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Influence diagrams for contextual information

retrieval
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118 Route de Narbonne, 31400 Toulouse CEDEX 06, France

Abstract. The purpose of contextual information retrieval is to make
some exploration towards designing user specific search engines that are
able to adapt the retrieval model to the variety of differences on user’s
contexts. In this paper we propose an influence diagram based retrieval
model which is able to incorporate contexts, viewed as user’s long-term
interests into the retrieval process.
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1 Introduction

A key challenge in information retrieval is the use of contextual evidence within
the ad-hoc retrieval.Several approaches explored in contextual retrieval area,
techniques for building the user’s profile [3, 6, 2] and using it in the retrieval
process [2, 7, 5, 8]. Most of these approaches employ implicit user feedback to
model the related long-term interests as contexts represented by word vectors
[2], classes of concepts [3] or a hierarchy of concepts [6]. Since the contexts
are modeled, they are exploited in order to refine the query [2, 8], re-rank the
documents [7] or model the whole retrieval process [5, 8]. The latest goal is
precisely our own one. Our contribution is particularly based on the belief that
contextual retrieval is a decision-making problem. For this reason we propose to
apply influence diagrams witch are an extension of Bayesian networks to such
problems, in order to solve the hard problem of user’s relevance estimation.

2 The influence diagram based model

An influence diagram [4] is a graphic model used to represent and resolve a
decision-making problem. Our interest in influence diagrams is namely to model
the decision problem of document relevancy by taking into account the influence
of both user’s long-term interests and the query submitted.



2.1 Diagram topology

Figure 1 illustrates the qualitative component of our influence diagram based
retrieval model. The set of nodes V is composed of four different types of nodes
V = D ∪ T ∪P ∪C. The set D = {D1, D2, , Dn} represent the set of documents
in the collection, T = {T1, T2, , Tm} represent the set of terms used to index
these documents, P = {P1, P2, .., Pn} represent the decisions to state that these
documents are relevant and C = {C1, C2, , Cu} represent the set of a specific
user’s contexts expressing his long-term interests. These different types of nodes
are described below:
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Fig. 1. Influence diagram-based retrieval model

– Chance nodes. There are three types of chance nodes: documents, terms and
contexts. Each document node D, represents a binary random variable taking
values in the set

{
d, d

}
, where d represents ’the document d is relevant for

a given query’, and d represents ’the document d is not relevant for a given
query’. Each term node T represents a binary random variable taking values
in the set

{
t, t

}
, where t represents ’the term t is representative for a given

query’ and t represents ’the term t is not representative for a given query’.
Each context node C represents a binary random variable taking values in
the set {c, c}, where c represents ’the context c is relevant for a given query’
and c represents ’the context c is not relevant for a given query’.

– Utility nodes. There is an utility node corresponding to each decision node.



– Decision nodes. Each decision node P represents a binary random variable
p, taking values in the set {p, p} . These values correpsonds to each pair{
d, d

}
corresponding to a document node.

Influence arcs join each node term Ti ∈ τ(Dj) and each document node
(Dj) ∈ D. Similarly there are influence arcs joining each node term Ti ∈ τ(Ck)
and each context node Ck ∈ C. We note Pa(.) the parent sets for each node in the
network: ∀Ti ∈ T, Pa(Ti) = �, ∀Dj ∈ D, Pa(Dj) = τ(Dj), ∀Ck ∈ C, Pa(Ck) =
τ(Ck)

The informative arcs point to utility nodes for which ordered numerical values
are assigned.

2.2 Probability distributions

The estimation of the probability distributions stored in chance and decision
nodes is carried out in the following ways:

– Term node: p(ti/pa(ti)) = p(ti) as Pa(Ti) = �. We assume that p(ti) =
α, p(ti) = (1 − α) ∀ti ∈ T (0 ≤ α ≤ 1)

– Document node: p(dj/pa(dj)) =
∑

ti∈rel(pa(dj))
Wtd(i, j) where rel(pa(dj)) =

{Ti ∈ Pa(Dj)/ti ∈ pa(dj)} , Wtd(i, j) = wtdij∑
tl∈τ(Dj)

wlj
wtdij is the weight of

the term Ti in the document Dj

– Context node: p(ck/pa(ck)) =
∑

ti∈rel(pa(ck)) Wtc(i, k) where rel(pa(ck)) =
{Ti ∈ Pa(Ck)/ti ∈ pa(ck)} , Wtc(i, k) = wtcik∑

tl∈τ(Ck)
wtclk

wtcik is the weight

of the term Ti in the context Ck

3 Query evaluation

The query evaluation consists in the propagation of new evidence through the
diagram, like in Bayesian networks [1], in order to maximize a re-ranking utility
measure. More precisely, given a query Q represented by a set of positive terms
(τ (Q) = {T1, T2, ..., Tr}), the retrieval process starts placing the evidence in the
term nodes (marginally independent): p(ti/Q) = 1 if Ti ∈ τ (Q) and p(ti/Q) =
α if Ti /∈ τ (Q). Then, the inference process is run by maximizing the re-ranking
utility measure EU(p/Q)

EU(p/Q computed as follows: (we assume that documents are
independent given the query and context)

EU(p/Q) =
∑

ck∈{c,c},dj∈{d,d}
u(p/ck, dj)p(ck/Q)p(dj/Q) (1)

EU(p/Q) =
∑

ck∈{c,c},dj∈{d,d}
u(p/ck, dj)p(ck/Q)p(dj/Q) (2)



When using the probability functions used respectively for document and
context nodes, we compute respectively p(dj/Q) and p(ck/Q) as follows:

p(dj/Q) = α + (1 − α)
∑

Ti∈(τ(Dj)∩τ(Q))

Wtd(i, j) (3)

p(ck/Q) = α + (1 − α)
∑

Ti∈(τ(Ck)∩τ(Q))

Wtc(i, k) (4)

4 Conclusion

We proposed in this poster, an influence diagram based model for contextual
information retrieval. This model allows to make inferences about the user’s
search intention and to take ideal actions based on probability query term dis-
tributions over the document collection and the user’ contexts. We are currently
experimenting with the graph representation, identification of user’ contexts and
parameters to be used for query evaluation.
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