviour and to define weighting function
- Understand what happen with falling transitions (suggestions are welcome!)

