
HAL Id: hal-00358827
https://hal.science/hal-00358827

Submitted on 4 Feb 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A QoS-Oriented Reconfigurable Middleware For
Self-Healing Web Services

Riadh Ben Halima, Khalil Drira, Mohamed Jmaiel

To cite this version:
Riadh Ben Halima, Khalil Drira, Mohamed Jmaiel. A QoS-Oriented Reconfigurable Middleware For
Self-Healing Web Services. IEEE International Conference on Web Services (ICWS 2008), Sep 2008,
Beijing, China. pp.104-111. �hal-00358827�

https://hal.science/hal-00358827
https://hal.archives-ouvertes.fr

A QoS-Oriented Reconfigurable Middleware For Self-Healing Web Services

Riadh Ben Halima (1,2), Khalil Drira (1) and Mohamed Jmaiel (2)

(1) LAAS-CNRS, Université de Toulouse, 7 avenue de Colonel Roche, 31077 Toulouse, France
(2) University of Sfax, National School of Engineers, B.P.W, 3038 Sfax, Tunisia

Abstract

Maintaining the Quality of Service (QoS) is important
for self-healing web service-based distributed interactive
applications. It requires the ability to deal with perma-
nently changing constraints both at the communication and
the execution levels. Preventing or repairing QoS degrada-
tion also requires the capacity of identifying its possible or
actual sources and the capacity of reconfiguration decision
and enforcement. Dealing with these issues is especially
challenging for web services since the self-healing solution
has to preserve the dynamic composition property and to be
seamless for the service requesters, while being always us-
able under the different deployment constraints. In this pa-
per, we present a self-healing middleware framework able
to provide the self-healing properties for QoS management
in web service-based distributed interactive applications.
The framework implementation has been achieved in the
context of the WS-DIAMOND project. It covers the whole
cycle of adaptation management including monitoring and
analysis of QoS values, and substitution-based reconfigura-
tion.

1 Introduction

Dealing with QoS properties is important for implement-
ing self-healing web services. The QoS parameters consti-
tute good indicators for assessing the health state of a given
application and its composing web services. Maintaining
the QoS may be conducted following a reactive or a predic-
tive self-healing policy. For both policies, this requires the
ability to deal with permanently changing constraints both
at the communication and the execution levels. Preventing
or repairing the QoS degradation also requires the capacity
of identifying its possible or actual sources and the capacity
of reconfiguration decision and enforcement.

Moreover, a self-healing solution for web service-based
applications has to preserve the dynamic composition prop-
erty and to be seamless for the service requesters, while be-
ing always applicable under the different deployment con-

straints. Dealing with web services is even more complex
since both synchronous and asynchronous interactions have
to be handled on the requester side and on the provider side.
Moreover different situations have to be distinguished for
reconfiguration when the monitoring predicts or detects a
QoS degradation. Applicable and efficient solutions have to
consider single and composite substitutions with and with-
out overlap of interfaces.

For implementing QoS-oriented self-healing, we devel-
oped a non-intrusive solution for observing exchanged mes-
sages between the distributed web services that compose
a given application. The observed messages are extended
with QoS parameters defined as metadata extending the
SOAP messages headers both from the requester and the
provider sides. When the accessibility constraints prevent
from deploying monitors on the provider side, our solution
is still applicable. In such situations, we may use the re-
quester side or even a third party side to deploy the different
monitoring components. The same property applies to the
different components of our architecture. This makes it ap-
plicable to a large family of web service-based applications
under different deployment constraints. Such a property
has been tested within the context of the WS-DIAMOND
project. Our prototype has been successfully applied to two
different web service-based applications: the collaborative
conference management system [2], and the FoodShop sys-
tem implementing on-line management of remote interac-
tions involving multiple requesters and multiple providers.
Our reconfiguration algorithm relies on dynamic binding
and provides different substitution policies.

This paper is organized as follows. In section 2, we dis-
cuss the properties of the reactive and the predictive self-
healing policies. In section 3, we present a self-healing mid-
dleware framework able to provide the self-healing proper-
ties for QoS management in web service-based distributed
interactive applications. The self-healing middleware cov-
ers the whole cycle of adaptation management including
monitoring and analysis of QoS values, and substitution-
based reconfiguration. In section 4, we describe the expe-
rience of deploying and integrating our prototype with the
FoodShop application implementing a scenario of the sup-

plier chain automation category. In section 5, we discuss
the related work. In section 6, we provide our concluding
remarks and the future work directions.

2 The self-healing WS policies

Four main steps are distinguished in the self-healing pro-
cess [2]: Monitoring to extract information about the sys-
tem health, Analysis to detect possible degradations, Diag-
nosis & Decision to identify the degradation source and to
plan for repair actions, and Repair to execute these actions.

Following a reactive self-healing policy, the monitoring
services cooperate with the diagnosis services to detect ser-
vice degradation and to react appropriately by repair plans.

Following a predictive self-healing policy, the monitor-
ing services cooperate with the prognosis services to predict
service degradation and to act appropriately by reconfigura-
tion plans.

Both repair and reconfiguration plans may include adapt-
ing service composition by switching locally between dif-
ferent web service instances. They may also include switch-
ing remotely between distributed web services implement-
ing the same interface. Such plans may also include activat-
ing, deactivating and dynamically deploying new instances
of web services. These actions may be achieved to react to
service degradation or for preventing such degradation from
happening or worsening.

To handle a predicted or a detected degradation asso-
ciated with a given web service, repair and reconfigura-
tion plans may act by preventing future requesters to use
the current service involved in the degradation. In some
cases, decision has to deal with situations where several re-
questers are using the same web service or are using differ-
ent web services that share communication or computation
resources. Reactive repair policies and predictive reconfigu-
ration policies may rely on dynamically binding some of the
requesters to a new instance of the web service. Choosing
the requesters to be bound to new requesters may rely on a
classification of requesters according to different subscrip-
tion contracts. The group of requesters subscribed with a
low priority service class will be penalized. The group of re-
questers subscribed with a high priority service class will be
privileged. Depending on the source of degradation, rout-
ing a requester towards a new web service instance may be
more appropriate than maintaining its association with the
current instance. For applications that have no hierarchies
of requester classes, the decision may rely on standard load
balancing algorithms. In some cases, the analysis of logged
monitored values may help improving such a decision.

More complex adaptation actions may be planned, when
it is not possible or not sufficient to switch between in-
stances of the same web service or between web services
implementing the same WSDL (Web Services Description

Language) interface. The repair and reconfiguration plans
may act by rerouting requests to one or more different web
services implementing partially or totally the given WSDL
interface. The requests may be routed to a new web service
whose interface offers more operations that the WSDL in-
terface of the deficient web service. This is called substitu-
tion. Following this principle, substitution may also replace
a given web services by two web services implementing,
each a part of the WSDL interface.

3 The QoS-oriented self-healing middleware
framework

This section presents the QoS-Oriented Self-Healing
middleware (QOSH) which implements monitoring and re-
configuration functionalities, as shown in Figure 1.

3.1 The Monitoring & Analysis

The Monitoring module includes observing and storing
relevant QoS parameters values. It acts on the communica-
tion level; it intercepts exchanged SOAP messages and ex-
tends them with QoS metadata within their correspondent
parameters values. It is implemented by dynamically de-
ployed handlers for the Requester-Side Monitor (RSM) and
the Provider-Side Monitor (PSM). The Logging Manager
saves the data in the log database.

loop
1 OnRequest(SOAPEnvelop)
 begin
2 SOAPEnvelop.AddInHeader(QoSMetadata, QoSParamValues)
3 SOAPEnvelop.release();
 end
4 OnResponse(SOAPEnvelop)
 begin
5 SOAPEnvelop. AddInHeader(QoSMetadata, QoSParamValues)
6 SOAPEnvelop.release()
 end

endloop

Table 1. The Provider-Side Monitor behavior
for synchronous communication

As illustrated in Table 1, the PSM intercepts the incom-
ing SOAP message (line1). It adds QoS metadata (e.g. is-
suing request time ”t2”, line2) and forwards the request to
be performed (line3). The response message is intercepted
(line4), extended by QoS parameters values (e.g. issuing
execution time ”t3”, line5) and released to the requester.

The RSM intercepts the outgoing SOAP message (line1),
as described in Table 2. It adds QoS metadata (e.g. issu-
ing request time ”t1”, line2) and forwards the request to the
PSM (line3). The response message is intercepted (line4),
extended by QoS parameters values (e.g. issuing response

2

WS
Requester 2

WS
Requester 1

WS
Provider 1

WS
Provider 2…. ….WS

Provider 3

Provider-Side

…. Virtual WS

Connector Generator
WS

Dynamic Binding
Connector

Deployment
WS

Requester-Side
Monitor

Requester-Side
Monitor

Monitor
Reconfiguration Enforcement

Diagnosis /
Prognosis

WS WS

Logging WS Analysis WS Decision WS

Interception/Forward of

Key: Req/Resp WS invocation

WS

External WS Substitutable Services
LInterception/Forward of

Req/Resp messages Discovery Service WSDLsLog

Deployment of a connector

Figure 1. QoS-Oriented Reconfigurable Middleware for Substitutable WS

loop
1 OnRequest(SOAPEnvelop)
 begin
2 SOAPEnvelop.AddInHeader(QoSMetadata, QoSParamValues)
3 SOAPEnvelop.release();
 end
4 OnResponse(SOAPEnvelop)
 begin
5 SOAPEnvelop. AddInHeader (QoSMetadata, QoSParamValues)
6 =ExtractQoSParamValues(SOAPEnvelop)
7 SOAPEnvelop.release()
8 <QoSPi>=ComputeQoSValues()
9 Log(<QoSPi>)
 end

endloop

Table 2. The Requester-Side Monitor behav-
ior for synchronous communication

time ”t4”, line5) and released (line7) after the extraction of
the QoS parameters list (e.g. ”t1, t2, t3 and t4”, line6). Af-
ter that, it computes the QoS parameters values (namely for,
execution time: ”t3 - t2” and response time: ”t4 - t1”, line8)
and logs them.

The monitoring is more complex with the asynchronous
communication (or ”one way message”). We deal only
with requests, and responses received as requests. To dis-
criminate between them, we use the WS-Addressing speci-
fication [13] in order to identify and to relate requests for
asynchronous invocations thanks to message headers ”Mes-
sageId” and ”RelatesTo”.

In Table 3, the RSM intercepts the outgoing one way
SOAP message (line1), adds QoS metadata (e.g. issuing re-
quest time ”t1”, line2) and forwards the request to the PSM
(line3).

loop
1 OnRequest(SOAPEnvelop)
 begin
2 SOAPEnvelop.AddInHeader(QoSMetadata, QoSParamValues)
3 SOAPEnvelop.release()
 end

endloop

Table 3. The Requester-Side Monitor behav-
ior for asynchronous communication

loop
1 OnRequest(SOAPEnvelop)
 begin
2 SOAPEnvelop.AddInHeader(QoSMetadata, QoSParamValues)
3 =ExtractQoSParamValues(SOAPEnvelop)
4 <WS-Adrs>= ExtractWSAddressingData(SOAPEnvelop)
5 SOAPEnvelop.release()
6 if ("RelatesTo" <WS-Adrs>) /*Handle as a request*/
7 Local_Log (, "MessageId")
8 else /*Handle as a response*/
9 <Li.new>= Find_in_Local_Log_MessageId_EqualTo("RelatesTo")
10 <QoSPi>=ComputeQoSValues(,<Li.new>)
11 Log(<QoSPi>)
12 Endif
 End

endloop

Table 4. The Provider-Side Monitor behavior
for asynchronous communication

As illustrated in Table 4, the PSM intercepts the incom-
ing one way SOAP message (line1). It adds QoS meta-
data (e.g. issuing request time ”t2”, line2) and releases
the request (line5). After the extraction of the QoS pa-
rameters list (e.g. ”t1 and t2”, line3), it extracts the WS-
Addressing data (line4). If this data does not contain the

3

/*Considered WSDL interface of the deficient WS to substitute*/
WSDL_Interface(Sdeficient) = {Op1, ... ,OpN}
/*Browse the available services*/
Analyze_Available_WS_Interfaces();
/*Considered web services for the substitution*/
S {S1, …, SM}
(1) Single_Substitution St such that
if (Single_Substitution)

then for each (Opi)-request
 Reroute_request_to St;

 endfor
endif
(2) Composite_Substitution_NoOverlap {Sh,.., Sk} such that:

if (Composite_Substitution_NoOverlap)
then for each (Opi)-request

 Reroute_request_to Sj, such that Opi WSDL_Interface(Sj)
endfor

endif
(3) Composite_Substitution_Overlap {Sh,.., Sk} such that:

if (Composite_Substitution_Overlap)
then for each (Opi)-request
 Reroute_request_to Sj

and
/*Dealing with Overlapped Operations: First policy: Following the service availability*/

if (Service_Availability_Policy)
for each (Opi)-request, such that
 Reroute_request_to Sjk, such that Sjk High_ Availability(,Opi)

 endfor
/* Dealing with Overlapped Operations: Second policy: Switching fairly between services*/

else
for each (Opi)-request, such that
 Reroute_request_to Sjk

 jk++

endfor
endif

endif

Table 5. The reconfiguration algorithm

message header ”RelatesTo” (line6), we deal here with a re-
quest. The QoS parameters values are saved in a local log
(line7). Unless, the request is handled as a response (e.g.
”t1” represents ”t3”, and ”t2” represents ”t4”). It looks for
the related QoS parameters values in the local log where the
”RelatesTo” represents a ”MessageId” of a previous request
(line9). Then, it computes the QoS values (namely for, ex-
ecution time: ”t3 - t2” and response time: ”t4 - t1”, line10)
and logs them (line11).

The Analysis module targets evaluating the health of a
given service and not a specific interaction within a given
conversation. Hence, the degradation detection considers
interactions with a provider and its requesters. Our ap-
proach acts proactively by observing the evolution of QoS
values computed during runtime. It aims to detect QoS
degradation which is considered as the symptom of a future
or an imminent deficiency. Indeed, a continuous increasing

of the response time or a continuous decreasing of admis-
sion rate is a significant indicator to an imminent service
deny. In our point of view, having a response time increase
when dealing with requests from N different requesters is
considered as QoS degradation in the same way as for re-
sponse time increase involving handling N requests from
the same requester.

3.2 The Diagnosis/Prognosis & Decision

Depending on the adopted policy according to the ap-
plication context, two models may be used: Diagnosis and
Prognosis. Proactively or reactively on receiving alarms,
the modules implementing these models, inspect the service
behavior on the basis of the logged QoS parameter values.
This allows the identification/prediction of the past/eminent
deficiency. The Decision is based on reconfiguration actions

4

Self-Healing
components & services

Deployment Side
Constraints on
the Provider Side

Constraints on the
Requester Side

Constraints on the Requester
and the Provider Sides

Free deployment

PSM Third party Side Provider Side Third Party Side Provider Side
RSM Requester Side Third party Side Third Party Side Requester Side
Logging WS Third Party Side Third Party Side Third Party Side Third Party Side
Log Third Party Side Third Party Side Third Party Side Third Party Side
Analysis Third Party Side Third Party Side Third Party Side Third Party Side
Diagnosis/Prognosis Third Party Side Third Party Side Third Party Side Third Party Side
Decision Third Party Side Third Party Side Third Party Side Third Party Side
Reconfiguration
Enforcement services

Third party Side Provider Side Third Party Side Provider Side

Third Party Side Requester Side Provider SideKey:

Table 6. The possible configuration under the different constraints

for prognosis and repair actions for diagnosis.
The diagnosis is more sophisticated in the case of global

management. In such case, it is not limited to the analysis
of interaction between a single pair of requester/provider,
but it reasons about the interaction of the web service with
multiple other web services of the global application. This
global view of the system gives us the possibility to identify
the source of the degradation, and to optimize the repair ef-
fort by avoiding over-reactions and useless reconfiguration
actions. Such a situation occurs for QoS degradation due to
delay propagation.

3.3 Reconfiguration Enforcement

The proposed approach is based on the architectural re-
configuration. It substitutes the deficient service by another
equivalent from the selected Substitutable Services WSDLs
or by a composition of several services (see algorithm de-
scribed in Table 5). The reconfiguration execution is per-
formed thanks to the Dynamic Binding Connector which
unbinds the current connection, and reroutes requests to
the new selected services in a seamless way for remote re-
questers. The Dynamic Binding Connector is automatically
generated and deployed using runtime compilation and re-
flective programming.

The substitution of a deficient web service may be done
through one or many other services. We distinguish three
different cases as shown in the algorithm of Table 5.

The first case addresses the single substitution. All
requests are routed to a new web service, which offers
the same operations as the deficient WS. In such case,
Sdeficient is entirely replaced by St.

The second case considers the composite substitution by
two or more services, where their union covers the opera-
tions offered by the deficient one. No overlapping is de-
tected in the offered operations. In such case, Sdeficient is
replaced by a set of services.

The third case is similar to the second, but some provided
operations appear many times in the considered web ser-
vices for the substitution. Two policies are used. In the first,
the substitution services may be used by other requesters
which bypass the QOSH middleware. In this case, we fol-
low the high availability to reroute requests. In the second,
we deal with services accessible only through the QOSH
middleware. In this case, switching requests between these
services seem to be the more realistic while no other appli-
cations use them.

The single substitution may be also viewed as a total sub-
stitution of all the service operations (all operations are de-
ficient) and the composite substitution as a partial substitu-
tion of only the deficient service operations.

3.4 Self-healing service deployment as-
sumptions

The deployment of the self-healing services and compo-
nents is distributed on three sides, as described in Table 6.
The third party is a trusted party between the provider and
the requester. The best deployment configuration is the Free
deployment one. RSM should be close to the requester-side.
Similarly, PSM should be close to the provider-side. This
makes more accurate the QoS measurement. Many self-
healing components are deployed in the third party-side in
order to non overload the provider and requester sides.

Deployment constraints rise due to many reasons as se-
curity issues, and access rights. For example, applica-
tions orchestrated with BPEL engine limit the access to
the requester-side in order to deploy RSM. This may be re-
solved while using the BPEL-provided monitor. Also, usu-
ally providers limit the access to their web services for se-
curity reasons and they prevent deploying monitors or other
self-healing components. In this case, we can deploy PSM
and the Reconfiguration Enforcement services within the
third party-side.

5

WH1Shop SUP1

RSM
Reconfiguration

Enforcement
RSM

Reconfiguration
Enforcement

PSMPSM

Logging WS
Analysis

WS
Log

Diagnosis/
Prognosis WS Logging WS

Analysis
WS

Log

Decision WS Diagnosis/
Prognosis WS Decision WS

Diagnosis information exchange

C1
WH1

Shop WH2

SUP1

p

C2

WH2

WH3

SUP2

Figure 2. Details of global distributed self-healing architecture applied to the FoodShop case study

4 Illustration: The example of the supplier
chain automation category

1200
1400
1600
1800
2000

m
e

(m
s) With Monitors

Without Monitors

0
200
400
600
800

1000

1 3 5 10 25 50 75 100 200 350 500

R
es

p
o

n
se

 T
im

Requesters number

Figure 3. Load of monitors

The FoodShop5 application is studied in the framework
of the WS-DIAMOND project (see Figure 2). It is con-
cerned with a web service-based application representing
a company that sells and delivers food. The company has
an online Shop and several warehouses (WH1, ..., WHn)
located in different areas that are responsible for stocking
imperishable goods and physically delivering items to cus-
tomers. In case of perishable items, that cannot be stocked,
or in case of out-of-stock items, the warehouse must interact
with several suppliers (SUP1, ..., SUPm).

The FoodShop is a composition of interactive web ser-
vices. It is implemented using BPEL (ActiveBPEL version
2.1). Applying the QOSH middleware, we face the de-
ployment of handler issues. The requester is assumed to
be the BPEL engine, which constraints the deployment of
the monitor on the requester-side (see section3.4). Two so-
lutions are possible: The first relies on extending the Ac-

tiveBPEL provided handlers on the requester side, and the
second deploys monitor on the third party-side.

The QOSH middleware is deployed within the Food-
Shop application between each pair of provider/requester as
shown in Figure 2. The Diagnosis modules exchange infor-
mation, in order to coordinate the healing actions. For in-
stance, for the two interlocked services WH1 and SUP1, the
QoS degradation of SUP1 may propagate to WH1 from the
Shop point of view. This triggers a healing process within
the two QOSH middleware instances. If not in coordination,
each QOSH middleware substitutes its provider. However,
the global reasoning about the degradation deduces that the
WH1 QoS degradation is due to the propagation and only
SUP1 has to be substituted.

This implementation shows the feasibility of the QOSH
middleware1. We inject degradation in the FoodShop appli-
cation, and we follow the QOSH middleware behavior. The
Analysis service detects the degradation and sends alarms to
the Diagnosis service which identify the degradation. The
Decision service asks the Reconfiguration Enforcement ser-
vice for generating a new connector to repair. Then, next
requests are executed by a new provider.

We have experimented the monitoring cost with a large
scale experiment under the gird5000 [1] to measure the re-
sponse time of web services while varying the requesters
number from 1 to 500.

Figure 3 shows how the response time varies with the
requester number. In the first drawing, the monitoring is
achieved using the RSM and the PSM (With Monitors). In
the second, the measurement is achieved in the client code
and without using monitors (Without Monitors). We con-
clude that with less than 50 concurrent clients, both draw-
ing are similar and the load of monitors is negligible (about

1Demonstration is available at http://www.laas.fr/˜khalil/Video.html

6

zero). From these experiment results, we find that the in-
code monitoring is better than the interceptor monitoring
while we exceed 50 concurrent clients. But remember that
the in-code is dependent to the client application.

5 Related Work

In this section, we first present related work on QoS-
aware middleware compared to our work. Most works are
centered on the network and transport levels [6, 5]. Less
effort in QoS-aware middleware has been done at the appli-
cation and business process levels [14] and few approaches
address both levels [7].

Authors of [6] present a middleware to manage QoS in-
side a cluster of application servers. This approach proposes
three modules, implemented as component, to ensure QoS
adaptation. The first is the Monitoring module which is in
charge of observing and detection QoS degradation. The
second is the Configuration module which is responsible for
ensuring service availability while rebuilding the cluster in
order to meet the SLA specification. The third is the Load
Balancing module which acts as a HTTP proxy dispatching
client requests to services according to their availability.

Work in [5] considers the management of network re-
sources and services. It presents a layered framework archi-
tecture. The first layer includes the Reconfiguration Execu-
tors which adapt network components. The second layer is
responsible of monitoring and diagnosis of QoS degrada-
tion. The last layer is a supervision graphical interface for
the system administrator. The abstraction of the exchanged
data between layers is based on the capabilities of the XML.

Work in [3] presents a monitoring system composed of
three parts. The first addresses monitoring report genera-
tion. The second gathers, centralizes and analyzes monitor-
ing data. The third part in charge of presenting graphically
monitored data to user. It improves the proposed architec-
ture while integrating automatically any applications within
the monitoring system.

Authors of [14] address the QoS management on web
service composition. They deal with this issue at two lev-
els: The first considers the selection of a web service which
satisfies user requirements specified in a QoS model, and
the second handles the adaptation of the running process
when a QoS degradation occurs while substituting the defi-
cient web service. The monitoring and the diagnosis steps
are omitted in this approach.

Work in [7] deals with QoS during three phases: 1) QoS
specification at development phase, 2) QoS setup at discov-
ery phase, and 3) QoS adaptation at runtime phase. The
adaptation operates on the level of the resource manage-
ment to enhance the QoS. This approach has a centralized
Decision module which handles the content adaptation, the
resource allocation or the resource adaptation.

Other works address the monitoring and evaluation QoS
parameters of web services. El Saddik [9] addresses the
measurement of the scalability and the performance of a
web service based e-learning system. He carries out exper-
iments on web service based e-learning system under LAN
and DSL environment. He uses multi-clients system simu-
lator which runs concurrent threads requesters. El Saddik
interprets collected monitoring data. As a conclusion, he
suggests a proxy-based approach for scheduling a massive
flow of concurrent requests. But, this moves the problem
from the server level to the proxy level.

The work proposed in [8] presents an approach for mon-
itoring performance across network layers as HTTP, TCP,
and IP. It aims to detect faults early and reconfigures the
system at real time while minimizing the substitution cost.
But, the parsing of many layers takes enough time and con-
sumes resources which will affect the performance. In addi-
tion, the experiment is fulfilled only under two nodes which
will not reflect the behavior of such system in a large scale
use.

Authors of [10] propose a framework for QoS measure-
ment. They extend SOAP implementation API in order to
measure and log QoS parameters values. The API modifica-
tion has to be achieved at both requester and provider sides.
This automates the performance measurement values. Also,
it allows continuously updating information about the QoS
of services. An experiment is achieved with available ser-
vices under the net. They run about 200 requests per day
during 6 days and measure only the response time. How-
ever, this approach is dependent on the SOAP implementa-
tion. The extension has to be set up on the provider SOAP
implementation which is not possible in all cases.

Authors of [12] present an online monitoring and anal-
ysis approach. They observe and measure QoS parameters
and resources specified as a quality model and send data to
a central analyzer which checks for degradation. A visual-
ization component is used to give a view of the web services
state to the administrator. The paper discusses the selection
of a suitable monitoring mechanism for each system.

Tosic et al. [11] present WSOL (Web Service Offerings
Language) which is an XML-based language allowing the
QoS management of web services. Each Service Offering
describes a set of QoS, functional constraints and access
rights. Service Offerings are dynamic and can be manipu-
lated at runtime. Providers can offer more than one Service
Offerings for each web service. Requesters have to choose
an appropriate one and can switch dynamically between
them. Similarly to our work, WSOL allows the monitoring
and the evaluation of QoS between web service providers
and requesters. We note that WSOL does not support a
management action when degradation happens; it only de-
scribes monetary penalties to be made.

IBM [4] proposes WSLA (Web Service Level Agree-

7

ments) as a specific SLA for web services. As WSOL, it
is an XML-based specification. An SLA defines the QoS
that a web service delivers to service requesters. SLA de-
fines QoS parameters and expresses how to measure them.
Similarly to our work, SLA allows the monitoring of QoS
parameters and specifies the management action to take
when detecting degradation. The monitoring is ensured by
a trusted third party, and generally the management is re-
duced to a notification of concerned peers.

6 conclusion

In this paper, we presented a QoS-oriented self-healing
middleware for web service-based applications. This mid-
dleware enables the monitoring of both synchronous and
asynchronous communications. It supports predictive and
reactive repair policies. The repair enactment is based on
the architectural reconfiguration providing single and com-
posed substitutions for the web services at the origin of the
QoS degradation. An implementation has been developed
to assess the applicability of the monitoring and the repair
within the designed middleware.

In the presented work, we have provided solutions for
managing self-healing at the communication level with a
minimum access to the managed web service implementa-
tion and with reduced assumptions on the deployment capa-
bilities of the middleware components. This allows a large
applicability according to a black box approach that needs
no knowledge nor control on the web services and any pos-
sible associated orchestration process. Relaxing such as-
sumptions allows the unavailability of the web services to
be reduced during the reconfiguration step. On the other
hand this also allows handling self-healing for both state-
ful and stateless web services. This constitutes our current
work. We are developing a new prototype which acts at
the HTTP level and which addresses the global monitoring
and diagnosis of QoS degradation. Our future wok also in-
cludes the automatic generation of the monitor behaviours
from WSDL descriptions extended, using annotations, with
additional QoS-related information.

References

[1] F. Cappello and al. Grid’5000: A large scale, reconfig-
urable, controlable and monitorable grid platform. In 6th
IEEE/ACM International Workshop on Grid Computing,
2005.

[2] R. B. Halima, K. Drira, and M. Jmaiel. A qos-driven re-
configuration management system extending web services
with self-healing properties. In Proceedings of the 16th
IEEE International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises, pages 339–
344, Washington, DC, USA, 2007. IEEE Computer Society.

[3] K. Kang, J. Song, J. Kim, H. Park, and W.-D. Cho. Uss
monitor: A monitoring system for collaborative ubiquitous
computing environment. IEEE Transactions on Consumer
Electronics, 53(3):911–916, 2007.

[4] A. Keller and H. Ludwig. Defining and monitoring service-
level agreements for dynamic e-business. In LISA ’02: Pro-
ceedings of the 16th USENIX conference on System adminis-
tration, pages 189–204, Berkeley, CA, USA, 2002. USENIX
Association.

[5] P. S. L. Dimopoulou, E. Nikolouzou and I.Venieris. Qm-
tool: An xml-based management platform for qos aware ip
networks. IEEE Network, 17(3):8–14, 2003.

[6] G. Lodi, F. Panzieri, D. Rossi, and E. Turrini. Sla-driven
clustering of qos-aware application servers. IEEE Trans.
Softw. Eng., 33(3):186–197, 2007.

[7] K. Nahrstedt, D. Xu, D. Wichadakul, and B. Li. Qos-aware
middleware for ubiquitous and heterogeneous environments.
IEEE Communications Magazine, 39(11):140–148, 2001.

[8] N. Repp, R. Berbner, O. Heckmann, and R. Steinmetz.
A cross-layer approach to performance monitoring of web
services. In Proceedings of the Workshop on Emerging
Web Services Technology (in conjunction with IEEE ECOWS
2006). CEUR-WS, Dec 2006.

[9] A. E. Saddik. Performance measurements of web services-
based applications. IEEE Transactions on Instrumentation
and Measurement, 55(5):1599–1605, October 2006.

[10] N. Thio and S. Karunasekera. Automatic measurement of a
qos metric for web service recommendation. In ASWEC ’05:
Proceedings of the 2005 Australian conference on Software
Engineering, pages 202–211, Washington, DC, USA, 2005.
IEEE Computer Society.

[11] V. Tosic, B. Pagurek, K. Patel, B. Esfandiari, and W. Ma.
Management applications of the web service offerings lan-
guage (wsol). In Advanced Information Systems Engineer-
ing, 15th International Conference, CAiSE 2003, Klagen-
furt, Austria, June 16-18, 2003, Proceedings, volume 2681
of LNCS, pages 468–484. Springer, 2003.

[12] Q. Wang, Y. Liu, M. Li, and H. Mei. An online monitoring
approach for web services. In COMPSAC ’07: Proceedings
of the 31st Annual International Computer Software and Ap-
plications Conference - Vol. 1-, pages 335–342, Washington,
DC, USA, 2007. IEEE Computer Society.

[13] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and
D. F. Ferguson. Web Services Platform Architecture: SOAP,
WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable
Messaging and More. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 2005.

[14] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas,
J. Kalagnanam, and H. Chang. Qos-aware middleware
for web services composition. IEEE Trans. Softw. Eng.,
30(5):311–327, 2004.

8

