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Abstract: In this short note, we show how to use concentration inequalities in order to build exact
confidence intervals for the Hurst parameter associated with a one-dimensional fractional Brownian
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1 Introduction

Let B = {Bt : t ≥ 0} be a fractional Brownian motion with Hurst index H ∈ (0, 1). Recall that this
means that B is a real-valued continuous centered Gaussian process, with covariance given by

E(BtBs) =
1

2
(s2H + t2H − |t − s|2H).

The reader is referred e.g. to [12] for a comprehensive introduction to fractional Brownian motion.
We suppose that H is unknown and verifies H ≤ H∗ < 1, with H∗ known (throughout the paper,
this is the only assumption we will make on H). Also, for a fixed n ≥ 1, we assume that one observes
B at the times belonging to the set {k/n; k = 0, . . . , n + 1}.

The aim of this note is to exploit the concentration inequality proved in [10], in order to derive an
exact (i.e., non-asymptotic) confidence interval for H . Our formulae hinge on the class of statistics

Sn =

n−1
∑

k=0

(

B k+2

n

− 2B k+1

n

+ B k

n

)2
, n ≥ 1. (1.1)

We recall that, as n → ∞ and for every H ∈ (0, 1),

n2H−1 Sn → 4 − 4H , a.s.−P, (1.2)

(see e.g. [8]), and also

Zn = n2H− 1
2 Sn −

√
n(4 − 4H) (1.3)

=
1√
n

n−1
∑

k=0

(

n2H
(

B k+2

n

− 2B k+1

n

+ B k

n

)2 − (4 − 4H)
)

Law
=⇒ N(0, cH), (1.4)
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where N(0, cH) indicates a centered normal random variable, with finite variance cH > 0 depending
only on H (the exact expression of cH is not important for our discussion). We stress that the CLT
(1.4) holds for every H ∈ (0, 1): this result should be contrasted with the asymptotic behavior of
other remarkable statistics associated with the paths of B (see e.g. [3] and [4]), whose asymptotic
normality may indeed depend on H . The fact that Zn verifies a CLT for every H is crucial in order to
determine the asymptotic properties of our confidence intervals: see Remark 3.3 for further details.

The problem of estimating the self-similarity indices, associated with Gaussian and non-Gaussian
stochastic processes, is crucial in applications, ranging from time-series, to physics and mathematical
finance (see e.g. [11] for a survey). This issue has generated a vast literature: see [1] and [6] for some
classic references, as well as [5], [7], [8], [15], and the references therein, for more recent discussions.
However, the results obtained in our paper seems to be the first non-asymptotic construction of
a confidence interval for the Hurst parameter H . Observe that the knowledge of explicit non-
asymptotic confidence intervals may be of great practical value, for instance in order to evaluate
the accuracy of a given estimation of H when only a fixed number of observations is available. In
order to illustrate the novelty of our approach (i.e., replacing CLTs with concentration inequalities
in the obte! ntion of confidence intervals), we also decided to keep things as simple as possible. In
particular, we defer to a separate study the discussion of further technical points, such as e.g. the
optimization of the constants appearing in our proofs.

The rest of this short note is organized as follows. In Section 2 we state a concentration inequality
that is useful for the discussion to follow. In Section 3 we state and prove our main result.

2 A concentration inequality for quadratic forms

Consider a finite centered Gaussian family X = {Xk : k = 0, ..., M}, and write R(k, l) = E(XkXl). In
what follows, we shall consider two quadratic forms associated with X and with some real coefficient
c. The first is obtained by summing up the squares of the elements of X , and by subtracting the
corresponding variances:

Q1(c, X) = c

M
∑

k=0

(X2
k − R(k, k)); (2.1)

the second quadratic form is

Q2(c, X) = 2c2
M
∑

k,l=0

XkXlR(k, l). (2.2)

Note that Q2(c, X) ≥ 0. It is well known that, if Q1(c, X) is not a.s. zero, then the law of Q1(c, X)
admits a density with respect to the Lebesgue measure (this claim can be easily proved by observing
that Q1(c, X) can always be represented as a linear combination of independent centered χ2 random
variables – see [14] for a general reference on similar results). The following statement, whose
proof relies on the Malliavin calculus techniques developed in [10], characterizes the tail behavior of
Q1(c, X).

Theorem 2.1. Let the above assumptions prevail, suppose that Q1(c, X) is not a.s. zero and fix
α ≥ 0 and β > 0. Assume that Q2(c, X) ≤ αQ1(c, X) + β, a.s.-P . Then, for all z > 0, we have

P (Q1(c, X) ≥ z) ≤ exp

(

− z2

2αz + 2β

)

and P (Q1(c, X) ≤ −z) ≤ exp

(

− z2

2β

)

.

In particular, P (|Q1(c, X)| ≥ z) ≤ 2 exp
(

− z2

2αz+2β

)

.
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Proof. In this proof, we freely use the language of isonormal Gaussian processes and Malliavin
calculus; the reader is referred to [11, Chapter 1] for any unexplained notion or result. Without loss of
generality, we can assume that the Gaussian random variables Xk have the form Xk = X(hk), where
X(H) = {X(h) : h ∈ H} is an isonormal Gaussian process over H = R

M , and {hk : k = 1, ..., M} is a
finite subset of H verifying

E[X(hk)X(hl)] = R(k, l) = 〈hk, hl〉H.

It follows that Q1(c, X) = I2(c
∑M

k=0 hk ⊗ hk), where I2 stands for a double Wiener-Itô stochastic
integral with respect to X , so that the H-valued Malliavin derivative of Q1(c, X) is given by

DQ1(c, X) = 2c

M
∑

k=0

X(hk)hk.

Now write L−1 for the pseudo-inverse of the Ornstein-Uhlenbeck generator associated with X(H).
Since Q1(c, X) is an element of the second Wiener chaos of X(H), one has that L−1Q1(c, X) =
− 1

2 Q1(c, X). One therefore infers the relation

〈DQ1(c, X),−DL−1Q1(c, X)〉H =
1

2
‖DQ1(c, X)‖2

H = Q2(c, X).

The conclusion is now obtained by using the following general result.

Theorem 2.2. (See [10, Theorem 4.1]). Let X(H) = {X(h) : h ∈ H} be an isonormal Gaussian
process over some real separable Hilbert space H. Write D (resp. L−1) to indicate the Malliavin
derivative (resp. the pseudo-inverse of the generator L of the Ornstein-Uhlenbeck semigroup). Let Z
be a centered element of D

1,2 := domD, and suppose moreover that the law of Z has a density with
respect to the Lebesgue measure. If, for some α > 0 and β ≥ 0, we have

〈DZ,−DL−1Z〉H ≤ αZ + β, a.s.-P,

then, for all z > 0, we have

P (Z ≥ z) ≤ exp

(

− z2

2αz + 2β

)

and P (Z ≤ −z) ≤ exp

(

− z2

2β

)

.

Remark 2.3. One of the advantages of the concentration inequality stated in Theorem 2.1 (with
respect to other estimates that could be obtained by using the general inequalities by Borell [2]) is
that they only involve explicit constants.

3 Main result

We go back to the assumptions and notation detailed in the Introduction. In particular, B is a
fractional Brownian motion with unknown Hurst parameter H ∈ (0, H∗], with H∗ < 1 known. The
following result is the main finding of the present note.

Theorem 3.1. Fix n ≥ 1, define Sn as in (1.1) and fix a real a such that 0 < a < (4 − 4H∗

)
√

n.

For x ∈ (0, 1), set gn(x) = x − log(4−4x)
2 log n . Then, with probability at least

ϕ(a) =

[

1 − 2 exp

(

− a2

71
(

a√
n

+ 3
)

)]

+

, (3.1)
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(where [·]+ stands for the positive part function), the unknown quantity gn(H) belongs to the following
confidence interval:

I(n) = [Il(n), Ir(n)] =





1

2
− log Sn

2 logn
+

log
(

1 − a
(4−4H∗ )

√
n

)

2 logn
;
1

2
− log Sn

2 logn
+

log
(

1 + a
(4−4H∗ )

√
n

)

2 logn



 .

Remark 3.2. 1. We have that limn→∞ gn(H) = H . Moreover, it is easily seen that the asymp-
totic relation (1.2) implies that, a.s.-P ,

lim
n→∞

Il(n) = lim
n→∞

Ir(n) = H, (3.2)

that is, as n → ∞, the confidence interval I(n) “collapses” to the one-point set {H}.
2. In order to deduce (from Theorem 3.1) a genuine confidence interval for H , it is sufficient to

(numerically) inverse the function gn. This is possible, since one has that g′n(x) ≥ 1 for every
x ∈ (0, 1), thus yielding that gn is a continuous and strictly increasing bijection from (0, 1)
onto (− log 3/(2 logn), +∞). It follows from Theorem 3.1 that, with probability at least ϕ(a),
the parameter H belongs to the interval

J(n) = [Jl(n), Jr(n)] =
[

g−1
n

(

u(n)
)

; g−1
n

(

Ir(n)
)]

,

where u(n) = max{Il(n);− log 3/(2 logn)}. Observe that, since relation (3.2) is verified, one
has that Il(n) > − log 3/(2 logn), a.s.-P , for n sufficiently large. Moreover, since g−1

n is 1-
Lipschitz, we infer that

Jr(n) − Jl(n) ≤ Ir(n) − Il(n) =
1

2 log n
log

(

(4 − 4H∗

)
√

n + a

(4 − 4H∗)
√

n − a

)

so that, for every fixed a, the length of the confidence interval J(n) converges a.s. to zero, as
n → ∞, at the rate O

(

1/(
√

n log n)
)

.

3. We now describe how to concretely build a confidence interval by means of Theorem 3.1.
Start by fixing the error probability ε (for instance, ε = 0, 05 or 0, 01). One has therefore two
possible situations:

(i) If there are no restrictions on n (that is, if the number of observations can be indefinitely
increased), select first a > 0 in such a way that

exp

(

− a2

71(a + 3)

)

≤ ε

2
(3.3)

(ensuring that ϕ(a) ≥ 1 − ε). Then, choose n large enough in order to have

a

(4 − 4H∗)
√

n
< 1 and

1

2 log n
log

(

(4 − 4H∗

)
√

n + a

(4 − 4H∗)
√

n − a

)

≤ L,

where L is some fixed (desired) upper bound for the length of the confidence interval.

(ii) If n is fixed, then one has to select a > 0 such that

exp

(

− a2

71
(

a√
n

+ 3
)

)

≤ ε

2
and a < (4 − 4H∗

)
√

n.

If such an a exists (that is, if n is large enough), one obtains a confidence interval for H of

length less or equal to 1
2 log n log

(

(4−4H
∗

)
√

n+a

(4−4H∗ )
√

n−a

)

.
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4. The fact that we work in a non-asymptotic framework is reflected by the necessity of choosing
values of a in such a way that the relation (3.3) is verified. On the other hand, if one uses
directly the CLT (1.4) (thus replacing Zn with a suitable Gaussian random variable), then one
can define an asymptotic confidence interval by selecting a value of a such that a condition of
the type

exp(−cst × a2) ≤ ε

is verified.

5. By a careful inspection of the proof of Theorem 3.1, we see that the existence of H∗ is not
required if we are only interested in testing H < H for a given H.

Proof of Theorem 3.1. Define Xn = {Xn,k : k = 0, ..., n − 1}, where

Xn,k = B k+2

n

− 2B k+1

n

+ B k

n

.

By setting

ρH(r) =
1

2

(

− |r − 2|2H + 4|r − 1|2H − 6|r|2H + 4|r + 1|2H − |r + 2|2H
)

, r ∈ Z,

one can prove by standard computations that the covariance structure of the Gaussian family Xn is
described by the relation E(Xn,kXn,l) = ρH(k − l)/n2H . Now let Zn be defined as in (1.3): it easily
seen that Zn = Q1(n

2H−1/2, Xn) (as defined in (2.1)). We also have, see formula (2.2):

Q2(n
2H−1/2, Xn) = 2n4H−1

n−1
∑

k,l=0

Xn,kXn,l
ρH(k − l)

n2H

≤ 2n2H−1
n−1
∑

k,l=0

|Xn,k||Xn,l||ρH(k − l)|

≤ n2H−1
n−1
∑

k,l=0

(X2
n,k + X2

n,l)|ρH(k − l)|

= 2n2H−1
n−1
∑

k,l=0

X2
n,k|ρH(k − l)| ≤ 2n2H−1

n−1
∑

k=0

X2
n,k

∑

r∈Z

|ρH(r)|

=
2√
n

(

∑

r∈Z

|ρH(r)|
)

(

Zn + (4 − 4H)
√

n
)

≤ 2√
n

(

∑

r∈Z

|ρH(r)|
)

(

Zn + 3
√

n
)

= αnZn + β (3.4)

with

αn =
2√
n

∑

r∈Z

|ρH(r)| and β = 6
∑

r∈Z

|ρH(r)|. (3.5)

Since Zn 6= 0, Theorem 2.1 applies, yielding

P
(

|Zn| > a
)

≤ 2 exp

(

− a2

4
∑

r∈Z
|ρH(r)|

(

a√
n

+ 3
)

)

. (3.6)

Now, let us find bounds on
∑

r∈Z
|ρH(r)| that are independent of H . Fix r ≥ 3. Using

(1 + u)α = 1 +
∞
∑

k=1

α(α − 1) . . . (α − k + 1)

k!
uk for 0 ≤ u < 1,
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we can write

ρH(r) =
r2H

2

(

−
(

1 − 2

r

)2H

+ 4

(

1 − 1

r

)2H

− 6 + 4

(

1 +
1

r

)2H

−
(

1 +
2

r

)2H
)

=
r2H

2

+∞
∑

k=1

2H(2H − 1) · · · (2H − k + 1)

k!

(

− (−2)k + 4(−1)k + 4 − 2k
)

r−k

= r2H
+∞
∑

l=1

2H(2H − 1) · · · (2H − 2l + 1)

(2l)!
(4 − 4l)r−2l.

Note that the sign of 2H(2H − 1) · · · (2H − 2l + 1) is the same as that of 2H − 1 and

∣

∣2H(2H − 1) · · · (2H − 2l + 1)
∣

∣ = 2H
∣

∣2H − 1
∣

∣(2 − 2H) · · · (2l − 1 − 2H)

≤ 2(2l − 1)!.

Hence, we can write

|ρH(r)| ≤ r2H
+∞
∑

l=1

4l − 4

l
r−2l

= 4r2H log

(

1 − 1

r2

)

− r2H log

(

1 − 4

r2

)

(

since log(1 − u) = −∑∞
k=1

uk

k if 0 ≤ u < 1
)

≤ 243

20
r2H−4

(

since 4 log(1 − u) − log(1 − 4u) ≤ 243
20 u2 if 0 ≤ u ≤ 1

9

)

≤ 243

20
r−2.

Consequently, taking into account of the fact that ρH is an even function, we get

∑

r∈Z

|ρH(r)| ≤ |ρH(0)| + 2|ρH(1)| + 2|ρH(2)| + 2

∞
∑

r=3

|ρH(r)|

= |4 − 4H | + |4 × 4H − 9H − 7| + |4 − 6 × 4H + 4 × 9H − 16H | + 2

∞
∑

r=3

|ρH(r)|

≤ 3 + 4 + 1 +
243

10

(

π2

6
− 1 − 1

4

)

= 17, 59... ≤ 17, 75.

Putting this bound in (3.6) yields

P
(

|Zn| > a
)

≤ 2 exp

(

− a2

71
(

a√
n

+ 3
)

)

. (3.7)

Note that the interest of this new bound is that the unknown parameter H does not appear in the
right-hand side. Now we can construct the announced confidence interval for gn(H). First, observe

that Zn = n2H− 1
2 Sn − (4 − 4H)

√
n. Using the assumption H ≤ H∗ on the one hand, and (3.7) on

the other hand, we get:

P





1

2
− log Sn

2 logn
+

log
(

1 − a
(4−4H∗ )

√
n

)

2 logn
≤ gn(H) ≤ 1

2
− log Sn

2 logn
+

log
(

1 + a
(4−4H∗ )

√
n

)

2 logn




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≥ P





1

2
− log Sn

2 logn
+

log
(

1 − a
(4−4H )

√
n

)

2 log n
≤ H − log(4 − 4H)

2 logn
≤ 1

2
− log Sn

2 log n
+

log
(

1 + a
(4−4H )

√
n

)

2 logn





= P

(

1

4
− log Sn

2 logn
+

log
(

(4 − 4H)
√

n − a
)

2 log n
≤ H ≤ 1

4
− log Sn

2 log n
+

log
(

(4 − 4H)
√

n + a
)

2 logn

)

= P
(

|Zn| ≤ a
)

≥ 1 − 2 exp

(

− a2

71
(

a√
n

+ 3
)

)

which is the desired result.

Remark 3.3. The fact that Q2(n
2H−1/2, Xn) ≤ αnZn + β (see (3.4)), where αn → 0 and β > 0,

is consistent with the fact that Zn
Law
=⇒ N(0, cH), and Q2(n

2H−1/2, Xn) = 1
2‖DZn‖2

H
, where DZn

is the Malliavin derivative of Zn (see the proof of Theorem 2.1). Indeed, according to Nualart and

Ortiz-Latorre [13], one has that Zn
Law
=⇒ N(0, cH) if and only if 1

2‖DZn‖2
H

converges to the constant
cH in L2. See also [9] for a proof of this fact based on Stein’s method.
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a Gaussian process. Annales de l’Institut Henri Poincaré (B) Probabilités et Statistiques 33(4),
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