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Abstract 

Carrying out information about the microstructure and stress behaviour of ferromagnetic steels, 

Magnetic Barkhausen Noise (MBN) has been used as a basis for effective Non Destructive Testing 

methods, opening new areas in industrial applications. One of the factors that determines the quality 

and reliability of the MBN analysis is the way information is extracted from the signal. Commonly, 

simple scalar parameters are used to characterize the information content, such as amplitude 

maxima and signal root mean square. This paper presents a new approach based on the time-

frequency analysis. The experimental test case relates the use of MBN signals to characterize 

hardness gradients in a AISI4140 steel. To that purpose are assessed different time-frequency and 

time scale representations such as the spectrogram, the Wigner-Ville distribution, the Capongram, 

the ARgram obtained from an AutoRegressive model, the scalogram, and the Mellingram obtained 

from a Mellin transform. It is shown that, due to non-stationary characteristics of the MBN, time-
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frequency representations can provide a rich and new panorama of these signals. Extraction 

techniques of some time-frequency parameters are used to allow a diagnostic process. Comparison 

with results obtained by the classical method highlights the improvement on the diagnosis provided 

by the method proposed. 

 

1. Introduction 

The Magnetic Barkhausen Noise (MBN) is a magnetic phenomenon produced when a variable 

magnetic field induces magnetic domain wall movements in ferromagnetic materials. These 

movements, not continuous but discrete, are caused by defects in the material microstructure, and 

generate magnetic pulses that can be measured by a coil placed on the material surface. Since the 

MBN is sensitive to the state of the material microstructure, to the presence of deformations and 

mechanical stresses, it can be (and has been) used in the development of Non-Destructive Essays 

regarding several industrial applications [7,10]. Success in the development of inspection systems 

based on the MBN depends on the synergetic use of knowledge from different areas such as 

material sciences, electronics, mechanics, and signal processing. 

A point, put in evidence by MBN studies, is the importance of a deeper study of signal processing 

methods allowing better highlighting and separation of MBN signal information concerning the 

various material states.  

The traditional MBN signal processing analysis methods can be classified in two classes: the scalar 

methods (or 0 dimension methods – 0D) and the vector methods (or 1 dimension methods – 1D). 

The 0D methods use parameters extracted from the MBN signal, such as Root Mean Square (RMS), 

energy, maximum value, number of MBN peaks at certain values, or else from the frequency 

domain, such as the energy at some frequency bands. The 1D class uses the envelope of the time 
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signal or that of the spectral MBN signal. As one increases the dimension of the analysis methods, 

the quality and quantity of available information carried out by the signal increase. 

However, due to the nature of the Barkhausen signal, e.g., a sequence of discrete magnetic pulses 

whose physical model is sometimes associated to avalanches belonging to the class of critically 

self-organized phenomena [6], it seems that other methods of signal analysis would be more 

adequate as, for example, time-scale methods permitting multiple time-frequency scale analysis, 

instead of linear analysis characterizing the time-frequency methods commonly used in non-

stationary phenomena. Very few works have been published on these subjects, concerning Magnetic 

Nondestructive methods [3,4]. 

By analyzing the signal envelope and the spectrum, it is observed that the signal is time limited and 

wide banded. On the other hand, several questions remain unanswered by this one dimension 

analysis. For instance: how is the time-frequency structure of MBN? Is there any time-frequency 

structure that is related with the evolution of stress or with some microstructure variation in the 

material? Is there any time-scale structure? Is there some informational gain in relation to the 

traditional scalar and 1D methods? What are the most adequate method of time-frequency (TFR) 

and time-scale (TSR) representations available in the international literature that best describes the 

informational content of the MBN signal? 

In this context, this work presents the traditional methods of MBN signal analysis, and studies the 

use of some time-frequency and time-scale representations in the analysis of MBN signals, 

measured in a 4140 steel that presents hardness gradient. 

Moorthy and al. [11] showed that the MBN can be used in order to determine hardness profile of 

steel specimens. They observed that the MBN level increases with the decrease of hardness, since 

that the magnetic domain walls can move easier in this case. 
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Additionally Jeong and al. [10], working with AS 508-3 pressure vase steel, showed that the MBN 

magnitude varies inversely with hardness, since high values of hardness are related with the 

increase of discordance density, which are barriers to the wall domain movement. In another work, 

Moorty and al [12] studied the hardness variation in a weld joint, obtaining results similar to those 

of present in [11]. 

It is important to note that the experimental evidence of hardness increase with decrease of MBN 

activity is general, and sometimes not clearly perceptible by the use of traditional MBN parameters. 

This paper shows that the use of TFR and TFS can improve informational description of MBN 

signals. 

Section 2 presents the experimental measurements methodology. Section 3 and 4 sum up the time-

frequency and time-scale methods considered. Section 5 comments the differences between the 

representations obtained. Section 6 presents the results of the study. In Section 7, some results 

obtained by using extraction characteristics techniques from the time-frequency domain are 

presented. 

2. Experimental Measurements 

The hardness gradient was produced by Jominy essay in a SAE 4140 steel cylinder. This alloyed 

steel has a relatively high hardening ability and high strength, and is among the most widely used 

versatile machinery steels (such as shafts, gears, bolts, couplings, spindles …). 

After this, the cylinder was cut longitudinally in two equal parts, and measurements of Rockwell C 

hardness and MBN signals were made, in the centre line of the flat surface, in points starting 0.3” 

from the edge until 1.3”, spaced by 0.2” ( 6 points), as illustrated in Figure 1. 
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Figure 1. Measurements points to determine the Jominy hardness profile. 

 

The measurement arrangement is schematically shown in Figure 2. A Personal Computer with a 

data acquisition device (with A/D, D/A and D/D channels) supplies a sinusoidal wave of 10 Hz, 

which is amplified by a bipolar source that feeds the magnetic circuit in order to magnetize the 

sample with a magnetic field, producing magnetic saturation in the samples. The MBN sensor 

output is amplified and band pass filtered (1 - 100 kHz) and digitalized with a sampling frequency 

of 200 kHz. Each registered signal has the magnetic response of 2 cycles of magnetic excitation. 

 

 

Figure 2. Experimental setup for MBN signal measurements. 

USB Port 
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3. Time-Frequency Representations 

The signal processing methods used are well known in the literature. So the aim of this section and 

the next one consist only to give a quick overview and a suitable entry point for further reading. 

Time-frequency representations are characterized by a fixed resolution in the entire time-frequency 

domain. Four of them have been considered: 

- the spectrogram, the more classical and the more robust; 

- the Wigner-Ville distribution and its smoothed version, which belong to the same class than 

the spectrogram, the Cohen class, and well known for its higher resolution and the presence 

of interference; 

- the Capongram, middle representation between those of the class of Cohen and the 

parametric representation, interesting for good statistical properties at the expense of 

computing time; 

- the ARgram, a parametric approach. 

The latter two have been adapted to nonstationary signals by a simple gliding time window. 

 

3.1 Spectrogram 

A linear TFR based on the Fourier transform can be reached by pre-windowing the signal around a 

chosen time, calculating its Fourier Transform, and proceeding in the same way for each instant. 

This transform is known as Short Time–Fourier Transform and referred to as STFT(t,f) where t is 

the time variable and f the frequency variable. A quadratic form related with the Short Time–

Fourier Transform can be obtained by taking the square of this transform. It is known as 
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spectrogram and measures the spectral energy density of the signal in the time–frequency domain. 

The spectrogram of a signal x(t) is referred to as SPECT(t,f). The following holds 

2

2 *  2   (t,f)  (t,f) ( ) ( ) π ττ τ τ
∞

−

−∞

= = −∫
j fSPEC STFT x h t e d , (1) 

where h(t) is a sliding weighting window and the superscript *  denotes conjugate. 

The time resolution of the spectrogram is determined by the length of the selected sliding window 

h(t), and the frequency resolution is defined as the –3 dB bandwidth of the spectral window, the 

spectral window being the spectrogram of the window h(t). The best frequency resolution is 

achieved with the natural window and defined as ∆f = 1/D, where D is the time duration of the 

window. Any other different window will degrade the resolution but improve the estimation 

variance. The product ∆f × D ≥  1 measures the joint time-frequency resolution of the method. This 

resolution limitation is the most significant drawback of the spectrogram. Other major problems can 

be cited: (a) the implicit windowing problem that causes the “leakage” phenomenon, and (b) the 

impossibility of averaging periodograms for reducing the estimation variance when working with 

short data. Nevertheless one advantage of this method is its robustness towards the nature of the 

signal. See [14] for further reading. 

3.2 WV and SPWV 

The Cohen class is a general formulation for non-parametric time-frequency distribution, which 

includes the Wigner-Ville Distribution and relatives. The spectrogram can be considered as a 

special case of the Cohen class. The Wigner-Ville Distribution of a signal x(t) is referred to as 

WVD(t,f) and can be defined as 

*  2   (t,f) ( / 2) ( / 2) π ττ τ τ
∞

−

−∞

= + −∫
j fWVD x t x t e d . (2) 
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Since the value of the WVD(t,f) is determined by all the values of the signal (and therefore, not 

limited by a time window), the Wigner-Ville Distribution overcomes the spectrogram trade-off 

between time and frequency resolution, the hypothesis of short-term stationarity is no more 

necessary. This improvement comes at a price of the appearance of spectral cross-terms, which 

comes from the bilinear kernel of the transform. This spectral interference is critical in 

multicomponent signals, since it makes difficult the distinction of weaker signal components and it 

masks spectral features. 

To overcome this major drawback, several modifications have been proposed and can be found in 

the literature. One of them, the Smooth Pseudo Wigner Ville Distribution is of particular interest to 

this work since it will be used later to analyse experimental results. The Smooth Pseudo Wigner 

Ville Distribution of a signal x(t) referred to as SPWV(t,f) can be defined as 

*  2   (t,f) ( ) ( ) ( / 2) ( / 2)  π ττ η η τ η τ η τ
∞ ∞

−

−∞ −∞

= − + −∫ ∫
j fSPWVD h g t x x d e d, (3) 

where g(t) is the time smoothing window and h(t) the frequency smoothing window. With the 

introduction of these two windows it is possible to attenuate and to smooth the interference terms of 

the Wigner-Ville distribution, by independently choosing the type of window and its length. See 

also [14] for further reading. 

3.3 Capongram 

The Capon Method or Minimum Variance Method is a nonparametric spectral power estimator 

having higher frequency resolution than the Fourier Transform based methods. The quantity 

estimated, homogeneous to the power of signal x(t), is referred to as PCAP(t,f) and is defined by 

( )1

1
( , )

 ( )  ( )CAP H
p p p

P t f
f t f−=

e R e
,  (4) 
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where ( )2    2      1, ,T i f ts i f p ts
pe e eπ π− −= K , ts is the sample interval, the superscripts H denotes conjugate 

transpose, p is the order of the Capon filter. Rp(t) is the correlation matrix of dimension 

(p+1)×(p+1) evaluated on a gliding time window centred at the time instant t. 

The signal power obtained by this approach can be seen as the output of a filter, of length p and 

with variable center frequency. Parameter p has to be chosen by the user and plays a leading role in 

the performance level. 

The design of the Capon method allows the frequency resolution to be high on a short time window. 

This approach assumes signal stationarity over the time window and, therefore, is appropriated to 

analyze weakly non-stationary signals. See [15] for further reading. 

3.4 Argram 

The gliding power spectrum density of the Autoregressive Model of a signal x(n), referred to as 

SAR(t,f), can be obtained by 

2

2   
,

1

( , )  

 1  π−

=

=

+∑

w
AR p

j f k
k t

k

P
S t f

a e

,  (5) 

where Pw is the power of the white noise (or the prediction error), p is the model order and ak,t, the 

model coefficients evaluated on a time gliding window centred at time t. This equation is also 

known as the Maximum Entropy Spectrum. The choice of the order p is done by the user and 

constitutes the main issue of this approach. This order is related to the number of components of the 

signal. 

As for the Capon method, the AR model allows the frequency resolution to be high on a short time 

window. This approach assumes signal stationarity over the time window and, therefore, is 

appropriated to analyze weakly non-stationary signals. See [16] for further reading. 
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4. Time-Scale Representation  

Time-scale representations are characterized by a variable resolution in the time-frequency domain, 

where the frequency is the inverse of the scale unit. Two time-scale transform have been 

considered: 

- a scalogram as a classical time-scale transform; 

- a Mellingram as an adaptation of the Mellin transform for nonstationary signals. 

 Scalogram 

The Scalogram is a time-scale representation based on the Wavelet Transform, referred to as 

( , ; )Tx t a Ψ  and defined by 

,( , ; ) ( ) ( )t aTx t a x s s ds
∞

−∞
Ψ = Ψ∫ ,      (6) 

where 
1/2

, ( )
− − Ψ = Ψ  

 
t a

s t
s a

a
, and Ψ is the mother wavelet. Parameter a is the scale factor. 

Although the representation obtained is time-scale, it is possible to establish an associated time-

frequency representation, by using the relation f = f0 /a, where f0 is a reference frequency of the 

mother wavelet. See [19] for further reading. 

4.2 Mellingram 

Several transforms have been proposed in order to operate a space transformation, with the 

objective of facilitating interpretation of a physical phenomenon. One of these transforms is the 

Mellin Transform. The gliding Mellin transform of a signal x(t) referred to a Mx(t ; p), can be 

deduced from  its general form [1, 2] and is given by  

( ) ( ) 1

0
( ; ) p

xM t p x w t t dτ τ τ
∞ −= −∫ ,  (7) 
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where p, a complex number, is the Mellin parameter and w(t) a time window. 

A particular form of the Mellin transform, also named Scale Transform, is obtained by using p=-

jc+1/2, with c a real number. Therefore, adapted to nonstationary signals, a gliding Scale transform, 

referred to as Dx(t ; c), is 

( ) ( ) ( )1/ 2 ln

0

1
( ; )

2
jc

xD t c x w t e dττ τ τ
π

∞ − −= −∫ . (8) 

If x(t) is a function and g(t) is a scaled version of x(t), then the amplitude of the transform will be 

the same. If x(t) has a scale periodicity of period τ, then ( ) ( )x t x tτ τ= . See [1, 2] for further 

reading. 

5. Vantages and disadvantages of each method 

Table 1 presents the values of the parameters used in each method to calculate the TFRs and TSRs, 

and the computational time consumption for each case. 

The Spectogram in Eq. (1) is fast and very easy to use, since the transform does not depend on some 

a priori information (order parameter) as in Argram and Capongram cases. But the estimation has 

the highest variance and the lowest time-frequency resolution. 

The Wigner-Ville distribution in Eq. (2) presents two major advantages: it is a non-parametric 

method and it has a good time-frequency resolution. Its major drawback is the appearance of 

spectral cross-terms, which makes difficult the distinction of weaker signal components. 

Additionally, it masks spectral features. 

The Smoothed Pseudo Wigner-Ville distribution defined in Eq. (3) attenuates and smoothes the 

interference terms, at a cost of some degradation in time-frequency resolution. However, these two 

methods have a severe limitation related with the computational memory consumption. A PC with a 

2-core processor at 3 GHz and with 2GB RAM, as used for the other transform calculation, was not 
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enough for the Wigner-Ville distribution and Smoothed Pseudo Wigner-Ville distribution, given the 

length of the recorded signals. In order to get results, a dual 4-core processors at 3GHz and, above 

all, with 16 GB RAM as specified in Table 1 had to be used. One solution could be to reduce the 

time signal length. But, the total time duration is given by the materials magnetic behavior and the 

frequency of the magnetic excitation, which is dictated by the nature of the mechanical or 

microstructure problem. Furthermore, MBN signals can have a frequency band varying from 100 to 

300 KHz. This implies more restrictive constraints than for vibration or acoustic signal analysis, 

where the frequency band is around 10 or 20 KHz. The PC with 2GB RAM was able to compute the 

Wigner-Ville transform on 2 500 points only, instead of the 10 000 points. In addition, processing a 

shorter length should need time segmentation; that is to say a supplementary algorithm to tune in 

the context of an automatic procedure, which is the final aim of our study. Other solutions consist of 

using special architecture for running the Wigner-Ville transform; see one possibility in [20]. 

The Capongram in Eq. (4) has a higher time-frequency resolution and lower variance than the 

Spectogram, but is more computationally time consuming than this last one and the Argram method 

(see Table 1). Although the Capongram does not impose a model in the signal, it is necessary to 

estimate a parameter, named “order” p that has a meaning different from the order of the Argram. 

Meanwhile the AR model order is related with the degree of freedom of the system being modelled, 

the Capongram order describes the filter length. In the AR model, the order is optimal when its 

value is close to the system degree of freedom, whereas an increase in the Capon filter bank order 

increases the frequency resolution at the expense of deterioration of statistical stability. 

In other words, in the Argram method the spectral information is contained inside the AR filter and, 

conversely, is in the output of the filter in the Capongram method. 
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Table 1. Parameters used in the TFR and TSR calculations-The 16GB RAM  was necessary for the Wigner-Ville 

transform only. For the others a machine with 1GB RAM is enough. 

TFR or TSR Transform Parameter 

10 000-point signal length 

Calculation time 
relatively to the spectrogram 

with two 4-core processors 
at 3GHz with 16 GB RAM 

TFR: Spectrogram 
256 point-Hanning window 

50% overlap 

512 FFT bins 

1 (reference) 

TFR: Smooth Pseudo 
Wigner-Ville 

513-point Hanning time window 

2049-point Kaiser frequency window  
8 349 

TFR: Capongram 

512-point Boxcar window 

25% overlap 

Order-100 Capon filter  

91-frequency bins from bin 5 with step 1 

308 

TFR: Argram 
512-point Boxcar window 25% overlap 

Order-40 AR filter 
29 

TSR: Scalogram 
Morlet wavelet 

50 scales 
471 

TSR: Mellingram 
512-point Boxcar window 

25% overlap 
26 

The Argram in Eq. (5) is a time–frequency method more adequate to describe narrow band spectral 

components. The main drawback of this method is, maybe, that it implies an a priori knowledge (or 

assumption) about the process from which the signal is taken. This a priori information is expressed 

by the selection of the model order p. A good choice of this parameter is essential for good spectral 

estimation, what implies an additional computational time in order to find a good value (see Table 

1). Other disadvantage is the high computing time necessary to calculate the spectrum in each time 

moving window (see Table 1). The main advantage of the Argram method is its high time and 

frequency resolution and its low variance. 

Although very time consuming, the highest among the used methods, the Scalogram in Eq. 

Erreur ! Source du renvoi introuvable. is simple to use, depending only on the choice of the 



 14

number of analysis scales. Both, the Scalogram and the Mellingram in Eq. 

Erreur ! Source du renvoi introuvable., are methods that can show scale structures in the signal, 

if they exist and in a different manner, not identifiable with the traditional time-frequency 

representations. 

6. Results 

In what follows, some results of experimental database analysis are shown in a sequence of 

increasing richness of information representation and, by consequence, also of increasing 

complexity of analysis and interpretation. 

Figure 3 shows the 6 MBN signals, for a measured position, plotted in the same scale, for amplitude 

comparison. It is possible to notice that the MBN signal changes with the change of hardness. The 

aim of the signal processing process is to put in evidence if there is some information in the MBN 

signals correlated with hardness values. 
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Figure 3. MBN signals measured with the experimental setup for different hardnesses in a AISI4140 steel. 

Figure 4 shows the hardness and the average of 6 MBN RMS values, measured throughout the 

sample at the 6 already mentioned positions. These results agree with what is reported in the 

international literature since, globally, the MBN RMS values increase with the decrease of 

hardness. Nevertheless, the last value of the MBN RMS does not agree with this tendency. In this 

context, one should ask if it is the correlation hardness x MBN that failed or it is this parameter, 

RMS, which cannot correctly describe the correlation. It is well known that the simpler the 

parameter used to describe the informational countenance of a signal, the poorer the information it 

gives. 
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Figure 4. Hardness and MBN RMS variation throughout 4140 sample. 
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Therefore, a way to try solving this problem is to increase the dimension of the informational 

descriptor. 

Figure 5 presents the average envelope of the MBN signal and the average envelope of the MBN 

spectrum. The MBN envelope gives more details of the MBN evolution with hardness. The 

amplitude and the area under curves increase with the decrease of hardness. But, similarly to what 

happens with the MBN RMS graphic, there is apparently not distinction between the signals 

associated with the last two hardness values. The envelopes of MBN spectra do not allow 

distinguishing among the last four values of MBN signals. 

a)                                                                                           b) 

Figure 5. a) Average envelope of MBN signals; b) Average envelope of MBN spectra 

The TFRs and TSRs were calculated for all the hardness value cases, but, due to space limitation in 

this paper, only the results for the value of 53,6 HR are shown. As it is possible to see, the TFRs 

and TSRs are much richer in details than the scalar parameters and envelope representations. 

It is important to observe that significant improvement in the quality of the TFRs representations 

can be reached by using averages of TFRs (or TSRs). This TFRs averaging process is done by 

calculating the TFR of each one of the 6 signals and then, averaging each point of these TFRs. The 
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same set of TFR parameters is used for each set of signals. Therefore, all TFRs images shown in 

Figure 6, Figure 7 and Figure 8 are averaged over 6 TFRs and are presented with amplitude (z-axes) 

normalized to one.  

 
(a)                                                                                         (b) 

 
(c)                                                                                         (d) 

 
(e) 

Figure 6. Average TFRs for 53.6 HRc signal with all frequency axes displayed in logarithm, TFR parameters reported 
in Table 1: a) Spectogram; b) Capongram; c) Argram;   

d) Scalogram; e) Mellingram 
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(a) (b) 

 
(c) (d) 

Figure 7. Average Smooth Pseudo Wigner-Ville’s for 53.6 HRc signal obtained with a 16 GB RAM machine and with 
all frequency axes displayed in linear scale, parameters reported in table 1: a) linear scale of the TFR values; b) dB 

scale of the TFR absolute values between -5 and 0.9 dB; c) dB scale of all the TFR absolute values;  
d) dB scale of the TFR positive values only 

By analysing the graphical representations of Figure 6, where all frequency axes are displayed in 

logarithm scale, it is interesting to notice that the Scalogram results are very similar to the TFRs 

ones. This means that there is no scale phenomenon (at least perceptible in this representation) in 

the MBN signals. Additionally, by analysing the Mellingram results, no scale structure could also 

be detected. Therefore, it seems that TFRs are enough to adequately describe the informational 

content of MBN signals. 

Figure 7 shows the dilemma of a Wigner-Ville distribution which, independently of its high 

computational load, is a non-positive one. Different choices for the amplitude help for disjoining the 
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auto-terms for the cross-terms. Linear frequency components are well estimate but the MBN 

transitory structure is difficult to extract. 

 

 

 

Figure 8. Average of Capongram’s for different hardnesses in a AISI4140 steel, TFR parameters reported in Table 1 
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In Figure 8, the TFR corresponding to each one of the six hardness values are shown. The authors 

chose the Capongram method to illustrate the difference among them, since it is this method whose 

representations are the best among the TFRs and TSRs methods. Two main kinds of information 

can be taken out from Figure 6 and Figure 8. Stationary narrow-band frequencies are present all 

over the time duration of the signal (close to 30 kHz and 50 kHz). These frequencies cannot be 

related to MBN phenomenon (since the MBN is non-stationary). Therefore they may come from 

some external interferences of the measurement equipment. 

The remaining information is on the non-stationarity of the MBN signals. All the information of the 

MBN envelope and of the MBN spectrum envelope is combined in the time-frequency domain in a 

synergetic way resulting in the richest panorama that can be seen from the MBN signals. 

The differences among the MBN behaviours, for the six hardness values, are noticeable by the 

change in the general form of the time-frequency pattern, and in the pattern of the top of the 3-D 

surface. 

7. Extraction of Characteristics from TFR 

In order to highlight informational gain that the TFR can provide, to facilitate the interpretation and 

show some examples, among several others, of what can be done, two features of characteristic 

extraction are proposed: one vectorial and one scalar. With this two features, the dimension of the 

informational representation decreases by one. The first feature is the use of iso-level curves at a 

convenient TFR magnitude and the other is a cut of the TFR at a particular frequency or time value. 

All results of this section are obtained from the Capongrams. 

Figure 9-a shows the frequency evolution of iso-level curves for each value of hardness at 40% of 

the highest TFR value. This threshold has been empirically chosen in order to find a characteristic 

time-frequency section validated by experts in the domain. At the end of this section, we propose an 
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automatic method in order to avoid such a choice. It is possible to note that, regarding to the 

frequency axes over 35 kHz, the curves seem to be more and more “lifted” with decreasing 

hardness values. 

Figure 9-b shows a TFR cut of the Capongrams at 37 kHz. In this graphical representation, the 

expected correlation between hardness and MBN is clearly noticeable. The increase in the TFR 

values with the decrease of hardness is better represented than in the envelope case (Figure 5), 

particularly for the lowest values of hardness. Based on the results of Figure 9, Figure 10 shows the 

evolution of the normalized TFR amplitude with hardness. 

 
a)                                                                          b) 

Figure 9. a) Iso-level curves of the Capongrams of the different hardnesses in a AISI4140 steel at 40% of the highest 

value. b) Cut of the Capongram iso-level curves at the frequency of 37 kHz 

Comparing Figure 10 with Figure 4 makes possible to see that the variation of the normalized TFR 

amplitude at 37 kHz with hardness is more significant than with the MBN RMS values. These 

results indicate that it is possible to find better information descriptors with TFR analysis than with 

the traditional 1D or 2D analysis. 
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Figure 10. Variation of the normalized Capongram amplitude at 37 KHz, from Figure 8-b, with hardness. 

This result brings now another question: Is it possible to obtain a method that automates this search? 

To that purpose, the authors have already published a method of automatic segmentation of some 

TFR such as the Short-Time Fourier transform and the spectrogram [17], [18]. This method has 

been adapted in order to be used from the Capongram, the TFR retained in this study. 

 

 

Figure 11. Automatic contour detection computed with Capongrams of the different hardnesses in a AISI4140 steel, 
Probability of false Alarm=10-2, Kurtosis threshold=3.5. 

 

(ms) 

Freq. (KHz) 
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Given that the theoretical basis of this method is out of the scope of this paper, only the method 

principle is described hereafter. Taking as signal model a nonstationary signal embedded in a white 

Gaussian noise, the probability density function of a time-frequency point is derived in order to 

determine the maximum likelihood estimator of the noise level. Then, an iterative algorithm allows 

the estimation of the noise level, from which a signal candidate set is determined according to a 

given probability of false alarm. Finally, an iterative region growing algorithm is applied to segment 

the different patterns of the representation. The segmentation stop is controlled by the Kurtosis of 

the remaining points, which should be low in order to characterize a Gaussian noise. For the MBN 

analysis, the adaptation has consisted to determine the degree of freedom of the chi-square law of a 

time-frequency point of a Capongram. In the case of the different hardnesses in a AISI4140 steel, 

Figure 11 shows the results of the automatic contour detection, which should be compared with 

Figure 9. This method gives the contour of the pattern bottom, from which a feature has to be 

defined for discriminating the different hardnesses. 

These results indicate that the time-frequency domain opens a wide investigation field to define 

better information descriptors than with the traditional 1D or 2D analysis. 

8.  Conclusions 

In this paper, a time-frequency strategy is proposed in order to use Magnetic Barkhausen Noise for 

characterizing the hardness level of a steel. This strategy consists of a time-frequency estimation 

followed by a self-working contour detection on the time-frequency representation. Although the 

TFR method can supply rich information on the Magnetic Barkhausen Noises, very few studies 

were actually undertaken with this magnetic phenomenon. In this paper, three Time-Frequency 

Representations and two Time-Scale Representations were used in order to analyse MBN measured 

in a steel sample with hardness variation, generated with a Jominy test. Having pointed out the 

vantages and disadvantages of each method, TFRs and TSRs of the same hardness value and TFR 



 24

for six different hardness values were presented. It was possible to observe that the TSRs did not 

show scales structures in the MBN signals. Results got from TFRs, and more particularly from the 

Capongram, yielded higher quality information of the MBN phenomenon than the traditional 

methods. The contours extracted were shown to be able to be relevant to the hardness level. Works 

are in progress on a wider MBN data set to validate the strategy proposed and to define the adequate 

time-frequency features in order to characterize not only the hardness but more generally the state 

of the material microstructure and the presence of deformations and mechanical stresses. 
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