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Abstract

Carrying out information about the microstructured astress behaviour of ferromagnetic steels,
Magnetic Barkhausen Noise (MBN) has been usedlasia for effective Non Destructive Testing
methods, opening new areas in industrial applioati©ne of the factors that determines the quality
and reliability of the MBN analysis is the way infieation is extracted from the signal. Commonly,
simple scalar parameters are used to charactdmzenformation content, such as amplitude
maxima and signal root mean square. This papereptesa new approach based on the time-
frequency analysis. The experimental test casdemelthe use of MBN signals to characterize
hardness gradients in a AlISI4140 steel. To thapqguee are assessed different time-frequency and
time scale representations such as the spectrognamyigner-Ville distribution, the Capongram,
the ARgram obtained from an AutoRegressive modiel scalogram, and the Mellingram obtained

from a Mellin transform. It is shown that, due tonmstationary characteristics of the MBN, time-



frequency representations can provide a rich ang panorama of these signals. Extraction
techniques of some time-frequency parameters a@ tosallow a diagnostic process. Comparison
with results obtained by the classical method higifté the improvement on the diagnosis provided

by the method proposed.

1. Introduction

The Magnetic Barkhausen Noise (MBN) is a magnelienmmenon produced when a variable
magnetic field induces magnetic domain wall movetsmeim ferromagnetic materials. These
movements, not continuous but discrete, are cabhgeatkfects in the material microstructure, and
generate magnetic pulses that can be measureccoy placed on the material surface. Since the
MBN is sensitive to the state of the material mstrocture, to the presence of deformations and
mechanical stresses, it can be (and has been)imdkd development of Non-Destructive Essays
regarding several industrial applications [7,1Q0Jc&ss in the development of inspection systems
based on the MBN depends on the synergetic usenoivledge from different areas such as

material sciences, electronics, mechanics, andkmgncessing.

A point, put in evidence by MBN studies, is the orjance of a deeper study of signal processing
methods allowing better highlighting and separaiwdrMBN signal information concerning the

various material states.

The traditional MBN signal processing analysis mdthcan be classified in two classes: the scalar
methods (or 0 dimension methods — OD) and the wvew&ihods (or 1 dimension methods — 1D).
The 0D methods use parameters extracted from thd Bignal, such as Root Mean Square (RMS),
energy, maximum value, number of MBN peaks at genalues, or else from the frequency

domain, such as the energy at some frequency bahdslD class uses the envelope of the time



signal or that of the spectral MBN signal. As oneréases the dimension of the analysis methods,

the quality and quantity of available informaticarited out by the signal increase.

However, due to the nature of the Barkhausen signgl, a sequence of discrete magnetic pulses
whose physical model is sometimes associated tlarmslzes belonging to the class of critically
self-organized phenomena [6], it seems that othethads of signal analysis would be more
adequate as, for example, time-scale methods pemgninultiple time-frequency scale analysis,
instead of linear analysis characterizing the tfreguency methods commonly used in non-
stationary phenomena. Very few works have beenighdid on these subjects, concerning Magnetic

Nondestructive methods [3,4].

By analyzing the signal envelope and the spectiuimobserved that the signal is time limited and
wide banded. On the other hand, several questiem&in unanswered by this one dimension
analysis. For instance: how is the time-frequertaycture of MBN? Is there any time-frequency
structure that is related with the evolution oest or with some microstructure variation in the
material? Is there any time-scale structure? Isetls®me informational gain in relation to the
traditional scalar and 1D methods? What are thet mdsquate method of time-frequency (TFR)
and time-scale (TSR) representations availabl&eniniternational literature that best describes the

informational content of the MBN signal?

In this context, this work presents the traditiomathods of MBN signal analysis, and studies the
use of some time-frequency and time-scale repraSens in the analysis of MBN signals,

measured in a 4140 steel that presents hardnedismgjra

Moorthy and al. [11] showed that the MBN can beduseorder to determine hardness profile of
steel specimens. They observed that the MBN len@kases with the decrease of hardness, since

that the magnetic domain walls can move easidrisndase.



Additionally Jeong and al. [10], working with AS &3 pressure vase steel, showed that the MBN
magnitude varies inversely with hardness, sincen higlues of hardness are related with the
increase of discordance density, which are bart@tee wall domain movement. In another work,
Moorty and al [12] studied the hardness variatiom iweld joint, obtaining results similar to those

of present in [11].

It is important to note that the experimental exitke of hardness increase with decrease of MBN
activity is general, and sometimes not clearly eptible by the use of traditional MBN parameters.
This paper shows that the use of TFR and TFS camowe informational description of MBN

signals.

Section 2 presents the experimental measurementeoduogy. Section 3 and 4 sum up the time-
frequency and time-scale methods considered. Se&ticomments the differences between the
representations obtained. Section 6 presents thdtgseof the study. In Section 7, some results
obtained by using extraction characteristics temphes from the time-frequency domain are

presented.
2. Experimental M easurements

The hardness gradient was produced by Jominy essaySAE 4140 steel cylinder. This alloyed
steel has a relatively high hardening ability anghbstrength, and is among the most widely used

versatile machinery steels (such as shafts, gealts, couplings, spindles ...).

After this, the cylinder was cut longitudinally iwo equal parts, and measurements of Rockwell C
hardness and MBN signals were made, in the ceinieeof the flat surface, in points starting 0.3”

from the edge until 1.3”, spaced by 0.2” ( 6 poinés illustrated in Figure 1.



Figure 1. Measurements points to determine the dginardness profile.

The measurement arrangement is schematically showigure 2. A Personal Computer with a
data acquisition device (with A/D, D/A and D/D cimats) supplies a sinusoidal wave of 10 Hz,
which is amplified by a bipolar source that feeds tnagnetic circuit in order to magnetize the
sample with a magnetic field, producing magnetitursdion in the samples. The MBN sensor
output is amplified and band pass filtered (1 - kBl2) and digitalized with a sampling frequency

of 200 kHz. Each registered signal has the magnetjgonse of 2 cycles of magnetic excitation.

PC
D/A converter A/D converter — -
X
v
Bipolar source Conditioner g

~» MBN sensor

"
Magnetic exciter Sample

Figure 2. Experimental setup for MBN signal measuats.



3. Time-Frequency Representations

The signal processing methods used are well knovihd literature. So the aim of this section and

the next one consist only to give a quick overvawl a suitable entry point for further reading.

Time-frequency representations are characterizea foyed resolution in the entire time-frequency

domain. Four of them have been considered:

the spectrogram, the more classical and the mdwgstp

- the Wigner-Ville distribution and its smoothed vers which belong to the same class than
the spectrogram, the Cohen class, and well knowiiddigher resolution and the presence

of interference;

- the Capongram, middle representation between tldsthe class of Cohen and the
parametric representation, interesting for goodistigal properties at the expense of

computing time;

the ARgram, a parametric approach.

The latter two have been adapted to nonstationgmals by a simple gliding time window.

3.1 Spectrogram

A linear TFR based on the Fourier transform camelaehed by pre-windowing the signal around a
chosen time, calculating its Fourier Transform, anoceeding in the same way for each instant.
This transform is known as Short Time—Fourier Tfams and referred to aSTFT(t,f)wheret is

the time variable and the frequency variable. A quadratic form relatethwhe Short Time—

Fourier Transform can be obtained by taking theasguof this transform. It is known as



spectrogram and measures the spectral energy ylefsfie signal in the time—frequency domain.

The spectrogram of a signdl) is referred to aSPECT(t,f).The following holds

SPEQLf) =| STFTLf) |2: T &) Hr— )te2""r n+ (1)

whereh(t) is a sliding weighting window and the supersctipienotes conjugate.

The time resolution of the spectrogram is deterohibg the length of the selected sliding window
h(t), and the frequency resolution is defined as thelBJandwidth of the spectral window, the
spectral window being the spectrogram of the windo®y. The best frequency resolution is
achieved with the natural window and definedZhs= 1/D, whereD is the time duration of the
window. Any other different window will degrade thesolution but improve the estimation
variance. The produeff x D 2 1 measures the joint time-frequency resolution efrtiethod. This
resolution limitation is the most significant draadk of the spectrogram. Other major problems can
be cited: (a) the implicit windowing problem thauses the “leakage” phenomenon, and (b) the
impossibility of averaging periodograms for redgcthe estimation variance when working with
short data. Nevertheless one advantage of thisadathits robustness towards the nature of the

signal. See [14] for further reading.
3.2 WV and SPWV

The Cohen class is a general formulation for naupetric time-frequency distribution, which
includes the Wigner-Ville Distribution and relatszeThe spectrogram can be considered as a
special case of the Cohen class. The Wigner-ViligtrDution of a signak(t) is referred to as

WVD(t,f)and can be defined as

WVD(t,f)=T XHTI2)X(t=7/2)e 2" " ¢ )



Since the value of th&/VD(t,f) is determined by all the values of the signal (#merefore, not
limited by a time window), the Wigner-Ville Distuibon overcomes the spectrogram trade-off
between time and frequency resolution, the hypahe$ short-term stationarity is no more
necessary. This improvement comes at a price ofappearance of spectral cross-terms, which
comes from the bilinear kernel of the transform.isTispectral interference is critical in
multicomponent signals, since it makes difficukt tistinction of weaker signal components and it

masks spectral features.

To overcome this major drawback, several modifosadihave been proposed and can be found in
the literature. One of them, the Smooth Pseudo @idfille Distribution is of particular interest to
this work since it will be used later to analyseexmental results. The Smooth Pseudo Wigner

Ville Distribution of a signak(t) referred to aSPWV(t,fican be defined as
spwath)=[ k)| §tn) @+1/2) Xg-1/2) 4 €' m (3

whereg(t) is the time smoothing window arut) the frequency smoothing window. With the
introduction of these two windows it is possibleattenuate and to smooth the interference terms of
the Wigner-Ville distribution, by independently dsing the type of window and its length. See

also [14] for further reading.
3.3 Capongram

The Capon Method or Minimum Variance Method is aparametric spectral power estimator
having higher frequency resolution than the Foufeansform based methods. The quantity

estimated, homogeneous to the power of sig(talis referred to aBcap(t,f) and is defined by

1

PCAP(t' f)= e';(f) R_pl('[) ep(f)’

(4)



s2rifpts

where e; =( 1,e2'te e ) tsis the sample interval, the superscridtslenotes conjugate

transpose,p is the order of the Capon filteR,(t) is the correlation matrix of dimension

(p+1)x(p+1) evaluated on a gliding time window centred atttine instant.

The signal power obtained by this approach canelea ss the output of a filter, of lengthand
with variable center frequency. Parameidras to be chosen by the user and plays a leadiagr

the performance level.

The design of the Capon method allows the frequeesglution to be high on a short time window.
This approach assumes signal stationarity ovetithe window and, therefore, is appropriated to

analyze weakly non-stationary signals. See [15fddher reading.
3.4 Argram

The gliding power spectrum density of the Autoregree Model of a signat(n), referred to as

SR(t,f), can be obtained by

Sult )= I (5)

p
—j2 7 k
1+> a, €
k=1

whereP,, is the power of the white noise (or the predictror),p is the model order ara;, the
model coefficients evaluated on a time gliding vandcentred at timé. This equation is also
known as the Maximum Entropy Spectrum. The choic¢he orderp is done by the user and
constitutes the main issue of this approach. Ttderas related to the number of components of the

signal.

As for the Capon method, the AR model allows tleg@iency resolution to be high on a short time
window. This approach assumes signal stationantgr che time window and, therefore, is

appropriated to analyze weakly non-stationary dgyrégee [16] for further reading.



4. Time-Scale Representation

Time-scale representations are characterized layiable resolution in the time-frequency domain,
where the frequency is the inverse of the scald. uhvo time-scale transform have been

considered:
- ascalogram as a classical time-scale transform;
- a Mellingram as an adaptation of the Mellin transfdor nonstationary signals.
Scalogram

The Scalogram is a time-scale representation basethe Wavelet Transform, referred to as

Tx(t, & W) and defined by

TX(taW)=[" M(9W,..(3 d, (6)

where W ,(s) :|z{1’2‘v(s;tj, and ¥ is the mother wavelet. Parameteris the scale factor.
‘ a

Although the representation obtained is time-scidles possible to establish an associated time-
frequency representation, by using the relafienfy /a, where § is a reference frequency of the

mother wavelet. See [19] for further reading.
4.2 Méllingram

Several transforms have been proposed in orderpwyate a space transformation, with the
objective of facilitating interpretation of a phgal phenomenon. One of these transforms is the
Mellin Transform. The gliding Mellin transform of signal x(t) referred to a Mt ; p), can be

deduced from its general form [1, 2] and is gitogn

Mx(t;p):j:x(r)w(t—r) tdr, 7)

10



wherep, a complex number, is the Mellin parameter and a/¢tme window.

A particular form of the Mellin transform, also nathScale Transform, is obtained by uspyg
jc+1/2, with ¢ a real number. Therefore, adapted to ratiastary signals, a gliding Scale transform,
referred to as [t ; ¢), is

D,(t;c) =% CX(r)w(t-7) €A 8)

If x(t) is a function and(t) is a scaled version aft), then the amplitude of the transform will be
the same. Ifx(t) has a scale periodicity of periag then x(t)=\/?x(rt). See [1, 2] for further

reading.
5. Vantages and disadvantages of each method

Table 1 presents the values of the parametersinssath method to calculate the TFRs and TSRs,

and the computational time consumption for eaclke.cas

The Spectogram in Eq. (1) is fast and very easss& since the transform does not depend on some
a priori information (order parameter) as in Argram and d@gpam cases. But the estimation has

the highest variance and the lowest time-frequeasglution.

The Wigner-Ville distribution in Eq. (2) presentsa major advantages: it is a non-parametric
method and it has a good time-frequency resolutittnmajor drawback is the appearance of
spectral cross-terms, which makes difficult thetidcdion of weaker signal components.

Additionally, it masks spectral features.

The Smoothed Pseudo Wigner-Ville distribution definn Eq. (3) attenuates and smoothes the
interference terms, at a cost of some degradatidimie-frequency resolution. However, these two
methods have a severe limitation related with tramutational memory consumption. A PC with a

2-core processor at 3 GHz and with 2GB RAM, as dsethe other transform calculation, was not

11



enough for the Wigner-Ville distribution and SmoatdhPseudo Wigner-Ville distribution, given the
length of the recorded signals. In order to getiltesa dual 4-core processors at 3GHz and, above
all, with 16 GB RAM as specified in Table 1 hadi® used. One solution could be to reduce the
time signal length. But, the total time duratiorgigsen by the materials magnetic behavior and the
frequency of the magnetic excitation, which is aiett by the nature of the mechanical or
microstructure problem. Furthermore, MBN signals bave a frequency band varying from 100 to
300 KHz. This implies more restrictive constraithgan for vibration or acoustic signal analysis,
where the frequency band is around 10 or 20 KHe. F@ with 2GB RAM was able to compute the
Wigner-Ville transform on 2 500 points only, ingtieaf the 10 000 points. In addition, processing a
shorter length should need time segmentation;ithed say a supplementary algorithm to tune in
the context of an automatic procedure, which idfitined aim of our study. Other solutions consist of

using special architecture for running the WigndteMfransform; see one possibility in [20].

The Capongram in Eqg. (4) has a higher time-frequeesolution and lower variance than the
Spectogram, but is more computationally time cornsgrthan this last one and the Argram method
(see Table 1). Although the Capongram does not sm@omodel in the signal, it is necessary to
estimate a parameter, named “orderthat has a meaning different from the order of Alngram.
Meanwhile the AR model order is related with thgrée of freedom of the system being modelled,
the Capongram order describes the filter lengththtn AR model, the order is optimal when its
value is close to the system degree of freedomye@sean increase in the Capon filter bank order

increases the frequency resolution at the expeindeterioration of statistical stability.

In other words, in the Argram method the spectredrimation is contained inside the AR filter and,

conversely, is in the output of the filter in thagdngram method.

12



Table 1. Parameters used in the TFR and TSR cdioo&The 16GB RAM was necessary for the Wigniée-Vi

transform only. For the others a machine with 1G&EWRis enough.

Calculation time
TFRor TSR Transform Parameter relatively to the spectrogram

10 000-point signal length with two 4-core processors
at 3GHzwith 16 GB RAM

256 point-Hanning window

TFR: Spectrogram 50% overlap 1 (reference)
512 FFT bins
TFR: Smooth Pseudo | 513-point Hanning time window 8 349
Wigner-Ville 2049-point Kaiser frequency window
512-point Boxcar window
0,
TFR: Capongram 25% overlap ) 308
Order-100 Capon filter
91-frequency bins from bin 5 with step [1
- I i 0,
TER: Argram 512-point BoxF:ar window 25% overlap 29
Order-40 AR filter
TSR: Scalogram Morlet wavelet 471
50 scales
TSR: Mellingram 512-point Boxcar window 26

25% overlap

The Argram in Eq. (5) is a time—frequency methoderadequate to describe narrow band spectral
components. The main drawback of this method igbmathat it implies aa priori knowledge (or
assumption) about the process from which the sigrtaken. This priori information is expressed
by the selection of the model orderA good choice of this parameter is essentiabfood spectral
estimation, what implies an additional computatlditae in order to find a good value (see Table
1). Other disadvantage is the high computing timeessary to calculate the spectrum in each time
moving window (see Table 1). The main advantagéhef Argram method is its high time and

frequency resolution and its low variance.

Although very time consuming, the highest among tised methods, the Scalogram in Eq.

Erreur ! Source du renvoi introuvable. is simple to use, depending only on the choic¢hef

13



number of analysis scales. Both, the Scalogram até Mellingram in Eqg.
Erreur ! Source du renvoi introuvable., are methods that can show scale structures igigimal,
if they exist and in a different manner, not ideakle with the traditional time-frequency

representations.
6. Results

In what follows, some results of experimental datab analysis are shown in a sequence of
increasing richness of information representatiord, aby consequence, also of increasing

complexity of analysis and interpretation.

Figure 3 shows the 6 MBN signals, for a measureitipo, plotted in the same scale, for amplitude
comparison. It is possible to notice that the MBg&hal changes with the change of hardness. The
aim of the signal processing process is to putvidesce if there is some information in the MBN

signals correlated with hardness values.
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MBN ()
o
MBN (v

2 1 L L L L 1 1 1 L
0 5 10 15 20 2% 30 3B 4 45

434 HRe ms
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“0 5 10 15 20 25 30 I/ 40 4 0 510 15 20 25 30 3B 40 45
385 HRe ms 37.2HRe ms

MEBN (V)
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Figure 3. MBN signals measured with the experimesetup for different hardnesses in a AlS14140Istee

Figure 4 shows the hardness and the average of B RBIS values, measured throughout the
sample at the 6 already mentioned positions. Theselts agree with what is reported in the
international literature since, globally, the MBNMB values increase with the decrease of
hardness. Nevertheless, the last value of the MBASRIoes not agree with this tendency. In this
context, one should ask if it is the correlatiomdmess x MBN that failed or it is this parameter,
RMS, which cannot correctly describe the correfatitt is well known that the simpler the

parameter used to describe the informational cowamee of a signal, the poorer the information it

gives.

Hardness variation (4140)
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Figure 4. Hardness and MBN RMS variation through$140 sample.
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Therefore, a way to try solving this problem isitarease the dimension of the informational

descriptor.

Figure 5 presents the average envelope of the MBhbkand the average envelope of the MBN
spectrum. The MBN envelope gives more details @& MBN evolution with hardness. The
amplitude and the area under curves increase hétliécrease of hardness. But, similarly to what
happens with the MBN RMS graphic, there is appdyenot distinction between the signals
associated with the last two hardness values. Thel@pes of MBN spectra do not allow

distinguishing among the last four values of MBNsils.
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—YTTR — 53EHR:
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s
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w002kt

1
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{ms) Freq.(kHz)

a) b)
Figure 5. a) Average envelope of MBN signals; 3rAge envelope of MBN spectra
The TFRs and TSRs were calculated for all the hresslvalue cases, but, due to space limitation in

this paper, only the results for the value of 53/ are shown. As it is possible to see, the TFRs

and TSRs are much richer in details than the spale@ameters and envelope representations.

It is important to observe that significant improwent in the quality of the TFRs representations
can be reached by using averages of TFRs (or TIR&. TFRs averaging process is done by

calculating the TFR of each one of the 6 signatsthen, averaging each point of these TFRs. The

16



same set of TFR parameters is used for each sgmdls. Therefore, all TFRs images shown in

Figure 6, Figure 7 and Figure 8 are averaged oVdtRs and are presented with amplitude (z-axes)

normalized to one.

Average Spectrogram Representation; MBM x AISI 4140 Hardness 3.6 HRc

Average Capongram Representation; MBM x AIS| 4140 Hardness 53.6 HRc
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(e)
Figure 6. Average TFRs for 53.6 HRc signal withfedhuency axes displayed in logarithm, TFR paramseteported
in Table 1: a) Spectogram; b) Capongram; c) Argram;
d) Scalogram; e) Mellingram
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Awerage Smoothed Pseudo Wigner-ville Representation; MBN » &151 4140 Hardness 536 HRc
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(© (d)
Figure 7. Average Smooth Pseudo Wigner-Ville’s5®6 HRc signal obtained with a 16 GB RAM machine &ith
all frequency axes displayed in linear scale, paggers reported in table 1: a) linear scale of tHeRTvalues; b) dB
scale of the TFR absolute values between -5 andi®).@) dB scale of all the TFR absolute values;
d) dB scale of the TFR positive values only

By analysing the graphical representations of Fdeirwhere all frequency axes are displayed in
logarithm scale, it is interesting to notice thia¢ IScalogram results are very similar to the TFRs
ones. This means that there is no scale phenom@hdeast perceptible in this representation) in
the MBN signals. Additionally, by analysing the NMegram results, no scale structure could also

be detected. Therefore, it seems that TFRs aregéntu adequately describe the informational

content of MBN signals.

Figure 7 shows the dilemma of a Wigner-Ville distiion which, independently of its high

computational load, is a non-positive one. Différemoices for the amplitude help for disjoining the
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auto-terms for the cross-terms. Linear frequencsnpanents are well estimate but the MBN

transitory structure is difficult to extract.
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Figure 8. Average of Capongram’s for different haedses in a AlS14140 steel, TFR parameters repant@dble 1
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In Figure 8, the TFR corresponding to each onéefsix hardness values are shown. The authors
chose the Capongram method to illustrate the @iffee among them, since it is this method whose
representations are the best among the TFRs and m#&fhods. Two main kinds of information
can be taken out from Figure 6 and Figure 8. Statip narrow-band frequencies are present all
over the time duration of the signal (close to Blzkand 50 kHz). These frequencies cannot be
related to MBN phenomenon (since the MBN is nomiatary). Therefore they may come from

some external interferences of the measuremenp egunt.

The remaining information is on the non-statioryaoit the MBN signals. All the information of the
MBN envelope and of the MBN spectrum envelope imlgimed in the time-frequency domain in a

synergetic way resulting in the richest panoranad ¢n be seen from the MBN signals.

The differences among the MBN behaviours, for tixehsrdness values, are noticeable by the
change in the general form of the time-frequendyepa, and in the pattern of the top of the 3-D

surface.

7. Extraction of Characteristicsfrom TFR

In order to highlight informational gain that th&H can provide, to facilitate the interpretatior an

show some examples, among several others, of vdmate done, two features of characteristic
extraction are proposed: one vectorial and oneasc@lith this two features, the dimension of the
informational representation decreases by one.fif$tefeature is the use of iso-level curves at a
convenient TFR magnitude and the other is a cthefTFR at a particular frequency or time value.

All results of this section are obtained from thegp@ngrams.

Figure 9-a shows the frequency evolution of iseleurves for each value of hardness at 40% of
the highest TFR value. This threshold has been rezafly chosen in order to find a characteristic

time-frequency section validated by experts indbmain. At the end of this section, we propose an
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automatic method in order to avoid such a choites Ipossible to note that, regarding to the
frequency axes over 35 kHz, the curves seem to bee rand more “lifted” with decreasing

hardness values.

Figure 9-b shows a TFR cut of the Capongrams akkZ. In this graphical representation, the
expected correlation between hardness and MBNearlgl noticeable. The increase in the TFR
values with the decrease of hardness is betteesepted than in the envelope case (Figure 5),
particularly for the lowest values of hardness.dglsn the results of Figure 9, Figure 10 shows the

evolution of the normalized TFR amplitude with haeds.
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Figure 9. a) Iso-level curves of the Capongramthefdifferent hardnesses in a AlS14140 steel at 40%e highest

value. b) Cut of the Capongram iso-level curvethatfrequency of 37 kHz

Comparing Figure 10 with Figure 4 makes possiblset® that the variation of the normalized TFR
amplitude at 37 kHz with hardness is more significthan with the MBN RMS values. These
results indicate that it is possible to find bettéormation descriptors with TFR analysis thanhwit

the traditional 1D or 2D analysis.
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Figure 10. Variation of the normalized Capongrampditnde at 37 KHz, from Figure 8-b, with hardness.

This result brings now another question: Is it gusso obtain a method that automates this search?
To that purpose, the authors have already publishettthod of automatic segmentation of some
TFR such as the Short-Time Fourier transform amdsgpectrogram [17], [18]. This method has

been adapted in order to be used from the CapondhanTFR retained in this study.
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Figure 11. Automatic contour detection computedhiapongrams of the different hardnesses in a A8 4teel,
Probability of false Alarm=18, Kurtosis threshold=3.5.

22



Given that the theoretical basis of this methodus of the scope of this paper, only the method
principle is described hereafter. Taking as signatiel a nonstationary signal embedded in a white
Gaussian noise, the probability density functionadfime-frequency point is derived in order to
determine the maximum likelihood estimator of tlwése level. Then, an iterative algorithm allows
the estimation of the noise level, from which ansigcandidate set is determined according to a
given probability of false alarm. Finally, an iteve region growing algorithm is applied to segment
the different patterns of the representation. Tégrentation stop is controlled by the Kurtosis of
the remaining points, which should be low in orttecharacterize a Gaussian noise. For the MBN
analysis, the adaptation has consisted to deterthendegree of freedom of the chi-square law of a
time-frequency point of a Capongram. In the casthefdifferent hardnesses in a AlSI4140 steel,
Figure 11 shows the results of the automatic cantleiection, which should be compared with
Figure 9. This method gives the contour of theguattbottom, from which a feature has to be

defined for discriminating the different hardnesses

These results indicate that the time-frequency dompens a wide investigation field to define

better information descriptors than with the trachial 1D or 2D analysis.

8. Conclusions

In this paper, a time-frequency strategy is progaeeorder to use Magnetic Barkhausen Noise for
characterizing the hardness level of a steel. Stistegy consists of a time-frequency estimation
followed by a self-working contour detection on tirae-frequency representation. Although the
TFR method can supply rich information on the Mdgn8arkhausen Noises, very few studies
were actually undertaken with this magnetic phenmme In this paper, three Time-Frequency
Representations and two Time-Scale Representatierssused in order to analyse MBN measured
in a steel sample with hardness variation, gengraigh a Jominy test. Having pointed out the

vantages and disadvantages of each method, TFR$3Rs8 of the same hardness value and TFR
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for six different hardness values were presentediak possible to observe that the TSRs did not
show scales structures in the MBN signals. Regidtfrom TFRs, and more patrticularly from the
Capongram, yielded higher quality information ot tMBN phenomenon than the traditional
methods. The contours extracted were shown to leetalibe relevant to the hardness level. Works
are in progress on a wider MBN data set to valitlaestrategy proposed and to define the adequate
time-frequency features in order to characterizeamty the hardness but more generally the state

of the material microstructure and the presenagetdrmations and mechanical stresses.
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