Bayesian analysis of growth curves using mixed models defined by stochastic differential equations

Abstract : Growth curve data consist of repeated measurements of a continuous growth process over time among a population of individuals. These data are classically analyzed by nonlinear mixed models. However, the standard growth functions used in this context prescribe monotone increasing growth and can fail to model unexpected changes in growth rates. We propose to model these variations using stochastic differential equations (SDEs) that are deduced from the standard deterministic growth function by adding random variations to the growth dynamics. A Bayesian inference of the parameters of these SDE mixed models is developed. In the case when the SDE has an explicit solution, we describe an easily implemented Gibbs algorithm. When the conditional distribution of the diusion process has no explicit form, we propose to approximate it using the Euler-Maruyama scheme. Finally, we suggest to validate the SDE approach via criteria based on the predictive posterior distribution. We illustrate the efficiency of our method using the Gompertz function to model data on chichen growth, the modeling being improved by the SDE approach.
Type de document :
Article dans une revue
Biometrics, Wiley, 2010, 66 (3), pp.733-741. 〈10.1111/j.1541-0420.2009.01342.x〉
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger
Contributeur : Sophie Donnet <>
Soumis le : mardi 10 février 2009 - 12:02:05
Dernière modification le : jeudi 7 février 2019 - 16:39:32
Document(s) archivé(s) le : vendredi 12 octobre 2012 - 11:16:30


Fichiers produits par l'(les) auteur(s)




Sophie Donnet, Jean-Louis Foulley, Adeline Samson. Bayesian analysis of growth curves using mixed models defined by stochastic differential equations. Biometrics, Wiley, 2010, 66 (3), pp.733-741. 〈10.1111/j.1541-0420.2009.01342.x〉. 〈hal-00360111〉



Consultations de la notice


Téléchargements de fichiers