Analytical study of the propagation of acoustic waves in a 1D weakly disordered lattice

Abstract : This paper presents an analytical approach of the propagation of an acoustic wave through a normally distributed disordered lattice made up of Helmholtz resonators connected to a cylindrical duct. This approach allows to determine analytically the exact transmission coefficient of a weakly disordered lattice. Analytical results are compared to a well-known numerical method based on a matrix product. Furthermore, this approach gives an analytical expression of the localization length apart from the Bragg stopband which depends only on the standard deviation of the normal distribution disorder. This expression permits to study on one hand the localization length as a function of both disorder strength and frequency, and on the other hand, the propagation characteristics on the edges of two sorts of stopbands (Bragg and Helmholtz stopbands). Lastly, the value of the localization length inside the Helmholtz stopband is compared to the localization length in the Bragg stopband.
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00358586
Contributeur : Olivier Richoux <>
Soumis le : mercredi 4 février 2009 - 15:17:33
Dernière modification le : mercredi 4 février 2009 - 22:27:52
Document(s) archivé(s) le : mardi 8 juin 2010 - 20:04:23

Fichiers

Article_Hal_Richoux_Morand_Sim...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00358586, version 1
  • ARXIV : 0902.0800

Collections

Citation

Olivier Richoux, E. Morand, L. Simon. Analytical study of the propagation of acoustic waves in a 1D weakly disordered lattice. 2003. <hal-00358586>

Partager

Métriques

Consultations de
la notice

223

Téléchargements du document

175