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Abstract

We tackle the problem of estimating a regression function observed in an in-
strumental regression framework. This model is an inverse problem with unknown
operator. We provide a spectral cut-off estimation procedure which enables to de-
rive oracle inequalities which warrants that our estimate, built without any prior
knowledge, behaves as well as, up to log term, if the best model were known.

Keywords: Inverse Problems, Instrumental Variables, Model Selection, Econometrics .
Subject Class. MSC-2000: 62G05, 62G20 .

Introduction

An economic relationship between a response variable Y and a vector of explanatory
variables X is often represented by an equation

Y =p(X)+U,

where ¢ is the parameter of interest which models the relationship while U is an error
term. Contrary to usual statistical regression models, the error term is correlated with
the explanatory variables X, hence E(U|X) # 0, preventing direct estimation of ¢. To
overcome the endogeneity of X, we assume that there exists an observed random variable
W, called the instrument, which decorrelates the effects of the two variables X and Y
in the sense that E(U|W) = 0. It is often the case in economics, where the practical
construction of instrumental variables play an important part. For instance [CINOT|
present practical situations where prices of goods and quantity in goods can be explained
using an instrument. This situation is also encountered when dealing with simultaneous
equations, error-in-variable models, treatment model with endogenous effects. It defines
the so-called instrumental variable regression model which has received a growing interest
among the last decade and turned to be a challenging issue in statistics. In particular, we
refer to [HNOT)|, [NPO3] [FIo03 for general references on the use of instrumental variables
in economics while [HHOF], [DFR0J] and [FJvB07| deal with the statistical estimation

problem.

More precisely, we aim at estimating a function ¢ observed in the following observation
model
E(U|X) #0

E(UW) =0 1)

Y =p(X)+U, {



Hence, the model ([) can be rewritten as an inverse problem using the expectation con-
ditional operator with respect to W, which will be denoted T, as follows :

ri= BY|W) = B(p(X)|W) = T, (2)

The function r is not known and only an observation 7 is available, leading to the inverse
problem 7 = T'p + §, where ¢ is defined as the solution of a noisy Fredholm equation
of the first order which may generate an ill-posed inverse problem. The literature on
inverse problems in statistics is large, but contrary to most of the problems tackled in the
literature on inverse problems (see [EHN9G, [MR9q], [CGPT03], [CHR03], [LLOY] and
[O’S8G for general references), the operator T is unknown either, which transforms the
model into an inverse problem with unknown operator. Few results exist in this settings
and only very recently new methods have arised. In particular [CHO0Y|, [Mar0d, [Mar0g], or
[EKOT] and [[HRO§ in a more general case, construct estimators which enable to estimate
inverse problem with unobserved operators in an adaptive way, i.e getting optimal rates
of convergence without prior knowledge of the regularity of the functional parameter of
interest,.

In this work, we are facing an even more difficult situation since both r and the oper-
ator T" have to be estimated from the same sample. Some attention has been paid to this
estimation issue, with different kinds of technics such as kernel based Tikhonov regular-
ization [DFROJ| or [HHOY], regularization in Hilbert scales [FJvB07], finite dimensional
sieve minimum distance estimator [NP0J], with different rates and different smoothness
assumptions, providing sometimes minimax rates of convergence. But, to our knowledge,
all the proposed estimators rely on prior knowledge on the regularity of the function ¢
expressed through an embedding condition into a smoothness space or an Hilbert scale,
or a condition linking the regularity of ¢ to the regularity of the operator, namely a link
condition or source condition (see [[CROY| for general comments and insightful comments
on such assumptions).

Hence, in this paper, we provide under some conditions, an adaptive estimation pro-
cedure of the function ¢ which converges, without prior regularity assumption, at the
optimal rate of convergence, up to a logarithmic term. Moreover, we derive an oracle
inequality which ensures optimality among the different choices of estimators.

The article falls into the following parts. Section [[] is devoted to the mathematical
presentation of the instrumental variable framework and the building of the estimator.
Section [l provides the asymptotic behaviour of this adaptive estimate as well as an oracle
inequality, while technical Lemmas and proofs are gathered in Section [

1 Inverse Problem for IV regression

We observe an i.i.d sample (Y;, X;, W;) fori = 1,. .. n with unknown distribution f(Y, X, W).
Define the following Hilbert spaces

L% ={h:R'= R, ||h|% = E(R*(X)) < +oc}

Liy = {g: R = R, |gll}y :== E(¢*(W)) < +oo},



with the corresponding scalar product < .,. >y and < .,. >y,. Then the conditional
expectation operator of X with respect to W is defined as an operator T'

T . Lg( —>LI2/V
g — E(g(X)|W).

The model ([) can be written, as discussed in [CROJ], as

Yi = o(Xi) + Elp(Xy)[Wi] — Elp(X;)|Wi] + U
= E[p(X3)[Wi] + V;
=Tp(W;) +V,, (3)

where V; = o(X;) —E[p(X;)|W;]+Uj, is such that E(V|W) = 0. The parameter of interest
is the unknown function ¢. Hence, the observation model turns to be an inverse problem
with unknown operator 1" with a correlated noise V. Solving this issue amounts to deal
with the estimation of the operator and then controlling the correlation with respect to
the noise.

The operator T is unknown and depends on the unknown distribution of the observed
variables fy,x,7z). Estimation of an operator can be performed either by directly using
an estimate of f(y x z), or if exists, by estimating the spectral value decomposition of the
operator.

Assume that T is compact and admits a singular value decomposition (SVD) (A;, ¢;, ;) j>1,
which provides a natural basis adapted to the operator for representing the function ¢,
see for instance [EHN9{]. More precisely, let T* be the adjoint operator of T', then T*T
is a compact operator on L% with eigenvalues )\?, J = 1 associated to the corresponding

T9i S0 we obtain

eigenfunctions ¢;, while v; are defined by 1; =

To; = Ny, T = Ajg;.

We can write the following decompositions

r(w) = E(Y|W = w) = Tp(w) = Y X < ¢,¢; > ¢;(w), (4)

j=1

and r(w)= erd}j(w), (5)

j>1

with r; =< Y, 4; > that can be estimated by

N
Pp=— > Yih(Wy).
=1

n <

Hence the noisy observations are the 7;’s which will be used to estimate the regression
function ¢ in an inverse problem framework.

In a very general framework, full estimation of an operator is a hard task hence we
restrict ourselves to the case where the SVD of the operator is partially known in the
sense that the eigenvalues \;’s are unknown but the eigenvectors ¢;’s and 1;’s are known.

Note that this assumption is often met for the special case of deconvolution. Consider



the case where the unknown function ¢ reduces to the identity. Hence model ([) reduces
to the usual deconvolution model
Y=X+U

Set fy the unknown density of the noise U and assume that fiy € L*(R) is a 1 periodic
function. Let also Ty be the convolution operator defined by Tyyg = g« fy. In this special
case, the spectral decomposition of the operator Ty is known, given by the unitary Fourier
transform and the usual real trigonometric basis on [0, 1] are the eigenvectors .

If the operator were known we could provide an estimator using the spectral decompo-
sition of the function ¢ as follows. For a given decomposition level m, define the projection
estimator (also called spectral cut-off [EHNO(])

R 7
P = PR (6)
j=1"7

Since the \;’s are unknown, we first build an estimator of the eigenvalues. For this, using
the decomposition (), we obtain

A =<To;,0; >w
= E[To;(W);(W)]
= E[E[¢;(X)[W]i;(W)]
= E[¢;(X)y;(W)].

So the eigenvalue \; can be estimated by
R 1 <&
A= > (W) i(X). (7)
j=1

As studied in [CHOY|, replacing directly the eigenvalues by their estimates in (f]) does not
yield a consistent estimator, hence using their same strategy we define an upper bound
for the resolution level

Mzinf{k<N:|)\k|<%logn}—l, (8)
for N to be chosen later. The parameter N provides an upper bound for M in order to
ensure that M is not too large. The main idea behind this definition is that when the
estimates of the eigenvalues are too small with respect to the observation noise, trying
to still provide an estimation of the inverse )\,;1 only amplificates the estimation error.
To avoid this trouble, we truncate the sequence of the estimated eigenvalues when their
estimate is too small, i.e smaller than the noise level. We point out that this parameter M
is a random variable which we will have to control. More precisely, define two deterministic
lower and upper bounds My, M; as

1
MO:inf{k:: Akl < —logzn} -1, 9)

n

and )
M, :inf{k | < ﬁlog3/4n}, (10)



we will show in Section [, that with high probability My < M < M.

Now, thresholding the spectral decomposition in (i) leads to the following estimator
Pm =Y ZLLicud;. (11)
j=1 )‘j
j
The asymptotic behaviour of this estimate depends on the choice of m. In the next
section, we provide an optimal procedure to select the parameter m that gives rise to an
adaptive estimator ¢* and an oracle inequality.

2 Main result

Consider the following assumptions on both the data Y;, © = 1,...,n and the eigenfunc-
tions ¢y and vy, for k > 1.

Bounded SVD functions: There exists a finite constant C; such that
Viz1l, |l <Ch  [[¥lle < Ch (12)

Exponential Moment conditions: The observation Y satisfy to the following moment
condition. There exists some positive numbers v > E(Yf) and c such that

Viz1,Vk>2, E(Y])< v

; (13)

These two conditions are required in order to obtain concentration bounds using first
Hoeffding type inequality, then Bernstein inequality, see for instance [vdGO0]. Requiring
bounded SVD functions may be seen as a restrictive condition. Yet it is met when
the eigenvectors are trigonometric functions. However, this condition can be also be
turned into a moment condition if we replace the concentration bound by a Bernstein type
inequality. Note also that the moment conditions on Y amounts to require a bounded
regression function ¢ and equivalent moment conditions on the errors Uj.

IP: Degree of ill-posedness We assume that there exists ¢, called the degree of ill-
posedness of the operator which controls the decay of the eigenvalues of the operator
T. More precisely, there are constants Ay, Ay such that

Ak P < < kTl VE> 1 (14)

In this paper, we only consider the case of mildly ill-posed inverse problems, i.e when
the eigenvalues decay at a polynomial rate. This assumption, also required in [[CHOT],
is needed when comparing the residual error of the estimator with the risk in order to
obtain the oracle inequality.

Enough ill-posedness : Let 07 = Var(Y4;(IW)). We assume that there exist two
positive constants o7 and o7 such that

Vi>1, o} <o} <oag. (15)

Note that Condition ([3) implies the upper bound of Condition ([J). The lower bound
is similar to the variance condition in Assumption 3.1 in [CRO§. We we also point out
that this condition is not needed when building an estimator for the regression function.
However it turns necessary when obtaining the lower bound to get a minimax result, or
when obtaining an oracle inequality.



2.1 Oracle inequality

First, let Ry(m, ) be the quadratic estimation risk for the naive estimator @9, (f), defined
by

Ro(m, p) = E||¢} —s0||2
—Z¢k+ Z)\ o2, Vm € N.
k>m

The best model would be obtained by choosing a minimizer of this quantity, namely
mo = arg min Ry(m, ¢). (16)

This risk depends on the unknown function ¢ hence myq is the oracle. We aim at con-
structing an estimator of Ro(m, ¢) which, by minimization, could give rise to a convenient
choice for m, i.e as close as possible to mg. The first step would be to replace ¢, by their
estimates 5\;17% and take for estimator of o2, 62, defined by

2
1< 1<
- %;mw(Wi) )

This would lead us to consider the empirical risk for any m < M, the cut-off which
warrants a good behaviour for the A;’s

Up(m,r,\) = — 5\; 7 Z VYm € N,

k=1 k=1

3|m

for a well chosen constant c. The corresponding random oracle within the range of models
which are considered would be
= . 17
my = arg min Ro(m, ¢) (17)
Unfortunately, the correlation between the errors V; and the observations Y; prevents an
estimator defined as a minimizer of Uy(m,r, A) to achieve the quadratic risk Ro(m, ¢).
Indeed, we have to use a stronger penalty, leading to an extra error in the estimation that
shall be discussed later in the paper. More precisely, ¢ in the penalty is not a constant
anymore but is allowed to depend on the number of observations n.

Hence, now define R(m, ¢) the penalized estimation risk as

log? n —
= ; A 2oz, Ym e N. 18
R(m, ¢) Zg@k+ - ; v O, Ym € (18)

k>m

The best choice for m would be a minimizer of this quantity, which yet depends on the
unknown regression function . Hence, to mimic this risk, define the following empirical
criterion

i 1
Ulm,r, ) = — > 522 + o8’ "ZA &2, ¥m € N. (19)
k=1



Then, the best estimator is selected by minimizing this quantity as follows

m* = arg min Ulm,r,N), (20)

m<M

Finally, the corresponding adaptive estimator ¢* is defined as:

"= Zﬁglfmk- (21)

The performances of ¢* are presented in the following theorem.

Theorem 2.1. Let ¢* the projection estimator defined in (Z4). Then, there exists By, By, Bs
and T positive constants independent of n such that:

N . B 2
Ele = ¢l* < Bolog*(n). |inf Rm, )] + =+ (log(n). )"
+Q + log*(n).I'(y),

where Q < By (1 + []|?) exp {— log"t7 n}, mo denotes the oracle bandwidth and

mo

M= Y |+, (22)

k=min(Mo,mo)

with the convention Y. =0 if a = b.

We obtain a non asymptotic inequality which guarantees that the estimator achieves
the optimal bound, up to a logarithmic factor, among all the estimators that could be
constructed. We point out that we loss a log?(n) factor when compared with the bound
obtained in [[CHOY]. The explanation of this loss comes from the fact that the error on
the operator is not deterministic nor even due to a independent noisy observation of the
eigenvalues. Here, the \;’s have to be estimated using the available data by M. In the
econometric model, both the operator and the regression function are estimated on the
same sample, which leads to high correlation effects that are made explicit in Model (J),
hampering the rate of convergence of the corresponding estimator.

An oracle inequality only provides some information on the asymptotic behaviour of
the estimator if the remainder term I'(p) is of smaller order than the risk of the oracle.
This remainder term models the error made when truncating the eigenvalues, i.e the error
when selecting a model close to the random oracle m; < M and not the true oracle my.
In the next section, we prove that, under some assumptions, this extra term is smaller
than the risk of the estimator.

2.2 Rate of convergence

To get a rate of convergence for the estimator, we need to specify the regularity of the
unknown function ¢ and compare it with the degree of ill-posedness of the operator T,
following the usual conditions in the statistical literature on inverse problems, see for

example [MR94] or [CT02], [BHMROT] for some examples.

Regularity Condition Assume that the function ¢ is such that there exists s and a
constant C' such that

Y k< C (23)

E>1



This Assumption corresponds to functions whose regularity is governed by the smoothness
index s. This parameter is unknown and yet governs the rate of convergence. In the special
cases where the eigenfunctions are the Fourier basis, this set corresponds to Sobolev
classes. We prove that our estimator achieves the optimal rate of convergence without
prior assumption on s.

Corollary 2.2. Let o* be the model selection estimator defined in (B1). Then, under the
Sobolev embedding assumption (B3), we get the following rate of convergence

—2s
n 2s5+2t+1
Ellg* =P =0 | [ —— )
[l ((mg%n) )
with v = 2 + 2s 4 2t.

We point out that ¢* is constructed without prior knowledge of the unknown regularity
s of ¢, yet achieving the optimal rate of convergence, up to some logarithmic terms. In
this sense, our estimator is said to be asymptotically adaptive.

Remark 2.3. In an equivalent way, we could have imposed a supersmooth assumption,
on the function ¢, i.e assuming that for given v, ¢t and constant C,

Zexp(ka:t)cpi < C.

k=1

Following the proof of Corollary -3, we obtain that My > mgy ~ (a2vlogn)/* with 2ay >
1, leading to the optimal recovery rate for supersmooth functions in inverse problems.

In conclusion, this work shows that provided the eigenvectors are known, for smooth
functions ¢, estimating the eigenvalues and using a threshold suffices to get a good es-
timator of the regression function in the instrumental variable framework. The price to
pay for not knowing the operator is only an extra logZn with respect to usual inverse
problems and is only due to the correlation induced by the V;’s. One could object that
when dealing with unknown operators, the knowledge of the eigenvectors is a huge hint
and some papers have considered the case of completely unknown operators, using func-
tional approach, see for instance [DFR0J], [FJvB07], but their estimate clearly rely on
smoothness assumptions for the regression. Hence the two approaches are complemen-
tary since we provide more refined adaptive result with the sake of stronger assumptions.
Nevertheless, using similar techniques to develop a fully adaptive estimation procedure
would be the last step towards a full understanding of the IV regression model.

3 Technical lemmas
First of all, we point out that, throughout all the paper, C' denotes some generic constant
that may vary from line to line.

Recall that we have introduced

« 1
M:inf{ng: | Akl < ﬁlogn} -1,
The term N provides a deterministic upper bound for M and ensures that M is not
too large. Typically, choose N = n* The following lemma provides a control of the

bandwidth M by My and M respectively defined in ([) and ([[0)).



Lemma 3.1. Set M = {My < M < M;}. Then, for alln > 1
147

P(M®) < CMpe s ™,

where C' and T denote positive constants independent of n.
PROOQOF. It is easy to see that:

PM) =P({M < My} U{M > M,}) < P(M < M) + P(M > M).

Using (§) and (),

. 1
P(M}Ml) < P()\MI—)\M1+)\M1 2%logn),
1
>—logn_‘)\M1|)7
\/*

< P(—Zm s (W) = B, (X)toas, (W)

< P(XMI—AM1

)

where b, = n~2logn—| Ay, | foralln € N. Let k € Nand x € [0, 1] be fixed. Assumption
(12) and Hoeffding inequality yields

(nar)?

2> i Var(éar, (Xi)¥ar, (W, ))+2n0$/3}

nr?

2P {‘ 2Var(far, (X)tar, (W) + 2Cx/3} '

Using again the assumption ([3) on the bases (¢x)ren and (¢r)ren,

Var(a, (X )i (W) < CHE[GR, (X)03,, (W)] < 1.

P([Aw = M| > 2) < 2€XP{—

Hence,

2
P(| A — Ak > x) < 2exp (—C%) , Va € 0,1], (24)

with C depending on Cf.
Using ([0), 1 > b, > 0 for all n € N. Therefore, using (24) with x = b,,, we obtain:

N

2 exp {—g(logn —log** n)? } ,

< Cexp {— logHTn} ,

b2
P(M > M,) < 2exp{—"—;}

where C' and 7 denote positive constants independent of n.



The bound of P(M < M) follows the same lines:

P(M < My) = P <ACJ {m < 1?%}) < %P (M < 1?%1) ,

j=1

Let j € {1,..., My} be fixed.

“ logn o logn
Puer) - r(vnei )

- P (% Z{¢j(Xi)wj(Xi) — E[¢,;(Xi)v;(Xy)]} < bn) ,

where b, = n="/2logn — A, for all n € N. Thanks to (f]), b, < 0 for all n € N. Using
Hoeffding inequality and Assumption ([[2) :

< logn) nb? 1
PlA<—— | <exp{ ——2_——3 < Cexp{—log™n},
(J NG p{ 2+2/3|bn\} p{~log™"n}

for some C, 7 > 0. This concludes the proof of Lemma B.1].

O
Lemma 3.2. Let B the event defined by:
M . A
B = ﬂ {|)\,;1,uk| < 5} , where p, = A\, — A\, Vk € N*,
k=1
Then, )
P(B%) < CMye~ s,
for some T > 0 and positive constant C'.
PROOF. Using simple algebra and Lemma B.]]
P(B°) = P(B°NM)+ P(B°NM°),
< P(B°N M)+ P(M°),
< P(B°NM) + CMoe 87,
Then,
M 1 Mi—1 1
P(B°NM) =P (U {|)\klﬂk| > 5} ﬂM) <P ( U {|)\klﬂk| > 5}) :
k=1 k=1
Let k € {1,..., M; — 1} be fixed. Remark that:
_ 1 Akl . 1
PNl == ) =P >0 <P — Ml = log®*n | .
(et = 5) =2 (el = 50) < P (1= 2l > 1o
Then, using (B4) with 2 = 2n~/21og¥* n:
. 1 147
P <|)\k — M| = NG log®/* n) < Qe los T, (25)

for some 7 > 0 and a positive constant C'. This concludes the proof of Lemma B.2.

10



|

The following lemma provides some tools for the control of the ratio 5\,;1)% on the
event B.

Lemma 3.3. For all k < M, we have:

A\ 2 2 .
(X_k — 1) 15 < gA,f(Ak — \e)*15.

Moreover, we have the following expansion:

>
|

1

|#

= 1= A7 Ok = M) 4+ A 20 — M),

>~

k

where vy, is uniformly bounded on the event B.

PROOF. Let k < M be fixed. Then

)\k )\k )‘k + 20" h 3 F ’
where the py, are defined in Lemma B.2. The end of the proof is based on a Taylor

expansion of the ratio 5\,;1)% =(1+ )\,zl,uk)*l. The variable v, depends on )\lzluk and can
be easily bounded on the event B.

|

Lemma 3.4. Let m a random variable measurable with respect to (Yi, Xi, W;)i=1..n Such
that m < M. Then, for all K > 1 and ~v > 0,

mo 1 K mo
(i) B ZAM—M] <2 PE |3 5t + onne o,
k=1 " k=1
.. = —20a 110gK(n) - 1-2 2 —1Ar2t+1 _—log¥n
(i) E Z)‘k (T —16)1 | < E Z)‘k op| +Cy "N“e
k=1 n k=1
+y'R(mo, 9) +E > @},

where C' > 0 is a positive constant independent of n, mqy denotes the oracle bandwidth and
N has been introduced in (§).

PROOQOF. Let @ > 0 a positive term which will be chosen later. With simple algebra:

E ZS\I;Q(T‘]C—Tk)]
k=1
= E N2 (Fp — )21 2y +E N2 (R — 1)1 027,
;; po (e —T%) (Tk_rk)%%} ]; p o (Pe— 1) {(m_rk)ka}
Q|12 o S
< =E Ao | +E A (T — 1)1 027 - 26
n ; B Ok ; e (=) {reroe> 2t} (26)

11



In the sequel, we are interested in the behavior of the second term in the right hand side
of (B6). Since )\,;2 < nlog™?n for all k < M and m < N, we obtain:

m N
Z)\ k_'rk . < 5 E(?A“k—Tk)21{ Qo } (27)

£ {(m—m%%} log? n ()22 22k

Let k € {1,..., N} be fixed. It follows from integration by part that:

o

400
E(r, — T/{:)Ql{(fkrk)2>Q_g]%} < /%% P ((fk - m)2 > x) dz.

n

Then,
P ((’f‘k —T‘k)Q 2 l‘) =P (|’f‘k —T‘k| 2 \/E) .
Assumption ([[3) together with Bernstein inequality entails that:

n

% > (Yt (W) — E[Yith (W5)])

i=1

P(|fx = = Va) = P(

>\/5),

’I’I,Jf

S eXp{ 25, Var(Yun(W, >>+cnf}

Now remark that:

202\ °
207 = Oz & 2 =D, WithDI(%> i

We obtain:

E(?A“k —Tk)Ql{

D
< s
k

. Qo?
(kark)QZTk }

ne dx + /+ooe ne dx
- X _—
207+ C\/x D P 207+ C\/x

exp{
< v 2 g [ U
< Q_Ul%exp 10?7 x : exp NG x
4o? — % oo oo
——fe i +/ exp {—Cny/z} dz,
n Qoz/m  JD
402 D+1
< &exp{ n Qo—k}+f+ oV
n 4% n Cn
4 2
n
Hence, we have
R Co?

for some C' > 0. Using (B§) and (£7),

o CNn /4

—Cn
”2 +e .
(frm)%%} = log2n

|M3‘

Tk—’r‘k 1{

12



From (B§), we eventually obtain:
B |35 -0 ] <9m|Son ¢
k=1 k=1

Choose @ = log” (n) in order to conclude the proof of ().

CNn
log n

—Q/4 + e—Cn'

7

Now, consider the bound of (ii). Let mg the oracle bandwidth defined in ([[6). With
the convention Y20 = — 3¢ if b < a,

EZ )\];2(’f‘]C — Tk)Tk = E Z )\];2(’f‘]C — T‘k)Tk,

k=1 k=mg

E Z )\];2(7A’k — Tk)Tk

k=mg
+oo

< B [ (Lpegmy = Lagmp) A (= )7 - (29)
s

Indeed, E[ry] = 7, for all k € N. Then remark that:

Y

Lr<my = Livgmoy| = [(Lppmy + Lpgmoy) (Lpomy — Likcmo))| -
=
< Lgesmylk<mo) T Liksmoy Lk<my- (30)

Using the Cauchy-Schwartz inequality and using that for all a,b and 1 > v > 0, 2ab <
va? + 12

E Z A;Q(fk — Tk)’f‘k
k=1
EZAI;QT%‘ Z N2 (P — )2 Z 22 EZ)\EQ(@—W)Q

k>m k<mo k>mo k<m
m mo
<7{E2}i+zyé}wﬂ{EZ}fm—mf+Ezyfmsmf}
k>m k>mg k=1 k=1

We eventually obtain:

E> N2(F — )k <9 R(mo, 0) +9E Y gp+7 {EZAkz(ﬁc - Tk)z} :
k=1 k=1

k>m

We conclude the proof using a similar to (i) string of inequalities. In particular, using
Assumption ([[4), we obtain the bound A\, ? < CN% for all k < M.

|

Lemma 3.5. Let m a random variable measurable with respect to (Y, Xi, W;)i=1..n Such

that m < M. Then, for all v € (0,1),
m m 2t
o + 1log log™(n).[|¢|*
ES (- A2 < 2 B[S <______
(A% KTk 2 5

+log?(n).R(mo, ¢) +

13



PROOF. The term in the left hand side can be rewritten as:

+E

Z S0k>‘k 273

k=1

where the iy, are defined in Lemma B.2 First consider the bound of W5. Using (B4) with
~1/2]og n, we obtain:

EZ(S‘k A;Z ) l%:_E

Z Pirg Mk’/k] = Wi + Wy,

k=1
r=n

W

7

Z SOk)\k Mk

|3 it < e

k=1

loan m 1471
< C E 2)\72 C 2 _—log n 31
< CB S AN |+ Cllelfe (31)

where C' denotes a positive constant independent of n. Thanks to our assumptions on the
sequence (Ag)en, for all v >0

log .
Wy < L IelPE sup Ag® + Cfj g2 os" T
k<m
Y s s C (log*(n).]lol?\’
< —E:A - = Q, 32
n 2= k Uk+n( N + (32)

where for the last inequality, we have used ([[4) and the bound:

sup A\, 2 Z N2+ O™

k<m

with o = 7~ 'log®(n).||¢||>. More details on this bound can be found in [CGPT03].

We are now interested in the bound of W;. Using (B0) and a similar to (B9) string of
inequalities, we obtain:

W = EZwiA;%,

< EZ 1{k>m}1{k<mo}90k|)‘k ,Uk| +E Z 1{k>mo}1{k<m}¢k‘Ak /”Lk‘|

\/Z% ED) A=)+ B 0 B A — )2

N

k>m k<mo k>mg k<m

Hence, for all v > 0,

{EZ%+Z%}+7 {Ezm:)\ 2(Me — M)’ +EZ)\ )\k—)\k)}.

k>m k>mg k=1 —

14



Using (24) once again with = = n="/?log**n, we obtain for all v > 0:
2 2 v log?n - o9 Ny 29
< EZ‘PkﬂLZ@k T EZ)‘k 0k+z>‘k Ok (-
k>m k>mo k=1 k=1

This concludes the proof of Lemma 3.5.
O

Lemma 3.6. Let m a random variable measurable with respect to (Yi, Xi, W;)i=1..n Such
that m < M. Then,

1 . ) 2 logn . 1-2 2 1 S 127,242 —log2n
k=1 k=1 k=1
for some C' > 0 independent of n.
PROOQOF. First remark that, for all £k > 1
. 1 .
0,3 — a,% = o Z(Ewk(Wz) - Tk)z - ‘7/37
9 2Tk
- Ly v+ 2 S vr -
= - Z YEGR(W:) + 7 — 27 — (BY*92(W)] = EY 4 (W)P)

- LS (YRURV) — BRG]} +
i=1

Hence, we obtain

mo 1
E 267 — =—E
£ k k Uk ] n

where for all £ € N:

3|H

o= S {(Y2URV) — B[V 2 (W]}

i=1

We are interested in the first term in the right hand side of (BJ). Let 6 > 0 a positive
constant which will be chosen later:

1 [ & 1[N o
Bl n] = B[S i) [t
k=1 | k=1 k=1
5 m 1 -2 1 “ 2
< CE >N + B D A olpesa | -
= k=1

Since m < M, from integration by part,

m

T N
1 S 1 1 +o0
“E | >‘k2pk1{l)k>5}] S o > Eoilipen = g ) ,/5 P(py 2 x)dz.
k=1

1 log™n =

15



Let £k € N and x > 4 be fixed. Using Bernstein inequality:

Plpyzz) = P (% D AVPORW) —EY g (W)} > 56’) ;

i=1

n?ax?

eXp{ 2L, Ve (VORW, >>+cm/3}
‘ oo
S P 2nDgy + Dinz |’

. na?
S €X —_—— s
P172D, + Dy

with the hypotheses ([J) and ([J) on Y and (¢; ). The constants Dy and D; are positive
and independent of n. Therefore, for all £ < N,

+o0o
/ P(pr > x)dx
5

2Dg /D1 n2 +oo nr2
< expy —————— d:c—l—/ exp{—i}d:c,
/5 { 2D0 + leL'} 2D0/D1 2D0 + Dll‘

2D0/D1 —+o0
< / exp{—C’nxQ}der/ exp{—nz}dz,
) 2Dg /D1

+o00 1
< / exp{—Cnéx}dr + —e ",
5 n
C
< = . 52 —-1_—-Cn
> exp{—nd“} +n e ",

for some C' > 0. Choosing § = n~/?logn and using Assumption ([[J), we obtain:
B[S i S
k=1 k=1

We use (BJ) in order to conclude the proof.

log n

—log?n
+ Ce .
S n3/2

E

1
n

4 Proofs

PROOF OF THEOREM 1. The proof of our main result can be decomposed in four steps.
In a first time, we prove that the quadratic risk of ¢* is close, up to some residual terms,
to ER(m*, ¢) where

=S i+ log” "ZA o2, Vm € N, (34)

k>m

This result is uniform in m and justifies our choice of R(m, ) as a criterion for the
bandwidth selection.

16



In a second time, we show that ER(m*, p) and EU(m*, r, ¢) are in some sense com-
parable. Then, according to the definition of m* in (20),

Um*,r,o) <U(m,r,p),Vm < M

We will conclude the proof by proving that for all m < M, EU(m,r, ) = E||$m — o||?,
up to a log term and some residual terms.

In order to begin the proof, remark that:

+oo
Ell" — ol =E) (¢} — ¢x) —EZerEZA P — on)’
k=1

k>m*

This is the usual bias-variance decomposition. Then

*

EY (A —@n)? =
1

3

Ms

e Tk+)\ Y — on)?,

b
Il

*

A_Q(fk — Tk)Q + 2E Z(S\]zlﬁﬁ — (pk)Q = T1 + TQ.
k=1

<

=
1
?ry

Concerning Ts, we use the following approach. For all v > 0, using Lemma 3.3 and the

bounds (B) and (B2):

*

m* m )\ 2
T, = EZ)\ Tk — Qk) ZEZ(S\—k—l) or
k=1

k=1

m* m* 2
- EZ(——l) S5+ E Z(_k_ ) il

k=1 k
< —E ZM%@% Q,

m 21 2 2t

< %EZA;%,%+C<M) +Q. (35)

k=1

where p = 5\k — A, for all £ € N. The term T} is bounded using Lemma B.4 with m = m*
and K = 2. Hence, for all v > 0,

. —_— C (log*(n).|¢l2\?
Bl - ol < (14 )BRY o)+ (D) g g

where R(m*, ) is introduced in (B4). This concludes the first step of our proof.

17



Now, our aim is to write ER(m*, ¢) in terms of EU(m*,r, p):

EU(m*, 7, ¢)
[, log®n Ui ]
—_ E _ )\—ZAZ —242
Z k Tyt n >‘k Ok | »
L k=1 k=1
[ m* 1 2 m* . m* .
= E|[-) A2+ Oinz/\;%,ﬁ —E Z{A,;Qf,i—)\fri}]
L k=1 k=1 i k=1
log? U
~EER YA -6
n
k=1

~E|Y {NCi - Aﬁri}]
k=1

Z Aot - en%)] :

k=1

Hence,

ER(m*,¢) = EU(m"r o)+ ol +E

> N - Aﬁi}]

k=1

2, m* . A
E|) \or—6)]. (37)

Remark that:

. z{x,;%z—Agzrz}]
k=1

~ B[S A+ B Z(X;Q—Af)r,%],
Lk=1 k=1

= E M=) 200 — e |+ B D (0 - A,;?)rk]
Lk=1 k=1

Using simple algebra:

I
=
>
B
~
=3
a

|
<
a
~—
=3
=
+
=
7
ps
& |

]
|
>
E|

]
N~—
~~
=3
a

|
<
a
~—
=3
T

k=1 k=1
= EZ AL (Pe — i) + EZ(S\;1 — A e AT A (e — ),
k=1 k=1
< ED NP —rm)re+E) (A = A A OB DA (R — 1)
k=1 k=1 k=1

18



Hence,

E | {2 - A0 ] < CE A (e =) | 2B | NP (R — rk)'r’k]
k=1 Lk=1 k=1
[ m* . m* \ 2
+E A=A + EZ i 1) 02
L k=1 k=1 Ak

Using Lemmata 3.4, B-J and (BY), we obtain, for all 1 >+ >0 and K > 1:

E

> N - Aﬁi}]

k=1

1
< (27*1 log¥n + Cy ' log®?n + fy) —E
n

PR

k>m*

zxxaz] 3)
k=1

+Q+07—1N2t+16—10g1<n+ Q (log (n)-llell ) .
v

+7 ' R(mg, ¢) +7E -

Remark that this result can be obtained for all m measurable with respect to the sample
(X;,Y;, Wi)i=1..n. Then, from (B7) and Lemma 3.6,

ER(m*, ¢)
< EUm* > (90 1 10g" n 4+ Oy M log¥2n + 18 ) 1g 3 A202
S (m*,r,0) + [lell” + (29 log™ n + Cy™ " log™“n + R ; k Ok

PR

k>m*

+7 ' R(mg, ) +7E

n

2 2t
Jr07—1]\[2”16—logKn+QJr C (log (n)H‘P”Q) '
8

which can be rewritten:
(1—p(v, K, n))ER(m*,¢) < EU(m*,r¢)+ ol
C (log®(n).| 0|2\
+27_1R(m0,<p) +C’y_1N2t+16_10gKn + Q-+ g ( 0og <n3 HQOH ) ’ (39)

with

C
p(v.16,m) = 2y log" P+ —5 - log™ P n 4.

The third step of our proof can be easily derived from the definition of m* and leads to
the following result:

(1= p(y, K,n)ER(m*, ) < EU(mi,7,0) +[lol* + 297 R(mo, @)

C /loc2(n). 2\ 2t
+07_1N2t+16—10g1<n + Q) + = <w) ’(40)
n Y

where m, is defined in ([[7) and denotes the oracle in the family {1,..., M}. In order to
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conclude the proof, we have to compute EU(my, 7, ¢)+ ||¢]|?. In a first time, remark that:
2 — 1 =242 logzn < A—2A2_ 2
BU () + ol = B =3 A+ Y AR el

= E —Zkk'r’k

log? n [ A
+lel? + 2 g Zwo—z]

n

m1

. 1 o . .
+E | YO0 = A | + B Z(A;Q&i—A;%i)]
k=1 k=1

Hence,

EU(mi1,7,¢) + |l¢|”

log”n —
- B| s S et v m S - i)
k>m1 k=1 k=1
log” 4
= E Z(A;Q&i—&?ai)l,
k=1

= ER(mlago)_'_Fl_'_Fé

The same bound as (Bg) occurs for Fy. By the same way, using Lemma 3.6:

log2n — 1 =242 -2 2
F, = 5, —
2 0 E E (Ap 70k — AL o%) |
k=1
logn oe?m
— § A 202 | + EEjA 2_i2) 4 Celog"n,

Therefore, for all K > 1

Clog™'n
vn

5 9N 2t
Oy LN oM ¢ <M) + Q. (41)
n v

EU(my, 1) + lol? < (1 T Clog"?n + ) ER(my, ) + R(mo, )

Using (f() and ([I]), we eventually obtain:

(1 - p</77 K7 N)>ER<m*7 ()0)
Clog™'n
\/ﬁ

2 2t
+0771N2t+16710g1<n+9 <log (n)H‘PHQ) 4O,
n v

< (1 +log"*n + ) ER(m1, p) + Cy 'ER(my, ¢)

C (log(n).]|o|2\’
< Clogi(n) ER(ma, @) + 7 "ER(mo, @) + Cy N e 4 — (M) +9,

log?(n).||ol2\ >
< Clog?(n).R(mg, ) + log?(n).T'(p) + % (M) +Q
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for some positive constant C, where I'(¢) is introduced in Theorem 1. With an appropriate
choice of K, this leads to:

El¢" — o]
] 2 . 2\ 2t
< Clog?(n).R(my, p) + % <w> + Q +1log?(n).I'(p).

O

PROOF OF COROLLAY [2.2] We start by recalling the oracle inequality obtained for the
estimator *.

. . C
Elle = ¢l < Cologh(n). [inf R(m, )| + =+ (log(n).|l*)*”
+Q + log*(n).I(¢),

We have to bound the risk under the regularity condition and the extra term log®(n)T'(¢).
Recall that the risk is given by

log® n = | _
R(m, ¢) = ZszJf ZAkQUI%
k=1

n
k>m

Hence under (23), we obtain both upper bounds for two constants C; and Cy

> et <m0,

k>m

log2n - —2 2 logzn 2 911
E Ao < Oy oym~T.
no e n

An optimal choice is given by m = [(n/logn) 1+2i+2t], leading to the desired rate of con-
vergence.
Now consider the remainder term I'(¢). Under Assumption [IP], My > [n'/?*/log® n),

but since my = [n 1+2i+2t] we get clearly that my < My, which entails that I'(p) = 0.
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