N
N

N

HAL

open science

Towards a Statistical Methodology to Evaluate Program
Speedups and their Optimisation Techniques
Sid Touati

» To cite this version:

Sid Touati. Towards a Statistical Methodology to Evaluate Program Speedups and their Optimisation

Techniques. 2009. hal-00356529v8

HAL Id: hal-00356529
https://hal.science/hal-00356529v8

Preprint submitted on 6 Jul 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00356529v8
https://hal.archives-ouvertes.fr

Towards a Statistical Methodology to Evaluate Program &pes
and their Optimisation Techniques

Sid-Ahmed-Ali TOUATI
Si d. Touati @vsq. fr
University of Versailles Saint-Quentin en Yvelines, Franc

April 2009

Abstract

The community of program optimisation and analysis, codéop@ance evaluation, parallelisation
and optimising compilation has published since many desad@dreds of research and engineering
articles in major conferences and journals. These artstledy efficient algorithms, strategies and tech-
niques to accelerate programs execution times, or optioties performance metrics (MIPS, code size,
energy/power, MFLOPS, etc.). Many speedups are publighe&dobody is able to reproduce them ex-
actly. The non-reproducibility of our research resultsdkmek point of the art, and we cannot be qualified
ascomputer scientisti$ we do not provide rigorous experimental methodology.

This article provides a first effort towards a correct statéd protocol for analysing and measuring
speedups. As we will see, some common mistakes are done bgitiraunity inside published articles,
explaining part of the non-reproducibility of the resul@ur current article is not sufficient by its own to
deliver a complete experimental methodology, furtherredfeust be done by the community to decide
about a common protocol for our future experiences. Anyway,community should take care about
the aspect of reproducibility of the results in the future.

Keywords: Program optimisation, Statistical Performance Evaluatio

1 Introduction

The community of program optimisation and analysis, codéopmance evaluation, parallelisation and op-
timising compilation has published since many decades tealsdof research and engineering articles in
major conferences and journals. These articles studyesftiglgorithms, strategies and technigues to ac-
celerate programs execution times, or optimise other padoce metrics (MIPS, code size, energy/power,
MFLOPS, etc.). The efficiency of a code optimisation techaiégs generally published according to two
principles, non necessarily disjoint. The first princimetd provide a mathematical proof given a theoret-
ical model that the published research result is correendréfficient: this is the hard part of research in
computer science, since if the model is too simple, it wowldrapresent real world, and if the model is too
close to real world, mathematics become too complex to tigesecond principle is to propose and imple-
ment a code optimisation technique and to practice it on afsgiosen benchmarks in order to evaluate its
efficiency. This article concerns this last point: how canoeavince the community by rigorous statistics
that the experimental study publishes correct and faidte8u

1.1 Non-Reproducible Experimental Results

Hard natural sciences such as physics, chemistry and lpiotggose strict experimental methodologies and
rigorous statistical measures in order to guarantee thedapibility of the results. The reproducibility of
the experimental results in our community is, namely, ouk gaint. Given a research article, itis in practice
impossible or too difficult to reproduce the published perfance. If our results are not reproducible, we
cannot say that we are doing science! Some aspects makeaecteseticle non-reproducible:

e Non using precise scientific languages such as mathemadteslly, mathematics must always be
preferred to describe ideas, if possible, with an accessitfficulty.

e Non available software, non released software, non conwated precise data.

e Not providing formal algorithms or protocols make impos$sito reproduce exactly the ideas. For
instance, the authors ip (PMT]04) spent large efforts tomelément some branch predictor algorithms
based on the published research articles, but they failgmdeice the initial results of the authors.
Simply because the initial articles describing the branddigtors are not formal, so they can be
interpreted differently.

e Hide many experimental details. As demonstrated[by (MD$Hf¥nging small modification on the
execution environment brings contradictory experimergallts. For instance, just changing the size
of the linux shell variables or the order of linking an apgtion alter the conclusions. As pointed by
the authors in[(MDSH(9), a lot of published articles in majonferences hide these details, meaning
that their experimental results are meaningless.

e Usage of deprecated machines, deprecated OS, exotic mmard, etc. If we take a research article
published five years after the experiences for instancee tisea high chance that the workstations
that served the experiences have already died or alreadgetiaheir behaviour (usury of hardware,
software patches, etc.).

With the huge amount of published articles in the code ogtton community, with the impressive
published speedups, an external reviewer of our commuagythe right to ask the following naive question:
If we combine all the published speedups (accelerationghemwell known public benchmarks since four
decades, why don’t we observe execution times approachingrd ?This question is justified, and brings
a reforming malaise to us. Now, we are asked to be clear abw@tatistics, some initiatives start to collect
published performance data in order to compare them(F{)Te09

The malaise raised by the above question is not a suspiciageheratheatingin research. We believe
that our community is honest in publishing data, but the ighkld observed speedups are sometiraes
events far from what we could observe if we redo the expeegmuultiple times. Even if we take an
ideal situation where we use exactly the original experimlemachines and software, it is too difficult to
reproduce exactly the same performance numbers again ant agperience after experience. Usually,
published speedups are computed with bias describingypeett events. Frankly, if a computer scientist
succeeds in reproducing the performance numbers of hisagples (with a reasonable error ratio), it would
be equivalent to what rigorous probabilists and statestisicall asurprise

1.2 Why Program Execution Times Vary

What makes a binary program execution time to vary, even itiggthe same data input, the same binary,
the same execution environment?

e Background tasks, concurrent jobs, OS process scheduling;

e Interrupts;

e Input/output;

e Starting loader address;

e Branch predictor initial state;

e Cache effects;

e Non deterministic dynamic instruction scheduler;

e Temperature of the room (dynamic voltage/frequency sgalervice)

One of the reasons of the non-reproducibility of the regsitise variation of execution times of the same
program given the same input and the same experimentaloenvant. With the massive introduction of
multicore architectures, we believe that the variationexafcutions times will become exacerbated because
of the complex dynamic features influencing the executibreads scheduling policy, synchronisation bar-
riers, resource sharing between threads, hardware meamafor speculative execution, etc. Consequently,
if you execute a program (with a fixed input and environméntimes, it is possible to obtaih distinct
execution times. The mistake here is to assume that thesdieas are minor, and are stable in general.
The variation of execution times is something that we olesexeryday, we cannot neglect it. An usual error
in the community is to replace all tHeexecution times by one value, such that the minimum, the roean
the maximum. Doing that would produsexierspeedups to publish, but does not reflect the reality with
fair numbers.

1.3 Why Don’t we Consider the Minimum Execution Time?

Considering the minimum value of tikeobserved execution times is unfair because:
e nothing guarantees that this minimum execution time is aalidxecution of the program.

e nothing guarantees that this minimum execution time is @eguence of the optimisation technique
under study. Maybe this minimum execution time is an acd¢idsra consequence of dynamic voltage
scaling, or anything else.

e if this minimal execution time is a rare event, all your ®ttis describe rare speedups. So, they
become non-reproducible easily.

1.4 What is Inside this Article, What are its Limitations

We base our reasoning here on common well known results fistats, especially on some results ex-
plained in the book of Raj Jaifi (Jaif91). We propose a firgt iwards a rigorous statistical methodology
to evaluate program optimisation techniques. This arfietalls some common mistakes in performance
evaluation, explains which statistics should be used inracpdar situation, and provide practical examples.
Furthermore, we show how to use the free software called Rrtpate these statistice (CGH}(¢8; R P08).
Our article is organised to help computer scientists (armbofse PhD students) willing to make correct
and rigorous statistical study of their code optimisatioatmod. The question is how to convince real

3

experts by statistics, provided a confidence levet]0%, 100%], that your code optimisation technique is
really efficient in practice. Sectidf 2 explains when we cacide about a speedup of a program and how
we can measure it usirigobservations of execution times. Having a set afistinct independent programs
(considered as a set of benchmarks), Segtion 3 explainsthownipute an average speedup (while itis a bad
idea to synthesise a set of speedups in by a unique averagiindaa speedup (acceleration) inside a sample
of n benchmarks does not guarantee you that you can get a speedupiher program. Consequently,
Section[} shows how we can estimate the chance that the ctidgésagpion would provide a speedup on a
program non belonging to the initial sample of benchmarlesider experiences.

The limitations of this article are: we do not study the viioia of execution times due to changing the
program input. We consider real executions, not emulaionilation nor executions on virtual machines.
We also consider a fixed (universal ?) experimental enviemm

2 Computing a Speedup Factor for a Single Program with a Singd Data
Input

Let P be an initial program, leP’ be a transformed version after applying the code optinzieatchnique
under study. If you execute the prografk times, it is possible to obtaik distinct execution times
(especially if the program is shorty;,--- ,t,. The transformed program®’ can be executedh times
producingm execution times tod,, - - - ,¢,,. The unit of measure here is the milisecond in general, so we
can consider a timing precision in seconds with three dafitsr the coma. Below is a list of elementary
recommendations before starting statistics:

1. P and P’ must be executed with the same data inpusimilar experimental environment. The
community of code optimisation has not decided yet on thetesamantics osimilar, since many
unknown/hidden factors may influence the experiences.

2. Statistically, it is not necessary that= m. However, it isstrongly recommended that > 30
andm > 30. 30 runs may seem quite prohibitive, but this is the prattiocaits of the number of
observations used in statistics if you want to have a preBtseent test that we will explain later.
If the number of observations is below 30, computing the canfte intervals of the mean time
becomes more complex: we should first check the normalithe@fistribution (using the normality
test of Shapiro-Wilk for instance). If the normality cheakcseeds, then the test of Student can be
applied. Otherwise, the confidence intervals of the meaoutx® times must be computed using
complex bootstrap methodp (DaHi97) instead of the testwd&tt. We highly recommend 30 runs
per program to ensure the validity of the Student test. Iffugram execution time is too large to
consider 30 executions, you can do less executions but yudfollow the method we just described
(either a normality check followed by a Student test, or ipgidootstrap methods).

3. Itis important that the repetitive executions of the s@mogram should be independent. For instance,
it is not fair to use a single loop around a code kernel thataephe executiok times. This is
because repeating a programinside a loop makes them to execute inside the same appfcati
Consequently, the operating system does not behave as éxgmute the prograrh times from the
shell. Furthermore, the caches are warmed by the repesitgeutions of the code kernels if they
belong to the same application.

4. Anyway, even if we execute a prograntimes from the shell, the executions are not necessarily-ind
pendent, especially if they are executed back-to-backsek& time of the disk is altered by repetitive

4

INPUTS:

1) Execution Times for P and P’
T=ty, -l

T =t), - ,t,,

2) Confidence leved) < o < 100

yes | Perform normality check fof”
—=<_k <307 with confidence level

no

no
1 Perform 30 runs of P

yes

< 300rm < 307?

es i
™ M Perform normality check fof™’

with confidence level

no
no

‘—fPerform 30 runs of Ff

‘ Perform Student-test with confidence Iexzel‘

|

0 € confidence interval 2> ———

Got a Speedup with confidence leve
S(P) __ median(T)
= median(T’)

‘ No Speedup with confidence lewe|

Figure 1: Statistical Protocol for Asserting and Computngpeedup with Confidence Level

executions, some data are cached on the disk by applicaimhbenefit from repetitive executions.
Recently, we have been told that branch predictors are afs@nced by separate applications: this
seems strange, but we should stay careful with hardwareanerhs. As you can see, it is not easy
to guaranteé: independent executions!

We have remarked a common mistake in computing speedup&s$emre of program execution time
variance: assuming that the variations in execution timesat really a problem, because caused by exter-
nal factors, these variations may be neglected and smaoelsequently, we may be asked to compute
the speedup resulted from transformifginto P’ by using one of the following fractions iRzt b

3 !
ming—=1,m t;’

J
max;=1,k li n(P) — : : : = gt
rrTa——— or =7y Here, z is the usual notation of the sample arithmetic mea(P) = ==*—

k ’
(P = =

% If one of the previous speedups is higher than 1, than pewplelude victory. The mis-
take here is to assume thabbserved execution times represent any future executios af the program,
even with the same data input. Statistically, we are wronggitdo not consider confidence intervals. To be
rigorous, we can follow the four major steps described balmassert a high confidence in the computed
speedup. The whole detailed protocol is illustrated in Fadju

2.1 Step 1: If the Number of Runs is Below 30, Check the Normatly

As said before, if the number of runs is at least 30, you camtblis step. If the number of runs of a program
is below 30, we should check if the valugs, - - - ,tx) and (¢}, --- ,t,) follow a normal distribution. In
practice, we can use the Shapiro-Wilk normality test primgida confidence level. The user should fix a
confidence level (say = 95%), and the Shapiro-Wilk test can determine (with- o = 5% chance of
error) that the values follow a normal distribution. A lagaample will show how to practice this using the
R software. If the normality check fails, you can either ruorenexecutions till 30, or use complex bootstrap
method (that we will not explain here).

2.2 Step 2: Perform a Student Test to Decide if a Speedup Occair

The Student test allows to statistically check if all theufet executions of the prograf are faster than
the executions oP with a fixed confidence level (0 < « < 100). The Student test allows to say that we
havea% of chance that the mean execution timeRdfis faster than the mean execution timefdby just
analysing the: + m observations. This test estimates the confidence intefhthkdlifference between the
mean execution times ¢ andP’. If the value zero is inside the confidence interval, thenShelent test
does not guarantee with a confidence levehat the progran®’ is faster in average than the progrém
That s, if 0 belongs to confidence interval of the Studertt tesspeedup can be concluded for the program
P.

Let [a, b] be the confidence interval computed by the Student tedd. <f a then we can say th&®’
would be faster in average thanin a% of the future executions (considering the same data inpdt an
experimental environment). An example is illustratedrlate

2.3 Step 3: If the Student Test Concedes a Speedup, We then Cllieasure it

The speedup factor for the progra®i can be defined as the fraction between the sample mean times,

as follows: %. Here, 7z is the usual notation of the sample arithmetic meai?) = Z:let
(P = Z:% The problem with this definition of speedup is that it is $&vesto outliers Indeed, the
distributions of the values df, - -- ,) and(¢},-- - ,t,,) may be biased.

For the above reasons, we prefer using the median as sugdpysf@ain9l) instead of the sample mean
of the execution tim¢ls Consequently, the speedup becomes

median_ .t;
P/ =
s(P) medlaqzl,mt;

Remember that this speedup has no sense if the Studentitesb fdetermine if O is outside the confi-
dence interval. For the remaining part of the article, weermtm (P) andm(P’) the observed median of
the execution times of the prografhandP’ resp.

Example 2.1 LetP be a initial program with its "representative” data input. &are willing to statistically
demonstrate with a confidence level= 95% that an optimisation technique transforms it irf®8 and
produces benefit in terms of execution speed. For doing ltkispuld executé® and P’ at least 30 times.
For the sake of the example, | consider here only 5 executrd and?’. Using the software R, | introduce
the values of execution times (in secondsPa@nd P’ as two vectord’ andT; resp.

Keeping the median execution time is currently used by tHeGSBenchmarks for instance

> |library(stats)
> Tl<- c¢(2.799, 2.046, 1.259, 1.877, 2.244)
> T2 <- c¢(1.046, 0.259, 0.877, 1.244, 1.799)

We must not hurry to conclude and to publish the followingilteghe resulted speedup for this program
is equal tomin(7'1)/ min(72) = 4.86. Publishing such performance gain (acceleration of fagqual to
4.86) is a statistical mistake. Since we have only 5 obsensinstead of 30, we should check the normality
of the values of; andT5 resp. using the test of Shapiro-Wilk.

> shapiro.test(T1)
Shapiro-W Ik normality test
data: T1

W= 0.9862, p-value = 0.9647

The test of Shapiro-Wilk on the dafél computes here a valué” = 0.9862. In order to say that the test
succeeds with confidence level the valuelV must be greater or equal to thé” value of the Shapiro-
Wilk table (this table can be found on Internet for instande)ise here a confidence lewel= 95%. The
Shapiro-Wilk table fon = 5 (number of values) and = 0.95 indicates the value of 0.986. Consequently,
the normality test succeeds foii. Idem for7'2.

> shapiro.test(T2)
Shapiro-W Ik normality test
data: T2

W= 0.9862, p-value = 0.9647

SinceW = 0.9862 > 0.986, the values ofl; follows a normal distribution with a confidence level of
a = 0.95. Itis important to notice here that if the normality testi$sfior a program {7 or T3), we must run

it at least 30 times. | can now continue with the Student tesheck ifP’ is faster tharfP with a very high
confidence levek = 99%.

> t.test(T1, T2, alternative="greater”, conf.|evel =0.99)
Wel ch Two Sanple t-test

99 percent confidence interval:
-0. 02574667 | nf

The obtained confidence interval for the difference betweemean execution times|is0.02, +-oc]. This
interval includes 0. Consequently, we cannot assert 9l confidence level tha®’ is faster in average
thanP. | have the choice by either rejecting the obtained speethgphard), or reduce my confidence level.
I check witha = 95% instead 0f95%

> t.test(TLl, T2, alternative="greater", conf.level =0.95)

95 percent confidence interval:
0. 3414632 | nf

The confidence interval i9.34, +oc], it does not include 0. Consequently, we can assert with 985fi-c
dence level that we obtained a speedup. In other words, skqof error) of not obtaining an acceleration

for the future executions is equal to 5%. The obtained speek(P) = ;1((77;,)) = 2000 — 1.95.

Remark: Speedup with Low Confidence Level

If the confidence level used for the Student test is too lois,ribt impossible that we reach a situation where
the Student test detects a speedup while the computed gpeedul. The following example shows that
low confidence levels may bring incoherent speedup measure.

Example 2.2 Let take the same previous example Wittand75. We apply a Student Test with a confidence
level equal to 1% to ensure th@ is slower tharP. In the previous example, we showed the contrary with
a confidence level equal to 95%.

> t.test (T2, T1l, alternative="greater", conf.|evel =0.01)

1 percent confidence interval:
0. 02574667 I nf

As you can see, the test of Student succeeds, so we have 1%noé ¢hat?’ is slower thanP. The
computed speedup (either by considering the sample mehe af¢dian) is as follows:

> mean(T2)/ mean(T1)
[1] 0.5110024
> medi an(T2)/ medi an(T1)
[1] 0.5112414

As you can see, the speedup here is below 1. Is this a corticadiz No of course, remember that the
confidence level of this speedup is only 1%.

This section explained how to check with a confidence leviiat a code optimisation technique pro-
duces a faster transformed program (for a fixed data inpuegperimental environment). We also provided
a formula for quantifying the speedup. The following sectéxplains how to compute an overall average
of speedups of a set of benchmarks.

3 Computing the Overall Speedup of a Set of Benchmarks

When we implement a code optimisation technique, we arergiynasked to test it on a set of benchmarks,
not on a unique one. Let be the number of considered benchmarks. Ideally, the cotiimisption tech-
nique should produce speedups on#th@rograms (at least no slowdown) with the same confidencé deve
Unfortunately, this situation is rare nowadays. Usualhly@ fraction ofp programs among would benefit
from an acceleration. Let(P;) be the obtained speedup for the progr&m While this is not correct in
statistics, some reviewers ask an average speedup of ddeti@hmarks. In statistics, we cannot provide a
fair average because the programs are different, and tlegjhes are different too. So, asking for an overall
speedup for a set of benchmarks will highly bring unfair ealMeither an arithmetic mean, nor a geometric
or harmonic mean can be used to synthesise in a unique spetthigowhole set of benchmarks.

The arithmetic mean does not distinguish between short amgl programs: for instance, having a
speedup of 105% on a program which lasts 3 days must not hev&athe impact as a speedup of 300%
obtained on a program which lasts 3 seconds. In the formesawe 5% of 3 days (=216 minutes), while
in the latter we save 200% of 3 seconds (=2 seconds). If wehasarithmetic mean, we would obtain an
overall speedup equal to (105+300)/2=202%, this does flectéhe reality with a fair number.

8

The geometric mean cannot be applied here because we argcrdttb a succession of accelerations
on the same program, but to accelerations to distinct pnagraThe harmonic mean in our case is not
meaningful too because the quantityepresents also a sort of speedup, so we can provide the stinism
as the arithmetic mean .

In order to computes an overallperformance gain factof(not an overall speedup) that represents
the weights of the different programs, we can use the foligwinethod. The confidence level of this
performance gain factor is equal to the minimal value of a®rice levels used in the Student tests to
validate individual speedups.

First, an interesting question is to decide if we should eeiglhen — p programs where no speedup
has been validated by the Student test. That is, the perfarengain factor is computed for a subgatf
programs, not on all the benchmarks. We believe we neglect the- p programs that fail in the Student
test if we study afterwards (in the next section) the confideinterval of the proportio: studying this
proportion helps us to decide if the reported overall gaimé&aningful. If we decide to include all the
programs for computing the overall performance gain fadtos is also fair, but the reported gain may be
negative since it includes the slowdowns.

Second, we associate a weidlit(?;) to each progranP;. The general characteristics of a weight
function is>_, W(P;) = 1. If not, we should normalise the weights so that they sum tdle weight
of each benchmark can be chosen by the community, by the brmkhorganisation, by the user, or we
can simply decide to associate the same weight to all bendismaAlso, it is legitimate to choose the
weight as the fraction between the observed execution timdettze sum of all observed execution times:
W(P;) = Z:Elxj‘é‘;fcnu::gf%ép) Here we choose to put ExecutionTiffg) = m(P;), ie, the median
of all the observed execution times of the progr&n Someone would argue that this would give more
weight on long running time programs: the answer is yes, imeavhat we want to optimise at the end is
the absolute execution time, not the relative one.

Third, transforming a prograrR; into P’; allows to reduce the execution time by ExecutionT{@g —
ExecutionTimgP’;). This absolute gain should not be considered as it is, butldhme multiplied by the
weight of the program as followgi(P;) = W (P;) x (ExecutionTimgP;) — ExecutionTim¢P’;)).

Fourth and last, the overall performance gain factor is ddfias the fraction between weighted gains

and the sum of weighted initial execution time&s:= > W%%jigféﬁ?onﬁm@j). By simplification, we
obtain:

Jj=L,p
> j=1, W(P;)ExecutionTimeP;)
ijl,p W (P;)ExecutionTiméP;)

By definition, the overall gaidz < 1, since the execution times of the optimised programs arefatyp
non zero values (ExecutionTir(®;) # 0).

G=1-

Example 3.1 Let a program P1 that initially lasts 3 seconds. Assume weed to accelerate it with

a factor of 300% with a confidence level = 95%. Thus, its new median execution time becomes 1
second. Let P2 be a program that initially lasts 1 hour and hasn accelerated with a factor of 105%
with a confidence leveks = 80%. Thus, its new median execution time becomes 3428 secoids. T
arithmetic mean of these two speedups is 202.5%, the gegometan is 177.48% and the harmonic mean
is 155.56%. None of these means is suggested for publisatisrexplained before. The weights of the
programs P1 and P2 are resgdV/ (P1) = 3/(3600 + 3) = 0.0008 and W (P2) = 3600/(3600 + 3) =
0.9991. The obtained weighted gain for each programgéP1) = 0.001 andg(P2) = 171.85. The overall
performance gain factor is thed = 1 — 2:0008x14+0.9991x3438 _ 4 7707 and the confidence level is equal

0.0008 % 3+0.9991 X 3600
to a = min(ay, a2) = 80%. If we consider that the weights are uni¥/ (P1) = W(P2) = 1, then the

9

overall performance gain factor is thef = 1 — 33328 — 4.82% and the confidence level is still equal to
a = min(aq, ag) = 80%. As can be remarked, there is not a direct comparison betwezoverall gain

and the individual speedups.

The following section gives a method to evaluate the qualityt code optimisation method. Precisely,
we want to evaluate the chance that a code optimisation igaadproduces a speedup on a program that
does not belong to the initial set of experimented benchsark

4 A Qualitative Evaluation of a Code Optimisation Method

Computing the overall performance gain for a sample pfograms does not allow to estimate the quality
nor the efficiency of the code optimisation technique. Irt,fagthin then programs, only a fraction gf
benchmarks have got a speedup, and p programs got a slowdown. If we take this sample:qgfrogram

as a basis, we can measure the chance of getting the fradtamcelerated programs &s The higher is
this proportion, better would be the quality of the code mjsation. In fact, we want to estimate if the
code optimisation technique is beneficial for a large faactf programs. The proportiofi = £ has been
observed on a sample afprograms. The confidence interval for this proportion (veittonfidence levet)

is given by the equatiof’ r, wherer = z(;;q)/2 X w In other words, the confidence interval of

the proportion is equal t6 = [C — r,C + r]. Here,z() /> represents the value of thi¢ + «) /2 quartile
of the unit normal form. This value is available in a knownléafiable A.2 in [Jain91)). The confidence
level « is equal to the minimal value of confidence levels used in tlueléht tests to validate individual
speedups. We should notice that the previous formula ofah&dence interval of the proportiafi is valid
only if n.C" > 10. If n.C < 10, computing the confidence interval becomes too complexrdoup to

(Paind}).

Example 4.1 Havingn = 30 benchmarks, we obtained a speedup on onk¢ 17 cases. We want to
compute the confidence interval for the proportion C=17/8%666 with a confidence level = 0.9 =
90%. The quantityn.C' = 17 > 10, | can then easily estimate the confidence intervaC’aising the R
software as follows.

> prop.test(17, 30, conf.level =0.90)

90 percent confidence interval:
0. 4027157 0. 7184049

The above test allows us to say that we have 90% of chancehharoportion of accelerated programs is
betweend0.27% and71.87%. If this interval is too wide for the purpose of the study, v geduce the
confidence level as a first straightforward solution. Fotanse, if | considerx = 50%, the confidence
interval of the proportion become$9.84%), 64.23%]. Or, if we do not want to reduce the confidence level,
we need to do more experiences on more benchmarks.

The next formula gives the minimal numberof benchmarks requested if we want to estimate the
confidence interval with a precision equaktd with a confidence levek:

2, C0-0)

n = (Z(1+Oc)/2) X r2

10

Example 4.2 In the previous example, we have got an initial proportiomadgo C' = 17/30 = 0.5666.
If I want to estimate the confidence interval with a precisimual to 5% with a confidence level of 95%,
I putr = 0.05 and | read in the quartiles tables g5 /2 = z0.975 = 1.960. The minimal number of

benchmarks to observe is then equal to> 1.9602 x 220XU_0566) _ 377 46, we need to experiment
378 benchmarks in order to assert that we have 95% of chaheethie proportions of accelerated programs
are in the intervald.566 = 5%.

The discussion that we can have here is on the quality or omehsentativeness of the sample of
n benchmarks. This is outside the scope of the paper! Until, nesvdo not know what does a set of

representative programs means.

5 Conclusion

Program performance evaluation and their optimisatiohrtiegies suffer from the disparity of the published
results. It is of course very difficult to reproduce exacthg texperimental environment since we do not
always know all the details or factors influencing it. Thiice treats a part of the problem by recalling
some principles in statistics allowing to consider theastce of program execution times. The variance of
program execution times is not a chaotic phenomena to negléz smooth; we should keep it under control
and incorporate it inside the statistics we publish. Thisild@llows us to assert with a certain confidence
level that the results we publish are reproducible undeilairaxperimental environment.

Using simulators instead of real executions provide repedade results, since simulators are determin-
istic: usually, simulating a program multiple times shoaldiays produce the same performance numbers.
This article assumes that the observations have been dahe physical machine not by simulation. If the
physical machine does not exist, the observations basedmtasion cannot be studied exactly with the
methods described in this article. The study should moredbpeentrated on the statistical quality of the
simulator. As far as we know, it does not exist yet a simuldtat has been rigorously validated by statistics
as described in[(Jain91). Usual error ratios reported bylsitors are not sufficient alone to judge about
their quality.

This article does not treat performance evaluation withtiplel data inputs of a program. In fact, the
speedups defined in this article are computed for a uniquef sletta input. Experimenting multiple sets of
data input to measure a speedup is let for a future work.

We conclude with a short discussion about the confidencé Wewashould use in this sort of statistical
study. Indeed, there is not a unique answer to this cruciestipn. In each context of code optimisation
we may be asked to be more or less confident in our statisticghel case of hard real time applications,
the confidence level should be high enough (more than 95%n&iamce), requiring more experiments
and benchmarks. In the case of soft real time applicationgdtifimedia, mobile phone, GPS, etc.), the
confidence level can be more than 80%. In the case of deskfigations, the confidence level should not
be necessarily high. In any case, the used confidence levatidfiistics must be declared for publication.

References

[Jain91] Raj Jain. The Art of Computer Systems Performance Analysis ;. Tecbhsifpr Experimental
Design, Measurement, Simulation, and Modellidghn Wiley and Sons, Inc., New York, 1991.

[CGH+08] Pierre-André Cornillon, Arnaud Guyader, FraiscHusson, Nicolas Jégou, Julie Josse, Maella

11

KIoareg.Eric Matzner-Lober, Laurent Rouviér&tatistiques avec.RPresses universitaires de Rennes,
Société Francaise de statistique, 2008.

[R DO8] R Development Core TearR: A Language and Environment for Statistical ComputiRgFoun-
dation for Statistical Computing, Vienna, Austria, 2008BN 3-900051-07-0.

[FuTe09] Grigori Fursin and Olivier TemantCollective Optimization The 4th International Conference
on High Performance and Embedded Architectures and CoragHBPEAC).

[DaHi97] A.C. Davison and D. V. Hinkleydootstrap Methods and Their Applicati@@ambridge University
Press. 1997

[MDSHO09] Todd Mytkowicz et Amer Diwan et Peter F. Sweeney ettMas HauswirthProducing wrong
data without doing anything obviously wrongb appear in ASPLOS 20009.

[PMTO04] Daniel Gracia Pérez and Gilles Mouchard and Otifiemam.MicroLib: A Case for the Quanti-
tative Comparison of Micro-Architecture MechanistCRO 2004: 43-54

Acknowledgement

We would like to thank SebastienrRBals from the University of Versailles Saint-Quentin en Yvekrfer
his helpful remarks to improve this document.

12

