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Abstract

We present an effective filtering procedure for jointly estimating state variables and parameters in
a distributed mechanical system. This method is based on a robust, low-cost filter related to collocated
feedback and used to estimate state variables, and an H∞ setting is then employed to formulate a joint
state-parameter estimation filter. In addition to providing a tractable filtering approach for an infinite-
dimensional mechanical system, the H∞ setting allows to consider measurement errors that cannot
be handled by Kalman type filters, e.g. for measurements only available on the boundary. For this
estimation strategy a complete error analysis is given, and a detailed numerical assessment – using a
test problem inspired from cardiac biomechanics – demonstrates the effectiveness of our approach.

1 Introduction

The formulation and optimization of filtering procedures aiming at estimating both the state variables and
the parameters of a dynamical system has been an active field of research for several decades, and some
effective strategies have been proposed, see e.g. [8, 10] and their references. However, these procedures
have long been restricted to systems with only a very limited number of state variables and parameters –
due to the induced size of filter matrices to be manipulated – making them out of reach for the estimation
of systems based on partial differential equations. Only recently have some so-called “reduced rank
filtering” procedures been proposed, in order to deal with such large systems by reducing the size of
the space of “uncertain variables” considered [11]. In many infinite dimensional systems, however, this
uncertainty space is intrinsically very large, hence generic rank reduction is not applicable.

In [9] we have proposed a new filtering procedure based on a two-stage strategy:

1. a physics-based state filter – related to feedback stabilization – allows to estimate the state variables
very effectively, namely, at a computational cost comparable to standard numerical simulations of
the system, assuming that the parameters are known;

2. a second filter – based on optimal filtering methods – is applied in order to jointly estimate the
parameters and the state.

∗Corresponding author: dominique.chapelle@inria.fr
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We have also shown that this strategy is closely related to reduced rank procedures, the effect of the
first stage state filter being in essence to circumscribe the uncertainty to the parameter space – which is
usually much “smaller” than the parameter space, indeed. In distributed mechanical systems in partic-
ular, the state filter can rely on collocated feedback, and we have demonstrated the effectiveness of our
approach using a test problem inspired from cardiac mechanics and imaging. Nevertheless, an important
limitation of this approach is that the second stage optimal filter derivation is based on the assumption
that all “static” uncertainties – namely, essentially initial conditions – are Gaussian probabilistic variables
and that “dynamic” uncertainties – in particular measurement errors – are white noises. This clearly rep-
resents a limitation as other types of uncertainty modeling – whether probabilistic or deterministic – may
be more relevant for specific systems and according to the metrology considered. As a matter of fact, if
the measurement used is restricted to the boundary of a mechanical system and with a collocated force
feedback, it can be shown (see Section 2) that white noise errors lead to non-bounded mean mechanical
energies, which of course is not admissible.

Therefore, in this paper we formulate a new filter based on a similar two-stage approach, albeit obtained
by recasting the estimation problem in a robust (H∞) filtering framework. Although this setting is quite
drastically different from [9], it leads to similar filter equations, with an additional term which is straight-
forward to implement. More fundamentally, it allows to consider general uncertainties, and provides a
performance bound that guarantees a given robustness criterion – in the usual H∞ form – is fulfilled.

The outline of the paper is as follows. In Section 2 we analyse the effect of a white noise loading on the
boundary of a mechanical system, as part of the above-mentioned motivation of our approach. Section
3 is devoted to the presentation of the system on which estimation is to be performed, with the detailed
definition of a test problem. Then, in Section 4 we introduce the state estimation strategy and we derive
the corresponding estimation error equations, before performing some numerical assessments of this
error. Finally, we present in Section 5 the formulation of the joint state-parameter estimation procedure
with detailed mathematical analyses and numerical testing, before giving some concluding remarks in
Section 6.

2 Preliminary: energy induced by a white noise loading in a mechanical
system

In order to explain why we cannot deal with distributed mechanical systems submitted to white noise
type excitations on their boundary we consider the following basic example of a conservative system:

MŸ + KY = Ḟ, (2.1)

where F represents a field – smooth in the space variables – that may be either 3D-distributed or con-
centrated on the boundary, and corresponding to a Wiener process in the time variable, so that Ḟ is a
white noise. Note that to avoid undue technicalities we adopt here a finite dimensional description, but a
similar argument also applies – at least formally – with infinite-dimensional operators. In the state space
formalism the above dynamical equation can be rewritten as

Ẋ = AX + Ṙ, (2.2)

with

X =

(
Y
Ẏ

)
, A =

(
0 I

−M−1K 0

)
, R =

(
0

M−1F

)
. (2.3)
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Note that Ṙ is also a white noise. Let us compute the mean energy of the state X along time, using the
energy norm matrix defined by

N =
1
2

(
K 0
0 M

)
.

Introducing the semi-group T h(t) generated by A so that

X(t) = T h(t)X(0) +

∫ t

0
T h(t − s)Ṙ(s) ds, (2.4)

some simple algebra leads to

E(‖X‖2
E
) = E(XT NX)

= X(0)TT h(t)T NT h(t)X(0) +

∫ t

0

∫ t

0
E
(
Ṙ(τ)TT h(t − τ)T NT h(t − s)Ṙ(s)

)
dτds, (2.5)

Since the mechanical system is conservative the first term gives

X(0)TT h(t)T NT h(t)X(0) = ‖T h(t)X(0)‖2
E

= ‖X(0)‖2
E
. (2.6)

Moreover, denoting by QR the covariance of the Wiener process R and using

Ṙ(τ)TT h(t − τ)T NT h(t − s)Ṙ(s) = Tr
(
Ṙ(s)Ṙ(τ)TT h(t − τ)T NT h(t − s)

)
,

together with E
(
Ṙ(s)Ṙ(τ)T )

= QR δ(t − s), we infer

E(‖X‖2
E

) = ‖X(0)‖2
E

+

∫ t

0
Tr

(
QRT

h(t − τ)T NT h(t − τ)
)

dτ,

= ‖X(0)‖2
E

+

∫ t

0
E
(
R(τ)TT h(t − τ)T NT h(t − τ)R(τ)

)
dτ,

= ‖X(0)‖2
E

+

∫ t

0
E
(
R(τ)T NR(τ)

)
dτ,

= ‖X(0)‖2
E

+

∫ t

0
τTr(QRN) dτ,

= ‖X(0)‖2
E

+
t2

2
Tr(QRN). (2.7)

Note now that
Tr(QRN) = E

(
FT M−1F

)
, (2.8)

so that the mean energy is bounded – or in the discrete framework uniformly bounded with respect to the
discretization – only when F corresponds space-wise to a field belonging to the dual of L2(Ω). This holds
when the loading is smoothly 3D-distributed, but of course not when it is concentrated on the boundary.
Hence, applying a boundary-concentrated white noise as a loading in a general mechanical system is not
admissible from the energy point of view.
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3 Problem statement

3.1 General framework

We consider a mechanical system in the realm of solid or structural continuum mechanics, where the
acceleration field inside the body is given by the imbalance between internal stresses and external forces.
When x denotes the state vector including displacements y and velocities ẏ, such systems are described
in a linear framework by a dynamical system – underlied by partial differential equations – written in
the following generic form 

dx
dt

= Ax + R

x(0) = x0 + ζx

(3.1)

whereA is a linear differential operator generating a continuous semi-group, and R a source term. More
specifically, this equation expresses the conservation of linear momentum, completed by the identity
relating the velocity and the time derivative of displacement, namely, in a weak form,∫

Ω

ρ
dy

dt
· δy dΩ =

∫
Ω

ρẏ · δy dΩ, ∀δy (3.2)∫
Ω

ρ
dẏ

dt
· δy dΩ = −

∫
Ω

Σ
(
y, ẏ

)
: δe dΩ +

∫
Ω

f · δy dΩ, ∀δy (3.3)

Here Ω represents the geometrical domain of the system, ρ the mass per unit volume, Σ the second Piola-
Kirchhoff stress tensor, δy an arbitrary test function in the displacement space with δe the corresponding
infinitesimal variation for the Green-Lagrange strain tensor, and f the applied loading (taken here as a 3D

distributed field to fix the ideas). Hence, in System (3.1) x denotes the state variable
(
y ẏ

)T . Assuming
small displacements, we can identify δe with the symmetric part of the gradient ∇δy, and take Σ – which
can then be identified with the Cauchy stress tensor – as a linear function of x. We are thus led to the
linear operator A. The differential system considered is of infinite dimension, its unknowns being the
displacement and velocity fields at each point of the continuous body.

In the above system, ζx represents the unknown part in the initial condition x(0). Likewise, we assume
thatA and R depend on a set of parameters in the form

θ = θ0 + ζθ, (3.4)

in which ζθ is undetermined. Our objective is to obtain a joint estimation of the unknown quantities ζx

and ζθ, based on measurements available for the system. These measurements are assumed to be given
by

Z = H x + χ

where H is a linear operator referred to as the observation operator, and χ denotes an error introduced
by the measurement procedure (detection, sampling...). We also introduce

Z̄ = H x (3.5)

to represent an “exact measurement” which of course is never available in practice. More specifically,
in the whole paper the measurements considered will be the velocities taken in a subpart Γm of the
domain boundary ∂Ω. Namely,H x = (0Hv)(y ẏ)T consists of the trace of the velocity field on Γm. Note
that, in general, the regularity required to obtain such a trace is not naturally induced by the mechanical
variational formulation (3.2)-(3.3), hence in the sequel we will assume that we have sufficient regularity
in the solution for this trace to lie in L2(Γm).
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3.2 Modelling and discretization

Our observer approach relies on a discretized version of the above reference model, typically obtained
by a finite element approximation of the variational formulation. Hence, we introduce A and R as the
discrete counterparts ofA and R obtained from this variational approximation, namely,

A =

(
0 I

−M−1K −M−1C

)
, R =

(
0

M−1F

)
, (3.6)

when M, C, K and F respectively denote the mass, damping and stiffness matrices and the consistent
force vector, see e.g. [3, 5]. We also define H as the discrete observation operator, namely, the operator
giving the trace on Γm of the velocity part of a discrete state vector. Since H only acts on velocities – like
the continuous observation operatorH – we will also use the expression

H = (0 Hv) = (0 =ΓTΓ),

where TΓ is defined as a matrix that selects the degrees of freedom located on Γm, and =Γ as the operator
that interpolates a surface field from these degrees of freedom.

3.3 Model problem

In order to illustrate and assess our estimation procedures, we will consider an example problem inspired
from biomechanics and representing a simplified cardiac ventricle. This model problem was already
considered in [9], but for completeness we now summarize its definition.

The geometry of our example problem is depicted in Figure 1, and the characteristic dimensions of this
object are – indeed – comparable to those of a human left ventricle. We thus resort to cardiac terminology
to refer to the two extremities of the object, namely “apex and base” (see Figure). The system is clamped
over the planar surface at the base, and activated by a planar wave of prestress – representing electrical
activation – traveling from apex to base at wave speed c = 0.5 m.s−1, which means that it takes 0.2 s for
the wave to reach the base. The wave shape itself is shown in Figure 2. The resulting prestress state is
assumed to be isotropic and gives an external virtual work defined by

δWPS =
∑

1≤i≤17

∫
ΩAHA

i

θiσ0w(x3 − ct) Tr(δ∇y) dΩ = δYT · R, (3.7)

where the subdivision of the solid domain into 17 sub-regions is similar to the subdivision of the left
ventricle advocated by the American Heart Association, see [1]. In the case of our simplified geometry
this subdivision is depicted in Fig. 1. In the above expression σ0 denotes a constant contractility parame-
ter, and θi a multiplicative coefficient that may take a different value in the range [0, 1] within each AHA
region to represent pathological contraction. Namely, setting θi < 1 in a given region corresponds to a
simplified model of infarcted tissue in that area, hence the parameters (θi)1≤i≤17 represent the quantities
to be estimated for diagnosis purposes. In our reference simulations we take all these parameters to be 1
(healthy value) except for

θ14 = 0.5, (3.8)

see Figure 3.
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Our simulations will correspond to an isotropic viscoelastic material in linear analysis, with material
parameters given by

Ei = 12.6 103 Pa, νi = 0.3, ηi = 0.227 s ∀i ∈ {1, . . . , 17}, (3.9)

and respectively denoting Young’s modulus, the Poisson ratio and a viscoelastic coefficient associated
with the pseudo-potential

Wv = ηi

(
λi

2
(Tr ε̇)2 + µi Tr(ε̇2)

)
, ∀i ∈ {1, . . . , 17},

where λi et µi are the Lamé constants derived from Ei and νi, and

ε =
1
2
(
∇yT + ∇y

)
denotes the linearized strain tensor approximating – at the first order – the Green-Lagrange deformation
tensor in the small displacements framework. Note that this viscoelastic contribution corresponds to
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Region 14

Figure 3: Reference mesh with ‘infarcted’ region (left) - ‘Desired’ mesh to be used in estimation (right)

stiffness-based Rayleigh proportional damping. This leads to the following constitutive law to be taken
into account in the variational formulation

Σ = λi Tr(ε + ηiε̇)1 + 2µi(ε + ηiε̇). (3.10)

Also, volumic mass is set as ρ = 103 kg ·m−3, a standard value for biological tissues.
The measurements used in the estimation procedures will be provided by a “reference model” given

by a rather fine finite element discretization of the above object. The corresponding mesh is displayed
in Figure 3 and features nearly 40000 degrees of freedom. The observer itself will be based on coarser
discretizations, where the adequate mesh size will be a matter of discussion in the sequel. In all our
simulations we used for time discretization the energy-conserving Newmark algorithm with time step
∆t = 1 ms. This time step is adequate for accurately representing the first 1000 eigenmodes of the system
with at least 20 time steps per modal period, but is primarily determined in relation to the activation wave
velocity.

In our numerical testing of the estimation procedures, the surface Γm on which velocity measurements
are obtained is the internal boundary of the ventricle – namely, the “endocardium” in cardiac terminology
– which is realistic in medical imaging practice since contrast is highest for this particular boundary. For
the reference measurements we will consider three types of uncertainties to be added to the surface
velocities directly inferred from the reference simulations:

1. random (Gaussian) errors, generated independently for each node of the reference mesh, for each
component of the velocity and for each time step, and with standard deviation set to 20% of the
reference maximum velocity value vmax = 0.17 m.s−1;

2. spatially random shifts, namely, Gaussian errors generated indepently for each node and each
component with the same standard variation, albeit constant in time;

3. modal shift, namely, a velocity profile corresponding to the trace of the first undamped eigenmode
and constant in time, with an amplitude computed to give 20% of the kinetic energy norm of a
constant velocity field equal to vmax for each component.

Note that these three types of errors are bounded in L2(Γm), as assumed in the numerical analysis. We also
point out that the error amplitudes considered are quite large, as vmax is an upper bound of the velocity
value.
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4 State estimation using collocated damping

4.1 Principle

We introduce the finite dimensional state estimator of our original system (3.1) ˙̄X = AX̄ + R + KX(Z − HX̄)
X̄(0) = X0

(4.1)

This state estimator uses the interpolation X0 of x0, namely, the known part of the initial condition,
and corrects the dynamics of the discrete system by a feedback proportional to the measured error.
In essence, the filter KX that we want to use corresponds to a force proportional and opposed to the
measured velocity, namely a “direct velocity feedback” (DVF) stabilization strategy, see [12]. Therefore,
this feedback should have the following variational form

−γ

∫
Γm

ω ẏ · δy dΓ,

where γ denotes a gain parameter and ω an appropriate (positive) weight function. We thus infer that KX

is the operator that takes a vector field in L2(Γm) and returns the consistent force vector obtained by using
this field multiplied by γω as a surface force. Hence,

KX =

(
0

γM−1(Hv)′

)
, (4.2)

where (Hv)′ denotes the adjoint of the operator Hv with respect to the weighted Γm-norm

‖ẏ‖2O =

∫
Γm

ω (ẏ)2 dΓ. (4.3)

Moreover, defining X̄ = (Ȳ ˙̄Y)T we have the second order dynamics

M ¨̄Y +
(
C + γ(Hv)′Hv) ˙̄Y + KȲ = R + γ(Hv)′Z, (4.4)

with, denoting by W the matrix associated with the ‖ · ‖O norm for the degrees of freedom located on Γm,

(Hv)′Hv = (TΓ)T WTΓ, (4.5)

and this demonstrates the dissipative effect of the collocated filter.

4.2 Estimation error analysis and assessment

In order to analyse the estimation error associated with (4.1), we introduce the following discrete refer-
ence system Ẋ = AX + R + KX(Z̄ − HX)

X(0) = X0 + ζX
(4.6)

where ζX represents the interpolation of ζx in the finite element space. Note that this system is not the
direct discretization of the continuous mechanical formulation, since it involves an additional filtering
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term containing the “theoretical” measurement Z̄. This discrete reference system is specifically defined
in order to control the discretization error as seen through the observation operator, namely,

εh = H(x − xh), (4.7)

where xh denotes the field associated with X, see Appendix for an error estimate.
We then define the state estimation error as

X̌ = X − X̄, ˙̌X = (A − KXH)X̌ − KXχ

X̌(0) = ζX
(4.8)

Note that εh does not appear in this error system, but it will be present in the parameter estimation stage,
hence controling this term is necessary. Furthermore, using a filtered discrete reference system allows to
control the state estimation error in the enhanced energy norm associated with the matrix

N′ = N + H′H =

( K
2 0
0 M

2 + (TΓ)T WTΓ

)
, (4.9)

with the corresponding norm denoted by ‖·‖E′ .
Therefore, the estimation error analysis amounts to studying the properties of the (discrete) collocation-

stabilized system (4.8). This type of problem was already discussed in details in [9]. Here we consider a
boundary collocation feedback instead of the volume-distributed control employed in [9], hence we refer
to [4, 7] for some specific theoretical results regarding boundary stabilization. These results establish
exponential stability properties for continuous systems similar to that considered here, but do not provide
quantitative estimations of stability constants. Hence, we will resort to numerical studies to compute the
poles of the dynamical system (4.8), and to determine the influence of mesh discretization and feedback
gain parameter on these poles to assess this stability. We emphasize that our objective is to observe
the state of a system using a numerical model, hence we are primarily concerned with the stability of
this numerical model to control the error in (4.8) (rather than the stability of an underlying continuous
system). Nevertheless, we are also interested in assessing how this stability property may vary when
changing the corresponding mesh discretization in the observer formulation, as this may be desirable to
improve accuracy.

In the sequel all physical units correspond to the SI system. We show in Figure 4 the computed poles
for γ = 1.2 103. This value is chosen so that damping for the first mode is slightly sub-critical, but this
adjustment is not very sensitive and can performed in an automatic manner [9]. We can see that all the
computed poles are very effectively damped by the collocated feedback – even though this feedback is
boundary-concentrated and only applied on a subpart of the boundary. Namely, the corresponding time
constant of the stabilization effect is found to be below 1/15 s, i.e. much smaller than the time scale
of the heart beat cycle (approximately one second). Moreover, the damping is hardly affected by the
discretization parameter, at least for the frequency range of concern in this type of simulation, see Table
1 for the sizes of the meshes considered.

Figure 5 demonstrates the performance of the state estimator. The initial condition error corresponds to
a static displacement obtained by imposing an internal pressure of 103 Pa, the order of magnitude of the
pressure during ventricular filling. The measurement uncertainty considered is of the above described
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mesh DOF (v)
Reference 4 104

Fine 2 104

Desired 6.5 103

Coarse 2.9 103

Table 1: Number of dofs for the computational meshes

first type, but very similar results are obtained with the other types. In this figure, we compare the energy
of the state estimation error with the energy (namely, given by ‖·‖2

E
) of the reference solution and with

the classical errors associated with:

• the solution of the direct problem generated with the desired mesh without initial condition error
(this gives the curve labeled “discretization error”)

• the reference solution interpolated in the desired mesh at each time step (the “interpolation error”)

This shows that we obtain optimal accuracy of the estimation for the desired discretization – after a very
short startup time corresponding to the stabilization of the collocated system – since the estimation error
is then very close to the interpolation error, and indeed significantly smaller than the discretization error
near the end of the time window. This is because the discretization error is associated with an “open-loop”
discrete system, namely, without any data-tracking correction, unlike the collocated estimator.
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5 Joint state-parameter estimation

5.1 Construction and analysis of the estimation procedure

Like in [9], we introduce the augmented state-parameter dynamical system, namely,Ẋe = AeXe + Re

Xe(0) = Xe
0 + ζe (5.1)

where

Xe =

(
X
θ

)
, Ae =

(
A B
0 0

)
, Re =

(
R
0

)
, (5.2)

and

Xe
0 =

(
X0
θ

)
, ζe =

(
ζX

ζθ

)
. (5.3)

Note that the parameter dependence considered in our model problem – recall (3.7) – is compatible with
this setting, with a time-dependent B matrix. Although we do not (always) explicitly write B(t), this time
dependence is taken into account in the below analysis.

Of course, the augmented state vector Xe is too large for direct filtering purposes, hence we also in-
troduce the augmented dynamics for a state equation that corresponds to the above state estimator X̄.
Defining X̄e = (X̄T θT )T we have ˙̄Xe = AeX̄e + Re + Ke

X(Z − HeX̄e)
X̄e(0) = Xe

0 + ζe
θ

(5.4)

11



where

ζe
θ =

(
0
ζθ

)
, Ke

X =

(
KX

0

)
, He = (H 0).

Here we point out that X̄e only depends on the initial condition ζθ. Hence we can define X̄e[ξ] for an
arbitrary initial condition θ(0) = θ0 + ξ.

In the H∞ framework, we seek a filter X̂e that provides a prescribed performance bound 1/β, namely,

sup
Z,ξ

∫ T
0 ‖X̂

e − X̄e(ξ)‖2S e dt∫ T
0 ‖Z − HeX̄e(ξ)‖2O dt + ‖ξ‖2

P−1
0

≤
1
β
. (5.5)

Here, P−1
0 represents a user-prescribed norm used to measure the uncertainties in the parameter space – to

be combined with the measurement uncertainties in the denominator – and S e represents the matrix used
for the norm of the estimation, hence it is natural for state-parameter estimation to assume the following
block-diagonal decomposition

S e =

(
S X 0
0 S θ

)
. (5.6)

Note that the above bound gives a guaranteed attenuation level of the estimation error with respect to
arbitrary disturbances in the parameter values and in the measurements. We will show that the following
observer enjoys the desired attenuation property.

˙̂X = AX̂ + Bθ̂ + R + KX(Z − HX̂) + LX
˙̂θ, with X̂(0) = X0

˙̂θ = U−1LT
XH′(Z − HX̂), with θ̂(0) = θ0

L̇X = (A − KXH)LX + B, with LX(0) = 0
U̇ = LT

XH′HLX − β(LT
XS XLX + S θ), with U(0) = (P0)−1

(5.7)

We emphasize that the essential difference with the observer formulated in [9] lies in the dynamics of
U, namely, with the “negative” term associated with β in the right-hand side. Of course, this observer
system is well-posed only as long as U remains positive definite – note that the initial condition P0 is
positive definite, indeed. This induces a restriction on β, or equivalently on the time window considered,
as reflected in the following result.

� Proposition 5.1
Consider a given Tmax. There exists a maximum value β∗ (depending on Tmax) such that, for any β with
0 < β < β∗ and for any T with 0 < T ≤ Tmax, the observer defined in (5.7) provides the attenuation
bound (5.5).

� Proof :
We define β∗ the supremum of all values of β for which the integration of U in (5.7) provides a positive
definite result over the whole time interval [0,Tmax]. Then – as is classical in H∞ theory, see e.g. [2] – we
define the following cost function

JβT =

∫ T

0
‖X̂e − X̄e(ξ)‖2S e dt −

1
β

(∫ T

0
‖Z − HeX̄e(ξ)‖2O dt + ‖ξ‖2P−1

0

)
. (5.8)

Note that ensuring the attenuation bound (5.5) is equivalent to enforcing

sup
Z,ξ

JβT ≤ 0. (5.9)
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We start by defining and analysing
Wβ(T ) = sup

ξ
JβT , (5.10)

namely, in this supremum we consider the measurement Z as given, hence the observer X̂e is also fixed
since it may only depend on the measurements. Introducing an adjoint state pe we obtain for the maxi-
mizer in (5.10) – denoted by X̄e

sup – the following two-point boundary value problem
˙̄Xe

sup = AeX̄e
sup + Re + KX(Z − HeX̄e

sup)
ṗe + (Ae − Ke

XHe)T pe = He′(Z − HeX̄e
sup) + βS e(X̄e

sup − X̂e)
X̄e

sup(0) = Xe
0 − Pe

a(0)pe(0)
pe(T ) = 0

(5.11)

with

Pe
a(0) =

(
0 0
0 P0

)
.

Seeking the solution in the standard form

X̄e
sup(t) = re(t) − Pe(t)pe(t), (5.12)

we obtain the following Cauchy system
Ṗe − Pe(Ae − Ke

XHe)T − (Ae − Ke
XHe)Pe + PeHe′HePe − βPeS ePe = 0

ṙe + PeHe′Here − (Ae − Ke
XHe)re − βPeS e(re − X̂e) = PeHe′Z + Re + KX Z

Pe(0) = Pe
a(0)

re(0) = Xe
0

(5.13)

We recognize a Riccati equation as the first equation of this system, and it is straightforward to verify
that it is satisfied by

Pe
a = (LT

X Ir)T U−1(LT
X Ir). (5.14)

Therefore, X̄e
sup is adequately characterized by (5.12) and (5.13). We define ξ̂(T ) such that X̄e

sup =

X̄e(ξ̂(T )) and we now study Wβ(T ) as a function of T . We have Wβ(0) = 0 and

dWβ(T )
dT

=
∂JβT
∂ξ
·

dξ̂(T )
dT

+

(
‖X̂e − X̄e(ξ̂(T ))‖2S e −

1
β
‖Z − HeX̄e(ξ̂(T ))‖2O

)
(T )

=

(
‖X̂e − re‖2S e −

1
β
‖Z − Here‖2O

)
(T )

using X̄e(ξ̂(T )) = X̄e
sup(T ) = re(T ), and the stationarity of JβT with respect to ξ that characterizes Wβ. We

then infer that, for the particular choice
X̂e = re, (5.15)

the derivative of Wβ(T ) is always negative, hence with the initial condition Wβ(0) = 0 we have

Wβ(T ) ≤ 0, ∀T. (5.16)
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Note that the choice (5.15) is allowed since it provides a recursive form for the observer X̂e. Furthermore,
with this strategy we obviously have

sup
Z,ξ

JβT = sup
Z

Wβ(T ) ≤ 0, (5.17)

namely, the desired attenuation bound holds. Finally, it is easy to check that the equations defining X̂e =

re decompose into those in the first two lines of System (5.7).

�

5.2 Error analysis

We now carry out the analysis of the errors defined by X̃ = X−X̂ , θ̃ = θ−θ̂. Note that the H∞ performance
bound (5.5) provides a direct estimation error estimate, since

‖Z − HeX̄e(ζθ)‖2O = ‖εh + HX̌‖2O,

hence, ∫ T

0
‖X̂e − X̄e‖2S e dt ≤

1
β

(∫ T

0
‖εh + HX̌‖2O dt + ‖ζθ‖

2
P−1

0

)
(5.18)

However, this estimation error is time-integrated, and we are also interested in a final time estimate which
will provide a stronger result for parameter estimation, since the parameters are static.

Therefore, as in [9] (see also [14]) we introduce the auxiliary quantity

η = X̃ − LX θ̃.

Then 
η̇ = (A − KXH)η − KXχ
˙̃θ = −U−1LT

XH′HLX θ̃ − U−1LT
XH′Hη − U−1LT

XH′(εh + χ)
η(0) = ζX

θ̃(0) = ζθ

(5.19)

We note that η follows exactly the same dissipative dynamics as the state-estimator error X̌, recall (4.8),
hence the same conclusions as above hold. We now consider the dynamics of θ̃, which we rewrite as

˙̃θ = −U−1LT
XH′HLX θ̃ + U−1LT

XH′%,

with
% = −(Hη + εh + χ).

We have

d
dt

(
θ̃T U θ̃

)
= 2θ̃T U ˙̃θ + θ̃T U̇ θ̃

= −θ̃T (
LT

XH′HLX + β(LT
XS XLX + S θ)

)
θ̃ + 2θ̃T LT

XH′%,

14



taking into account the dynamics of U given in (5.7). Integrating this equation, we infer

‖θ̃(t)‖2U(t) ≤ ‖ζθ‖
2
P−1

0
+ 2

∫ t

0
θ̃T LT

XH′% dτ. (5.20)

Defining λU(t) as the smallest solution of the generalized eigenvalue problem

U(t) ξ = λU(0) ξ,

we obtain from (5.20)

λU(t)‖θ̃(t)‖2P−1
0
≤ ‖ζθ‖

2
P−1

0
+ 2

∫ t

0
(λU(τ))

1
2 ‖θ̃(τ)‖P−1

0
(λU(τ))−

1
2 ‖LT

XH′%‖P0 dτ,

hence a direct application of the Gronwall inequality yields

(λU(t))
1
2 ‖θ̃(t)‖P−1

0
≤ ‖ζθ‖P−1

0
+

∫ t

0
(λU(τ))−

1
2 ‖LT

XH′%‖P0 dτ. (5.21)

Therefore we need to bound λU from below. For a given Tmax, we choose β1 with 0 < β1 < β? for β? as
provided by the theorem, and we define U1 as the solution of

U̇1 = LT
XH′HLX − β1(LT

XS XLX + S θ), with U1(0) = (P0)−1.

The condition 0 < β1 < β? ensures that U1 is positive definite over [0,Tmax]. Considering now any β
such that 0 < β ≤ β1 and the corresponding U, we have

d
dt

(U − U1) = (β1 − β)(LT
XS XLX + S θ), (5.22)

hence

U(t) = U1(t) + (β1 − β)
∫ t

0
(LT

XS XLX + S θ) dτ, (5.23)

and since U1(t) is positive definite
λU(t) ≥ (β1 − β)λinf,1(t), (5.24)

where λinf,1(t) is the smallest solution of the generalized eigenproblem(∫ t

0
(LT

XS XLX + S θ) dτ
)
ξ = λU(0) ξ. (5.25)

Likewise, from
d
dt

(
U −

β

β1
U1

)
=
β1 − β

β1
LT

XH′HLX , (5.26)

we infer
λU(t) ≥

β1 − β

β1
(1 + λinf,2(t)), (5.27)

where λinf,2(t) is the smallest solution of the generalized eigenproblem(∫ t

0
LT

XH′HLX dτ
)
ξ = λU(0) ξ. (5.28)
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Gathering (5.24) and (5.27) – and since they hold for any β1 < β
? – we have

λU(t) ≥ max
(
(β? − β)λinf,1(t) ,

β? − β

β?
(1 + λinf,2(t))

)
. (5.29)

Note that λinf,1(t) grows at least in O(t) due to the S θ term in the integral, while the growth of λinf,2(t) is
related to a “persistent excitation property”, see e.g. [14].

The rest of the error estimation follows the same main lines as in [9], except that we will use the
enhanced energy norm associated with N′, instead of the standard energy. The sensitivity matrix LX

obeys the same dynamics as the damped state, hence it is stable. More specifically, we have a bound of
the following type, for any set of parameters,

‖LX(t)θ‖2
E′
≤ C

∫ t

0
‖B(τ)θ‖2RHS dτ, (5.30)

where ‖·‖RHS denotes an adequate norm for the right-hand side of the mechanical system equation. Defin-
ing the following natural norms for LX and B

‖LX‖L = sup
‖θ‖U(0)=1

‖LXθ‖E′ , ‖B‖B = sup
‖θ‖U(0)=1

‖Bθ‖RHS , (5.31)

we thus obtain

‖LX(t)‖2L ≤ C
∫ t

0
‖B(τ)‖2B dτ. (5.32)

We can now analyse the effect of the small contributions contained in %. We have (see [9] for the details)

‖LT
XH′%‖P0 ≤ ‖LX(τ)‖L‖Hη + εh + χ‖O ≤ ‖LX(τ)‖L

(
‖η‖E′ + ‖εh‖O + ‖χ‖O

)
, (5.33)

hence, in (5.21) bounding by 1 the term (λU(τ))−
1
2 in the integral – recall (5.29) – we infer

‖θ̃(t)‖P−1
0
≤ (λU(t))−

1
2

(
‖ζθ‖P−1

0
+ ‖LX‖L2([0,t];L)

(
‖η‖L2([0,t];E′) + ‖εh‖L2([0,t];O) + ‖χ‖L2([0,t];O)

))
. (5.34)

This bound, together with

‖η‖L2([0,t];E′) ≤ C
( √

T1‖ζX‖E +
√

t
(
γ
√

T2‖χ‖L2([0,t];O) + ε
))
, (5.35)

and (5.29) provide a complete error estimate for parametric estimation.
Finally, the error bound for state estimation is simply deduced from the identity η = X̃ − LX θ̃, namely,

‖X̃‖E′ ≤ ‖η‖E′ + ‖LX‖L‖θ̃‖P−1
0
. (5.36)

We now show the numerical results obtained with our estimation procedure for the above-described test
problem. In all our simulations we keep the parameter γ as chosen in Section 4 for the collocated feed-
back. The parameter norm matrix at initial time is defined by P−1

0 = 1/17 I to ensure that the variation
of each scalar parameter is O(1). Since the objective of the H∞ filter is parameter identification – state
estimation being handled by the collocated filter – we choose S X = 0, and without any other a priori
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knowledge on the identifiability of the system we take S θ = P−1
0 . For the time discretization of the esti-

mator, we use the classical prediction-correction scheme corresponding to the discrete H∞ formulation
of our system.

Figure 6 displays the estimated parameters for the first type of uncertainties with β = 0, which means
that our filter then corresponds to the reduced-order Kalman procedure proposed in [9]. We can see that
the 17 scalar values of contractilities are quite accurately – and rapidly, once contraction occurs – recov-
ered, including for the reduced value in the “infarcted” region number 14. This is to be compared with
the results shown in Figure 7 and corresponding to β = 5, a value close to the maximum allowed to retain
invertibility of U during the time window considered, as was determined by numerical experiments. This
figure reveals significantly increased sensitivity for parameter estimation, which is to be expected since
U is decremented by the H∞ contribution, recall (5.7). Note that this increased sensitivity is particularly
large for region 17 – a region with almost no direct measurement, hence of likely reduced identifiability
for the contractility parameter.

Similar results are obtained for the other 2 types of uncertainties, see Figure 8. Nevertheless, the pa-
rameter estimation is less effective in the third case, which was to be expected since the corresponding
uncertainty is a shift with a mode, hence it is biased and contains some physical features not accounted
for in the measurement modeling.

Finally, we show in Figure 9 the estimation results for two different values of β – namely, β = 2
and β = 5 – considering the third (modal) type of uncertainty, to be compared with the results for
β = 0 in Fig.8. Beyond the already discussed increased sensitivity effect, we observe no improvement
in the estimation when increasing β. This is in apparent contradiction with the H∞ approach – since
1/β represents the performance bound, recall (5.5) – but this numerical result is consistent with the final
time estimate (5.34), as (5.29) provides the largest lower bound for λU(t) when β = 0. Of course, the
contradiction is only apparent since the H∞ criterion uses a time-integrated estimation error. In fact, in
our numerical tests we have also found that the error bound provided by the H∞ criterion – namely,
(5.18) – is numerically too large to be of any practical value, unlike the final time error.
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Figure 6: Uncertainties of first type with β = 0: estimated values for all 17 parameters (left) and for 4
individual regions (right)
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Figure 7: Uncertainties of first type with β = 5: estimated values for all 17 parameters (left) and for 4
individual regions (right)
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Figure 8: Uncertainties of second (left) and third (right) types with β = 0: estimated values for all 17
parameters

6 Concluding remarks

We have presented a reduced-rank filtering procedure for joint state-parameter estimation in distributed
mechanical systems. This procedure was formulated in the spirit of the method proposed in [9] – namely,
using a collocated feedback strategy for effective state estimation – albeit in an H∞ framework, which
differs in theory from the optimal filtering approach adopted in [9]. Nevertheless, this leads to quite
similar recursive filter equations, with an additional term parametrized by the H∞ performance bound.
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Figure 9: Uncertainties of third type with β = 2 (left) and β = 5 (right): estimated values for all 17
parameters

Considering a test problem inspired from cardiac biomechanics, our numerical tests have demonstrated
the excellent performance of the state estimation with a collocated filter using only velocity measure-
ments concentrated in a subregion of the boundary. This is a particularly interesting result, since bound-
ary measurements cannot be analysed in an optimal filtering setting, as boundary white noise loading
leads to unbounded mean energy in mechanical systems, in general.

In addition, we have obtained complete final time error estimates for the state-parameter estimation
procedure in the case when the joint state-parameter system is linear, namely, when the parameters enter
in the loading of a linear mechanical system.

Furthermore, we have performed detailed numerical assessments of the joint estimation procedure, us-
ing the cardiac test problem and seeking the values of some parameters representing tissue contractilities,
medical diagnosis assistance being an important potential application for this type of procedure. For the
three types of measurement uncertainties considered, the parameter values were recovered quite accu-
rately, the best results being obtained when discarding the additional H∞ term (namely, β = 0). This was
found to be in agreement with the final time error estimates obtained in the numerical analysis. In this
limit case β = 0, we have formally the same filter equations as in [9], albeit the H∞ approach provides
an adequate setting for considering some types of measurement errors that cannot be dealt with in the
Kalman framework.

Finally, we point out that various extensions of this filtering procedure can be formulated for nonlinear
state-parameter systems as proposed in [9], in particular by using either an “extended-Kalman” or an
“unscented-Kalman” approach [6, 13].
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A Error estimate for (x − xh)

In the derivation of this estimate, we start from state equations without internal damping. Structural
damping could also be considered – at the expense of lengthier expressions but without deep modifica-
tions – and would lead to enhanced estimates, indeed.

We recall that the variational formulations satisfied by the continuous and discrete displacements are∫
Ω

ρÿ · δy dΩ +

∫
Ω

ε(y) : C : δε dΩ =

∫
Ω

f · δy dΩ, ∀δy, (A.1)

∫
Ω

ρÿ
h
· δy

h
dΩ +

∫
Ω

ε(y
h
) : C : δε dΩ =

∫
Ω

f · δy
h

dΩ + γ
(
Hv(ẏ − ẏ

h
),Hv(δy

h
)
)
O, ∀δy

h
. (A.2)

In (A.2) we denote by (·, ·)O the scalar product associated with the O-norm.
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We now define Πh as the projection operator from the continuous to discrete displacement spaces for
the (·, ·)St scalar product. Namely, in particular,∫

Ω

ε
(
Πhy

)
: C : δε dΩ =

∫
Ω

ε(y) : C : δε dΩ, ∀δy
h
. (A.3)

Subtracting (A.2) from (A.1) and using (Πhẏ − ẏ
h
) as a test function, we thus obtain

d
dt
‖Πhẏ − ẏ

h
‖2In +

d
dt
‖Πhy − y

h
‖2St + γ‖Hv(Πhẏ − ẏ

h
)‖2O

= 2
(
Πhÿ − ÿ,Πhẏ − ẏ

h

)
In + γ

(
Hv(Πhẏ − ẏ),Hv(Πhẏ − ẏ

h
)
)
O, (A.4)

where we denote by (·, ·)In and (·, ·)St the scalar products induced by the inertia and stiffness bilinear
forms, respectively, and by ‖·‖In and ‖·‖St the corresponding norms. Of course, these norms are equivalent
to the L2 and H1 norms, respectively. Using the standard inequality

|
(
Hv(Πhẏ − ẏ),Hv(Πhẏ − ẏ

h
)
)
O| ≤

1
2
(
‖Hv(Πhẏ − ẏ)‖2O + ‖Hv(Πhẏ − ẏ

h
)‖2O

)
,

we infer

d
dt
‖Πhẏ − ẏ

h
‖2In +

d
dt
‖Πhy − y

h
‖2St +

γ

2
‖Hv(Πhẏ − ẏ

h
)‖2O

≤ 2
(
Πhÿ − ÿ,Πhẏ − ẏ

h

)
In +

γ

2
‖Hv(Πhẏ − ẏ)‖2O. (A.5)

This implies
dEh

dt
≤ 2

(
Πhÿ − ÿ,Πhẏ − ẏ

h

)
In +

γ

2
‖Hv(Πhẏ − ẏ)‖2O,

with
Eh(t) = ‖Πhẏ − ẏ

h
‖2In + ‖Πhy − y

h
‖2St,

and we can use the Gronwall inequality to obtain

Eh(t)
1
2 ≤

{
Eh(0) +

∫ t

0

γ

2
‖Hv(Πhẏ − ẏ)‖2O dτ

} 1
2

+

∫ t

0
‖Πhÿ − ÿ‖In dτ. (A.6)

Therefore,

Eh(t) ≤ 2Eh(0) +

∫ t

0
γ‖Hv(Πhẏ − ẏ)‖2O dτ + 2t

∫ t

0
‖Πhÿ − ÿ‖2In dτ, (A.7)

and using again (A.5) we also have for the measurement error

γ‖Hv(Πhẏ − ẏ
h
)‖2O ≤ C

{
γ‖Hv(Πhẏ − ẏ)‖2O + ‖Πhÿ − ÿ‖2In + ‖Πhẏ − ẏ

h
‖2In

}
. (A.8)

Of course, in order to obtain similar estimates for
(
y−y

h

)
we need to invoke bounds on the projection error(

y−Πhy
)

in the same norms. As the projection is defined as the discrete solution of a standard linearized
elasticity problem – recall (A.3) – such bounds are classical and only depend on the regularity of the
domain and of the loading. We finally point out that εh can be bounded – as neeeded in the estimates of
Section 5.2 – using (A.8) as we have

‖εh‖W−1 ≤ C‖εh‖O ≤ C
(
‖Hv(Πhẏ − ẏ

h
)‖O + ‖Hv(Πhẏ − ẏ)‖O

)
. (A.9)
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