Analysis of Finite Element formulations for computing electromagnetic fields in the human body
Laurent Bernard, Joao Vasconcelos, Noël Burais, Laurent Krähenbühl, Laurent Nicolas

To cite this version:
Laurent Bernard, Joao Vasconcelos, Noël Burais, Laurent Krähenbühl, Laurent Nicolas. Analysis of Finite Element formulations for computing electromagnetic fields in the human body. MOMAG, Sep 2008, Florianópolis, Brazil. pp.1051-1054. hal-00359246

HAL Id: hal-00359246
https://hal.archives-ouvertes.fr/hal-00359246
Submitted on 1 Sep 2009

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Analysis of Finite Element formulations for computing electromagnetic fields in the human body

Laurent Bernard1,2, João Antônio de Vasconcelos3, Noël Burais1,4, Laurent Krähenbühl1,2, Laurent Nicolas1,2

1Université de Lyon - CNRS UMR5005 (Ampère), 2Ecole Centrale de Lyon, 69134 Ecully, FRANCE. 3Universidade Federal de Minas Gerais, Belo Horizonte, BRASIL. 4Université Lyon 1, 69622 Villeurbanne, FRANCE

\textbf{Abstract} — Due to the very specific electromagnetic properties of biological tissues, electromagnetic field calculation in the human body is difficult and the choice of the best numerical formulation is not straightforward. This question is analysed by solving a canonical problem: the scattering of a plane wave by concentric spheres. Electromagnetic properties of various biological tissues are considered to take into account the heterogeneity of the human body. Several finite element formulations are compared in the 10Hz-1GHz frequency range with respect to the analytical solution.

\textbf{Key-words} — biological effects of electromagnetic radiation, finite element methods, frequency domain analysis, nonhomogeneous media.

I. INTRODUCTION

Calculating induced electromagnetic fields inside the human body requires efficient numerical methods and is actually a challenging problem due to [1]:
- the complex structure of the human body (at the microscopic and macroscopic scales)
- the unusual electromagnetic properties of the tissues of the human body.
- the great variety of sources which leads to electric and magnetic field exposure in a large range of frequencies (from 50Hz with power transmission lines to a few GHz with mobile phones).

Conventional electromagnetic numerical methods are usually applied to this kind of study. They are applied to the Maxwell’s equations, with different assumptions depending on the frequency range. The efficiency of these methods and formulations is well-known when solving conventional problems with usual conductors or dielectrics. Since human exposure problems are very unusual, the accuracy of the computations must be evaluated. Such evaluation has already been performed when using classical methods, such as SPFD and FDTD methods, by studying a layered sphere problem in low frequency [2],[3]. But nothing has been done with the Finite Element Method (FEM) applied to the computation of electromagnetic quantities in the human body in a wide frequency range. In this paper, FEM is used in the frequency domain between 10Hz and 1GHz, to solve Low Frequency (LF) and High Frequency (HF) formulations.

The accuracy is evaluated with respect to the analytical solution of a 3D scattering problem: a layered sphere with the electric properties of biological tissues scattering a plane electromagnetic wave.

Biological tissues are both dielectrics with losses and ionic conductors. They are generally considered as non-magnetic and linear with respect to the electromagnetic fields in the case of low magnitude field exposure [4]. Despite the difficulties of the characterization of biological tissues, the relevant literature provides a great amount of measurements [5]. It appears that the composition and microscopic structure of biological tissues result in very unusual values of the macroscopic electrical properties: the permittivity (ε) and the conductivity (σ) strongly depend on the frequency, and the permittivity has very high values in low frequency. It should be noticed also that these properties are very different from one tissue to another.

These specific properties of biological tissues make the problem of human exposure to electromagnetic fields an unusual one. First, the discretization must take into account the organ heterogeneity in the body: it implies that the studied domain has to be bounded in order to avoid computational overload. Then, considering the properties of biological tissues, the accuracy of conventional formulations must be evaluated as function of the frequency. The \textit{a priori} choice of the formulation based on the classical characteristic parameters of the problem is analysed and discussed considering an \textit{a posteriori} evaluation of the computation based on efficiency parameters.

II. COMPUTATIONAL METHODS

An overlook on the literature dealing with electromagnetic field computation in the human body shows that several numerical techniques may be applied.

The impedance method [6],[7] consists in discretizing the computational domain with a 3D regular grid. A value of impedance is attributed to each edge of the grid. Currents and potentials can be computed when knowing the source of magnetic or electric field. On the other hand, the Finite Difference Method (FDM) [8], may be used in time (FDTD) or in frequency domain. It consists in using a 3D regular grid to discretize Maxwell’s equations on the whole computational domain.

Both of these methods use a very simple mesh on which each organ properties can easily be defined, but these results in two difficulties:
- the mesh density may be excessively high in large
Since the FEM works on a non-uniform mesh, it avoids such difficulties [9], even if generating the mesh may be very complicated. In this paper, computations are performed using the GetDP [10] environment for assembling the FE matrices and Matlab to analyse and solve the linear system.

III. STUDIED PROBLEM AND FORMULATIONS

A. Studied problem

Defining a representative problem which has an analytical solution is required in order to evaluate the accuracy of the FEM and the associated formulations when computing electromagnetic fields in the human body. The studied problem is the scattering of a plane wave by a layered sphere (Fig. 1) [11].

Sources of electromagnetic fields are of various types resulting in different human exposure configurations. In low frequency, the exposure to electric fields and the exposure to magnetic fields can be studied separately but both of them may induce significant current in the human body [12]. In high frequency, the electric and the magnetic fields are necessarily coupled. For the studied canonical problem, the source is a plane electromagnetic wave such that the incident magnetic and electric fields are: \(H_i = 1 \text{A/m} \) and \(E_i = 377 \text{V/m} \).

The dimension of the sphere is representative of the human head (20 centimeter diameter). In order to represent the heterogeneity at the organ scale, the sphere consists of 4 layers having the electrical properties of different biological tissues: bone, muscle, fat and blood. Dielectric properties are found in [3].

FEM requires a finite domain. Boundaries are chosen sufficiently far from the sphere in such a way that the incident field is not significantly changed when there is no propagation phenomenon.

B. Low frequency formulation (LF)

The studied LF formulation is the one proposed and validated by Bossavit in [12]. It consists in using the classical \(\phi - \vec{A} \) formulation with an additional source term which takes into account the displacement current entering through the boundary (\(\Gamma_c \)) of the body. The computational domain is reduced to the volume of the body (\(\Omega_0 \)). In general, three steps are needed to solve the problem:

- compute the source magnetic vector \(\vec{A}_i \) (using Biot-Savart’s law for air coils as example),
- compute the displacement current \((- j \omega \vec{E} \nabla \phi)\) on the boundary of the body (considering the body as a perfect conductor),
- solve the \(\phi - \vec{A} \) formulation with the two sources.

The weak form of the problem is then:

\[
\int_{\Omega} (\sigma + j \omega \varepsilon) \vec{E} \cdot \nabla \phi \, d\Omega = - \int_{\Omega} (\sigma + j \omega \varepsilon) j \omega \vec{A} \cdot \nabla \phi \, d\Omega + \int_{\Gamma} j \omega \vec{E} \cdot \vec{n} \phi \, d\Gamma \tag{1}
\]

where \(\phi \) is the appropriate scalar test function.

Theoretically, this formulation is useful whenever \(\lambda/D \gg 1 \) and \(\sigma + j \omega \varepsilon \gg \omega \varepsilon_0 \). When the first condition is satisfied, the plane wave of the problem studied here is assumed to create uniform electric and magnetic fields sources. The magnetic vector potential is directly obtained from the uniform magnetic field source. The displacement current on the surface of the body is obtained from a FE computation using the electro-quasi-static formulation in the surrounding air region with appropriate Dirichlet boundary conditions (this computation is named LF0 in the following). The LF formulation is also considered neglecting the displacement currents with respect to the conduction current (LF \(\sigma >> \omega \varepsilon \)).

C. High frequency formulations (HF)

The wave equation is considered separating the incident and the scattered electric fields (respectively \(\vec{E}_i \) and \(\vec{E}_s \)) [13]. Since the body has a magnetic permeability equal to the one of the vacuum, the weak form of the problem is:

\[
\int_{\Omega} \mu_0^{-1} \nabla \times \vec{E}_i \cdot \nabla \times \vec{E}_s \, d\Omega + j \omega \int_{\Omega} (\sigma + j \omega \varepsilon) \vec{E}_s \cdot \vec{E}_i \, d\Omega = - j \omega \int_{\Omega} (\sigma + j \omega (\varepsilon - \varepsilon_0)) \vec{E}_i \cdot \vec{E}_s \, d\Omega - \int_{\Gamma} \mu_0^{-1} \nabla \times \vec{E}_i \cdot \vec{E}_s \, d\Gamma \tag{2}
\]

The source is imposed by the value of the incident electric field in the body (first right-hand term). Various conditions
are considered in order to truncate the computational domain:

1) Homogeneous Dirichlet Condition (HFDir0): This condition consists in imposing the scattered field to be null on the boundaries.

2) First Order Absorbing Boundary Condition (HFAB1): This condition assumes that the scattered field results in a plane wave which is normally incident to the boundaries ($\vec{n} \times \nabla \times \vec{E}_s = -j\omega \mu_0 \vec{E}_s$).

3) Perfectly Matched Layers (HFPML): The considered PML has a thickness of 0.2m. A homogeneous Dirichlet condition is applied on the exterior boundary of the PML.

Transparent condition which uses integral equations coupled to the FEM has already been studied on a 2D case. The high computation cost induced by this condition is not affordable in the 3D problem studied here.

D. Frequency scaling (FS)

The HF formulation may lead to solve very badly conditioned linear systems when $\lambda/D >> 1$. A technique called “frequency scaling” [2] can be used to avoid the problem. The electric field \vec{E} is first computed with the HF formulation at pulsation $\omega \neq \omega'$ with $\sigma(\omega)$ and $\epsilon(\omega)$ (such that $\sigma(\omega) >> \omega' \epsilon(\omega)$). Then, the electric field \vec{E} at pulsation ω is calculated from the relation:

$$\vec{E} = \frac{\omega'}{\omega} \vec{E}'$$

(3)

In the study presented here, the HF formulation is solved at 100 kHz and then scaled for any frequency in the 10Hz-1GHz frequency range.

IV. A PRIORI CHOICE OF THE FORMULATION AND A POSTERIORI EFFICIENCY EVALUATION

A. A priori choice of the formulation

The choice of the formulation depends on two main parameters: the ratio between the wavelength (λ) and the characteristic size (D) of the body, and the ratio between conduction and displacement currents ($\sigma/\omega\epsilon$). For human exposure problems in general, and for the specific problem studied here, the analysis of these parameters do not provide an obvious choice of the formulation in the whole frequency range. Fig. 2 shows the minimal value of the $\sigma/\omega\epsilon$ and λ/D and the corresponding tissue in function of the frequency. Considering the values of λ/D, propagation phenomena is expected to occur firstly in blood regions and for frequencies above 2MHz. Due to the very high values of permittivity in low frequency, it is difficult to know whether displacement currents have to be taken into account or not. They may not be negligible depending on the frequency and tissue under consideration.

B. A posteriori efficiency of the computation

FEM leads to solve linear systems of the form $Ax = B$. The complexity of a FE model is determined by the complexity of the A matrix. The main parameters that characterize this complexity are:
- the number of columns,
- the density,
- the conditioning number.

Another criterion of efficiency is the relative difference between the FE solution and the analytical solution of the free space problem:

$$e = \frac{\|\vec{E} - \vec{E}_a\|}{\|\vec{E}_a\|}$$

where \vec{E} is the electric field computed with the FE method and \vec{E}_a is the analytical solution. The mean value of the relative error is evaluated on a large number of points inside the body.

V. RESULTS

All formulations are computed on the same tetrahedral mesh. Second order nodal elements are used for the LF formulations. Second order edge elements are used for the HF formulations.

The relative error with respect to the analytical solution (Fig. 3) can be analyzed on various frequency regions:

1) Below 100 kHz, HF formulations should not be used directly. These formulations lead to a very badly conditioned system (Fig. 4) and can not give accurate results. The frequency scaling technique (FS) may be used to avoid the problem but the LF formulation gives a better solution in terms of matrix conditioning, size and density (Table 1).

2) Between 100 kHz and 3 MHz, propagating phenomena and displacement current can be neglected. All the studied formulations give accurate results but the LF formulation is much more efficient than the others.
3) Between 3 and 10 MHz, propagation can still be neglected but displacement currents must be taken into account. The LF formulation remains the more efficient one.

4) Between 10 MHz and 200 MHz, propagation must be taken into account. Above 100 MHz, HFDir0 is not accurate because the scattered field is not negligible at the domain boundaries. The computational domain must be truncated using an appropriate technique, for example using PML (the accuracy of the HFAB1 formulation is the same the one of HFPML on this frequency range and is not presented here).

4) Above 200 MHz, the chosen mesh is not dense enough to obtain accurate results.

Fig. 3. Relative error with respect to the analytical solution for the different formulations.

![Graph](image)

TABLE I

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Number of columns of A</th>
<th>Density of A</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF0</td>
<td>11359</td>
<td>0.1736</td>
</tr>
<tr>
<td>LF</td>
<td>4676</td>
<td>0.5109</td>
</tr>
<tr>
<td>HFDir0, HFPML</td>
<td>24774</td>
<td>0.1211</td>
</tr>
<tr>
<td>FS</td>
<td>26664</td>
<td>0.1127</td>
</tr>
<tr>
<td>HFAB1</td>
<td>24774</td>
<td>0.1211</td>
</tr>
</tbody>
</table>

Fig. 4. Conditioning number as a function of the frequency for the different formulations.

VI. CONCLUSION

The specific properties of biological tissues make the problem of interaction between electromagnetic fields and human body to be an unusual one. In this paper, the efficiencies of several models based on LF and HF formulations are compared when solving a representative 3D problem. It is shown that on a large frequency range, from 10 Hz to 10 MHz, a LF formulation taking into account the displacement currents gives accurate results and is computationally much more efficient than the FS formulation. Above 10 MHz, HF formulation must be used to take into account propagation phenomena in the body. Above 100 MHz, an efficient method must be used in order to simulate the free-space at the boundary of the computational domain. Due to the specific electrical properties of the body tissues and their heterogeneity, the choice of the formulation based on a posteriori efficiency evaluation is different from the choice based on classical a priori criteria.

The results presented here depend on the size of the studied body. A possible enhancement of this work would be to consider a more realistic model of the whole human body.

REFERENCES