
HAL Id: hal-00355070
https://hal.science/hal-00355070v2

Submitted on 26 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Shape-based Invariant Texture Indexing
Gui-Song Xia, Julie Delon, Yann Gousseau

To cite this version:
Gui-Song Xia, Julie Delon, Yann Gousseau. Shape-based Invariant Texture Indexing. International
Journal of Computer Vision, 2010, 88 (3), pp.Pages 382 - 403. �10.1007/s11263-009-0312-3�. �hal-
00355070v2�

https://hal.science/hal-00355070v2
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

Shape-based Invariant Texture Indexing

Gui-Song Xia, Julie Delon, Yann Gousseau

Abstract This paper introduces a new texture anal-

ysis scheme, which is invariant to local geometric and

radiometric changes. The proposed methodology relies

on the topographic map of images, obtained from the

connected components of level sets. This morphological

tool, providing a multi-scale and contrast-invariant rep-

resentation of images, is shown to be well suited to tex-

ture analysis. We first make use of invariant moments to

extract geometrical information from the topographic

map. This yields features that are invariant to local sim-

ilarities or local affine transformations. These features

are invariant to any local contrast change. We then

relax this invariance by computing additional features

that are invariant to local affine contrast changes and

investigate the resulting analysis scheme by performing

classification and retrieval experiments on three texture

databases. The obtained experimental results outper-

form the current state of the art in locally invariant

texture analysis.

Keywords: Topographic map, level lines, texture

analysis, local invariance.

1 Introduction

Texture is widely considered as a fundamental ingre-

dient of the structure of natural images. The analy-

sis of texture, though, is a long standing and challeng-

ing problem in image processing and computer vision.

Yves Meyer recently coined texture as “a subtle balance

between repetition and innovation” (Meyer, 2007). In-

deed, the repetitive nature of texture oriented some of
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the very early research on automatic texture discrim-

ination toward frequency or autocorrelation analysis,

see e.g. (Kaizer, 1955; Chen, 1982). Next, in order to

deal with local transitions as well as with the “innova-

tive” part of textures, one has favored localized, Gabor

or wavelet-like analysis, see e.g. (Jain and Farrokhnia,

1991). The ability of such mathematical tools to handle

multi-scale structures has made them one of the most

popular tool for analyzing textures. One limitation of

such approaches, however, lies in their difficulty in effi-

ciently representing the geometrical aspects of textures,

such as sharp transitions and elongated contours. In or-

der to overcome this difficulty, alternative wavelet-like

approaches have been proposed to enable more efficient

representations of structured textures, see e.g. (Peyré,

to appear, 2009).

The Mathematical Morphology school has long ago

(Haas et al, 1967; Serra, 1982) proposed a radically dif-

ferent multi-scale analysis tool for texture, the so-called

granulometry. These are obtained from an image by ap-

plying elementary morphological operations with struc-

turing elements of increasing sizes. Because such basic

morphological operations operate on the level sets of

images, the resulting analysis enables a direct handling

of edges and shapes contained in textures. In this work,

we show that a morphological and multi-scale decom-

position of images, the topographic map as introduced

by Caselles et al. (Caselles et al, 1999a), enables one to

perform efficient texture analysis, while being invariant

to local radiometric and geometrical changes.

Indeed, a challenging issue when analyzing texture

is that texture surfaces are usually perceived under un-

known viewing conditions. Except when dealing with

a controlled image acquisition protocol, for instance in

specific industrial applications, texture analysis meth-

ods should comply with some invariance requirements.

The most basic ones are translation, scale and orienta-
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tion invariances. It is also desirable to achieve invari-

ance to some contrast changes, in order to deal with

variable lighting conditions. Next, the requirement of

invariance with respect to viewpoint changes for flat

texture yields analysis that are invariant with respect

to affine or projective transforms. Moreover, textures

can live on non-flat surfaces, as it is the case for bark

on a tree or for folded textiles. Such an example is

shown in Figure 1, where two different samples of the

same texture class (plaid) from the UIUC database

(Lazebnik et al, 2005) are displayed. Several recent ap-

proaches to the analysis of such textures rely on the

extraction of local features that are individually invari-

ant to some geometric transforms, such as similarity

or affine transforms (Lazebnik et al, 2003; Mellor et al,

2008). In contrast with previous works dealing with

invariant 3D texture analysis, such locally invariant

methods do not need any learning of the deformations

(Varma and Zisserman, 2002; Leung and Malik, 2001)

or explicit modeling (Wu and Chantler, 2003) of the

3D surfaces. In this paper, we show that a morpholog-

ical analysis relying on connected components of level

sets enables retrieval and classification of textures that

equal or outperform the existing locally invariant ap-

proaches on several databases.

Fig. 1 Two samples of the same texture class from the UIUC
database (Lazebnik et al, 2005). This texture lies on non-rigid
surfaces implying complex deformations between the samples.

1.1 Previous and related work

This section briefly summarizes different directions that

have been explored for the invariant analysis of texture

images. Texture analysis has been a very active research

field over the last four decades, and an exhaustive study

of this field is of course beyond the scope of this paper.

Some surveys and comparative studies of existing meth-

ods can be found in (Haralick, 1979; Tuceryan and Jain,

1993; Reed and du Buf, 1993; Randen and Husoy, 1999;

Zhang and Tan, 2002), the last one being devoted to in-

variant texture analysis. In what follows, we first focus

on classical approaches and the type of global invari-

ances they allow. By global invariances, we mean in-

variances to global transforms of the image. We then

summarize recent approaches to the analysis of tex-

ture that are invariant under local transforms of im-

ages. We focus on methods that are invariant by design

and do not include in this short discussion methods

that are invariant as the result of a learning process

(Varma and Zisserman, 2002; Leung and Malik, 2001)

or an explicit modeling of 3D textures surfaces (Wu and Chantler,

2003).

The use of co-occurrence matrices (Haralick et al,
1973; Davis et al, 1979) is still a popular approach, re-

lying on non-parametric statistics at the pixel level. It is

also worth noticing that this path along non-parametric

statistics has been very fruitful for the purpose of tex-

ture synthesis (Efros and Leung, 1999). Rotation in-

variance can be achieved for such indexing methods by

using polar coordinate systems, as detailed in (Davis,

1981). In a related direction, Pietikäinen et al. (Pietikäinen et al,

2000; Ojala et al, 2002) propose a rotation invariant lo-

cal binary pattern (joint distribution of gray values on

circular local neighborhoods) to describe texture im-

ages. Still at the pixel level, Kashyap and Khotanzad

(Kashyap and Khotanzad, 1986) developed rotation in-
variant autoregressive models. Cohen et al. (Cohen et al,

1991), among others, have introduced rotation invari-

ant Gaussian Markov random fields to model textures.

However, the design of scale invariant Markov random

field rapidly implies very involved computations, see

e.g. (Gidas, 1989). Of course, pixel statistics can be

averaged over different neighborhoods and make use of

multi-resolution schemes, but these statistics are cer-

tainly not the easiest way to achieve scale or affine in-

variant analysis of textures.

A second popular and efficient way to analyze tex-

tures relies on filtering. Many works have focused on dif-

ferent filter bank families, different sub-band decompo-

sitions, and on the optimization of filters for texture fea-

ture separation, see e.g. (Simoncelli and Portilla, 1998;

Randen and Husoy, 1999; Sandler and Lindenbaum, 2009).

Many of these approaches enable translation invariance

(by using over-complete representations), rotation and

scale invariance, by using effective filter designs, see e.g.

(Chen and Kundu, 1994; Do and Vetterli, 2002; Pun and Lee,

2003; Mellor et al, 2008). Some contrast invariance can

also be achieved by normalizing responses to filters.

As already mentioned, an alternative approach to

the analysis of textures has been proposed by the math-

ematical morphology school in the framework of gran-

ulometry. The idea is to characterize an image by the

way it evolves under morphological operations such as

opening or closing when the size of the structuring ele-

ments is increased (Serra, 1982; Maragos, 1989). These

ideas have been successfully applied to the classifica-
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tion of textures, see e.g. (Chen and Dougherty, 1994;

Asano et al, 2000), as well as the related approach (Ayala and Domingo,

2001), making use of stochastic geometry. Several works

rely on the theory of connected operators (Salembier and Serra,

1995) to compute granulometry without the need for

structuring elements, see (Li et al, 1997; Fletcher and Evans,

2005), thus potentially enabling greater geometrical in-

variances. However, there are few works showing the

benefit of the geometrical nature of morphological op-

erators to achieve similarity or affine invariant texture

classification, with the notable exception of (Urbach et al,

2007), where a shape-size pattern spectra is proposed as

a way to classify images. In particular, it is shown that

this spectra enables rotation-invariant classification of

texture images. In (Hamdan and Larson, 2002), it is

proposed to globally use the Earth Mover’s Distance

between topographic maps to perform scale invariant

texture classification. To the best of our knowledge, no

work has proposed the use of morphological attributes

to achieve viewpoint invariant description of textures.

Concerning radiometric invariant analysis of texture,

the benefit of using contrast invariant morphological

operators to recognize texture under various illumina-

tion conditions has not yet been demonstrated. Authors

of (Hanbury et al, 2005) have developed an illumination

invariant morphological scheme to index textures, but

they achieve invariance thanks to histogram modifica-

tion techniques and not by using the contrast invariant

properties of morphological analysis.

Fractal geometry has also been used in the descrip-

tion of textures, see e.g. the early work (Peleg et al,

1984). Such approaches have been shown to enable glob-

ally invariant texture analysis. Recently, Xu et al (Xu et al,
2006) proposed the use of multifractal spectrum vec-

tors to describe textures while achieving global invari-

ance under bi-Lipschitz transforms, a general class of
transforms which includes perspective transforms and

smooth texture surface deformations.

Recently, several works proposed to use individually

normalized local features in order to represent textures

while being locally invariant to geometric or radiomet-

ric transforms, see (Lazebnik et al, 2005; Zhang et al,

2007; Varma and Garg, 2007; Mellor et al, 2008). In (Lazebnik et al,

2005) and (Zhang et al, 2007), a set of interest local

affine regions are selected to build a sparse representa-

tion of textures relying on affine invariant descriptors.

Textures are represented thanks to bag-of-features, a

method that has been proved very efficient to recog-

nize object categories, see e.g. (Li and Perona, 2005).

In (Varma and Garg, 2007), textures are characterized

statistically by the full joint PDF of their local fractal

dimension and local fractal length, and this approach

is shown to be discriminative and affine invariant. Very

recently, Mellor et al. (Mellor et al, 2008) have shown

that similar local invariances can be obtained using a

filter bank approach. These authors develop a new fam-

ily of filters, enabling a texture analysis that is locally

invariant to contrast changes and to similarities.

1.2 Our Contributions

As explained earlier in the introduction, the goal of

this paper is to introduce a new method for texture

analysis that in spirit is similar to morphological gran-

ulometries, while allowing a high degree of geometri-

cal and radiometric invariances. The approach relies on

the complete set of level lines of the image, the so-

called topographic map, introduced by Caselles et al.

(Caselles et al, 1999a). The shapes (that is, the interi-

ors of the connected components of level lines) are the

basic elements on which the proposed texture analysis

is performed. We exhibit a set of simple statistics on

these shapes, obtained using classical invariant shape

moments. Therefore, and because each shape is individ-

ually normalized, the proposed texture indexing is in-

variant to local geometrical transforms, allowing for the

recognition of non-rigid textures. Various experiments

of texture classification and retrieval demonstrate the

efficiency of the proposed analysis method on various

databases.

The paper is organized as follows. First, in Section 2,

we briefly recall the definition and elementary proper-

ties of the topographic map. Next, in Section 3 local fea-

tures based on the topographic map are defined. In Sec-

tion 4, the ability of these features to classify or retrieve

texture is demonstrated on three databases: Brodatz’s

texture photo album (Brodatz, 1966), UIUC database

(Lazebnik et al, 2005) and UMD database (Xu et al,

2009). Discussions, experiments involving unsupervised

learning and exploring the scaling behavior of the method

as well as an application to segmentation are also in-

cluded in this section. A short version of this work has

appeared in (Xia et al, 2008).

2 Topographic map

In this section, we recall the definition of the topo-

graphic map and its main properties. The topographic

map has been suggested as an efficient way to represent

images by Caselles et al. (Caselles et al, 1997, 1999a). It

is made of the level lines, defined as the connected com-

ponents of the topological boundaries of the level sets

of the image. As we shall see, this map inherits a tree

structure from the nesting properties of level sets and

is an elegant way to completely represent the geometric
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information of an image while remaining independent

of the contrast.

The upper level sets of an image u : Ω 7→ R are

defined as the sets

χλ(u) = {x ∈ Ω; u(x) ≥ λ},

where λ ∈ R. We can define in the same way the lower

level sets χλ(u) of u by inverting the inequality. Remark

that if ϕ is a strictly increasing contrast change, then

χϕ(λ)(ϕ(u)) = χλ(u),

which means that the set of all upper level sets remains

the same under increasing contrast changes. Moreover,

the image is completely described by its upper level sets.

Indeed, u can be reconstructed thanks to the following

formula

u(x) = sup{λ ∈ R; x ∈ χλ(u)}.

Of course, the same property holds for lower level sets.

Now, observe that these upper (lower) level sets con-

stitute a decreasing (increasing) family. Indeed, if λ is

greater than µ, then χλ(u) is included in χµ(u) (and

conversely χλ(u) contains χµ(u)). It follows that the

connected components of upper level sets (respectively

of the lower level sets) are naturally embedded in a tree

structure. Several authors (Salembier and Serra, 1995;

Caselles et al, 1997; Heijmans, 1999), have proposed to

use these trees of connected components (one for the

upper level sets, one for the lower level sets) as an effi-

cient way to represent and manipulate images, thanks

to their hierarchical structure and their robustness to

local contrast changes. Observe that the maximally sta-

ble extremal regions (MSER) (Matas et al, 2002) de-

tector in images also relies on connected component of

level sets.

Now, the notion of level lines (topological bound-

aries of level sets) enables to merge both trees, which

motivates further the use of the topographic map to

represent images. Monasse and Guichard fully exploited

this fact and, drawing on the notion of shape, developed

an efficient way to compute this hierarchical representa-

tion of images (Monasse and Guichard, 2000a), called

Fast Level Set Transform (FLST). A shape is defined as

a connected component of an upper or lower level set,

whose holes have been filled. A hole of a set A in an

image is defined as a connected component of the com-

plementary set of A that does not intersect the border

of the image. It is shown in (Monasse and Guichard,

2000a) that the set of shapes of an image has a tree

structure. Under some regularity assumption on the im-

age, this tree is equivalent to the topographic map (that

is the set of all level lines). For discrete images, the only

technicality needed in order to define the shapes is that

two different notions of connectivity should be adopted

for level sets : 8-connectivity for upper level sets and

4-connectivity for lower sets (the opposite convention

could of course be adopted). For more precision and

results on the topographic map, we refer to the recent

monograph (Caselles and Monasse, 2008). For the ex-

periments performed in this paper, we compute the to-

pographic maps using the FLST code available in the

free processing environment Megawave21. For a recent

alternative to the computation of the topographic map,

see (Song, 2007). An example of the representation of

a synthetic image by its topographic map is shown in

Fig. 2.

I, 0

C, 1

G,1
B, 2

E, 3 F, 4

A, 5

H, 5 A

H I

FE G

DCB

D, 3

Fig. 2 Representation of an image by its topographic map (this
example is taken from (Monasse, 2000)). Left: an original digi-
tal image, with gray levels from 0 to 5; Right: representation of
the image by its tree of shapes, where (A, B, . . . , I) denote the
corresponding shapes.

The topographic map has a natural scale-space struc-
ture, where the notion of scale corresponds to the areas

of the shapes (Monasse and Guichard, 2000b). This is

of course a first motivation to investigate its use for

texture analysis. Moreover, because it is made of the

level lines of the image, the topographic map permits

to study textures at several scales without geometric

degradation when going from fine to coarse scales. This

is actually a very strong property of this scale-space

representation. Contrarily to approaches using the lin-

ear scale space or linear filtering, it allows a faithful ac-

count of the geometry at all scales. Figure 3 illustrates

this ability. This figure shows a needlework texture, in

which the smallest scales represent the fine net of the

needlework, while the large scales capture the bound-

aries of the flowers that are represented.

Next, the topographic map is invariant to any in-

creasing contrast change. In fact, it is even invariant to

any local contrast change as defined in (Caselles et al,

1999b). This property is of primary interest to define

texture analysis schemes that are robust to illumina-

tion changes. At this point, it is important to add that

1 http://www.cmla.ens-cachan.fr/Cmla/Megawave/
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(b) (c) (d)

(e) (f) (g)

(a)

Fig. 3 Representation of a texture image by its topographic map. (a) original texture image D41 (of size 640 × 640) taken from
Brodatz’s photo album (Brodatz, 1966); (b) all shapes boundaries; (c)-(g) shape boundaries at different scales, respectively for shapes
of areas in [1, 10], in [11, 125], in [126, 625], in [626, 3125], and in [3126, 409600].

while individual lines may not be strictly invariant to

illumination changes, marginals of the geometrical at-

tributes of lines are, as will be demonstrated by the

experimental section.

Last, the basic elements of the topographic map are

shapes obtained from connected components of the level

sets. Therefore, it provides a local representation of the

image. As we shall see, this locality, combined with the

fact that the topographic map is by nature a geometric

representation of images, enables us to develop analysis

schemes that are invariant to local geometrical distor-

tions.

Now, it remains to show that the set of level lines

contains pertinent information about the structure of

textures. This fact is suggested in the original paper on

the topographic map of images (Caselles et al, 1999a),

where it is stated that ”no matter how complicated the

patterns of the level lines may be, they reflect the struc-

ture of the texture”. A first attempt at using the topo-

graphic map to classify texture images has been pro-

posed in (Hamdan and Larson, 2002). In the context

of satellite imaging, scales computed from contrasted

level lines have proven useful to discriminate between

different textured areas (Luo et al, 2009). The use of

level lines in the context of texture synthesis has also

been investigated in (Gousseau, 2002). In the remain-

ing of this work, we show the usefulness of level lines

to index textures while being robust to viewpoints and

illumination changes.

3 Invariant Texture Descriptors

The goal of this section is to define texture features

that are both invariant to some geometric changes and

discriminative enough. These features will be obtained

from the shapes of the topographic map and it is there-

fore quite natural to consider the classical invariant

shape moments, whose definition is recalled in this sec-

tion. Observe that such shape moments are already

used for image registration in (Monasse, 1999) and tex-

ture recognition in (Hamdan and Larson, 2002). How-

ever, it is well known that these moments rapidly loose

robustness as their order increases, so that only a small

number of these can be used to analyze real world tex-

tures. In order to enrich the proposed analysis, we take

into account multi-scale shape dependencies on the to-

pographic map. The resulting features are invariant to
any local contrast change. Last, we suggest some con-

trast information that can be extracted from the shapes

and will allow to improve the discriminative power of

the proposed analysis scheme while still being invariant

to local affine contrast changes.

3.1 Marginals of invariant moments

In this section, we first give a short reminder on the in-

variant moments that can be extracted from the inertia

matrix of a shape, focusing on invariances to similarity

and affine transforms. More information on this classi-
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cal subject can be found e.g. in (Hu, 1962; Flusser and Suk,

1993; Liao and Pawlak, 1996; Zhang and Lu, 2004). Then,

we show how this moments can be applied to shapes of

the topographic map in order to perform locally invari-

ant texture analysis.

3.1.1 Invariant moments reminder

For p, q integer values, the two-dimensional (p+q)th or-

der central moment µpq(s) of a shape s ⊂ R
2 is defined

as

µpq(s) =

∫ ∫

s

(x − x)p(y − y)q dxdy, (1)

where (x, y) is the center of mass of the shape, i.e.

x =
1

µ00(s)

∫ ∫

s

x dxdy, and y =
1

µ00(s)

∫ ∫

s

y dxdy.

(2)

For the sake of simplicity, we will omit the variable s

in the following and write µpq instead of µpq(s). Note

that µ00 is the area of the shape and that all central

moments µpq are invariant to translations.

In order to achieve invariance to scale changes, it

is well known and easily shown that moments have to

be normalized in the following way

ηpq = µpq/µ
(p+q+2)/2
00 . (3)

As a consequence, any function of the normalized mo-

ments ηpq is invariant to both scale changes and trans-

lations of the shape s. Now, the sensitivity to noise

of these moments quickly increases as their order in-

creases. We observed experimentally that moments of

order bigger than two are not robust enough to faith-

fully account for texture characteristics, and we there-

fore limit the analysis to moments of order smaller than

2. Since η00 = 1 and η01 = η10 = 0, invariant features

are all obtained from the normalized inertia matrix

C =

(

η20 η11

η11 η02

)

. (4)

In order to achieve rotation invariance, only two fea-

tures remain, namely λ1 and λ2, the two eigenvalues of

C, with λ1 ≥ λ2. Observe that using these values boils

down to fit to the shape an ellipse with semi-major axis

2
√

λ1 and semi-minor axis 2
√

λ2. Note also that from

the seven similarity invariants proposed in the seminal

work by Hu (Hu, 1962), the only ones of order two are

λ1 +λ2 and (λ1 −λ2)
2. Now, any function of λ1 and λ2

would also be invariant to similarity. We chose to use

ǫ = λ2/λ1, (5)

and

κ =
1

4π
√

λ1λ2

, (6)

because these invariants have a clearer intuitive mean-

ing and a simpler range than Hu’s moments. The first

one lies between 0 and 1 and describes the elongation

or the flatness of the shape. It can be shown that the

second one also lies between 0 and 1. This invariant can

be seen as a measure of the compactness of the shape,

which reaches its maximum at ellipses. Indeed, κ is a

dimensionless ratio between the area of the shape (1

for a normalized shape) and the area of the best ellipse

fitting the shape. Note that this invariant is more ro-

bust than a measure relying on the boundary of the

shape, such as the isoperimetric ratio 4π
p2 (where p is

the perimeter of the shape). Next, observe that κ (but

not ǫ) is further invariant to affine transforms. In fact,

κ−2 is the first affine invariant of Flusser et al., defined

in (Flusser and Suk, 1993).

3.1.2 Texture features from second order moments

As a first feature to represent textures, we simply com-

pute the marginals over all shapes of the two features

κ and ǫ. More precisely, for each of these two features,

we compute a 1D-histogram by scanning all the shapes

of the topographic map. The resulting 1D-histograms

are invariant to any local contrast change, even decreas-

ing ones. Now, it is well known that contrast inversion

strongly affects the visual perception. For this reason,

we restrict the invariance to any local increasing con-

trast change (Caselles et al, 1999b) by splitting each of

the previous 1D-histograms in two histograms, one for

shapes originating from upper level sets (bright shapes)

and one for shapes originating from lower level sets

(dark shapes). The concatenations of the bright and

dark histograms are called respectively elongation his-

togram (EH) and compactness histogram (CpH).

Observe that since moments are individually nor-

malized for each shape, the resulting features are in-

variant to local geometrical changes (similarity for EH

and affinity for CpH). More precisely, applying a differ-

ent geometrical transform on each shape does not af-

fect the overall marginals of κ and ǫ. In particular, this

should allow to recognize texture that have undergone

non-rigid transforms.

3.2 Dependencies in the topographic map

As explained in the previous section, requiring geomet-

rical invariances and robustness restricts the number
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of possible invariant moments to two. In order to de-

fine new features from the topographic map without

going into complex geometrical descriptors relying e.g.

on the boundary of shapes, it is natural to take shape

dependencies into account. Indeed, invariant moment

marginals as defined in the previous section do not re-

flect the relative positions or inclusions between shapes.

Let us illustrate this point by a toy-example. Figure 4

shows two simple synthetic textures and their corre-

sponding topographic maps. These two images share

the same histograms EH and CpH, in spite of their

structural differences.

(a) Texture 1 (b) Texture 2

(c) Topographic map of (a) (d) Topographic map of (b)

Fig. 4 Toy example: two synthetic textures and their corre-
sponding topographic maps. Both images have the same shape
marginals but different tree structures, as shown in (c) and (d).

We claim that the topographic map, because of its
hierarchical structure, enables the extraction of shape

dependency in an easy and intuitive way. In this work,

we focus on children-parents relationships within the

tree, although other relationships could be interesting.

Definition (Ancestor family NM) Let s be a shape

of the image. Let sm be the m-th cascaded ancestor of

s, where m is an integer. That is, s1 is the parent shape

of s, s2 the parent shape of s1, etc. For M ≥ 1, the M th

ancestor family of s is defined as NM = {sm, 1 ≤ m ≤
M}.

Now, it is quite simple to extract affine invariant

information from these ancestor families. Recall that

µ00(s) is the area of the shape s. An affine transforma-

tion AX + b on s changes µ00(s) into det(A)µ00(s). As

a consequence, if we define for any shape s

α(s) =
µ00(s)

〈µ00(s′)〉s′∈NM

, (7)

where 〈·〉s′∈NM is the mean operator on NM , then α is

locally affine invariant, in the sense that for each shape

s, α(s) is only sensitive to transformations applied to its

M direct ancestors. Remark also that 0 < α < 1. Again,

the distribution of α is represented by a 1D-histogram,

split into dark and bright shapes. The corresponding

feature is called scale ratio histogram (SRH).

Remark Other features could be extracted from the

ancestor family, built e.g. from elongation or compact-

ness as defined in the previous section. However for the

purpose of texture indexing, and in particular for the

classification and retrieval tasks to be considered in the

experimental section, we did not find them to be overly

discriminative. These could however be useful for dif-

ferent tasks.

In what follows, we use two sets of texture features.

The first one, called SI, is made of the features that

are invariant to (local) similarity transforms, while the

second one, called AI, is made of the (locally) affine

invariant features. That is,

- SI = CpH+SRH+EH,

- AI = CpH+SRH,

where, as defined before, EH stands for elongation his-

togram, CpH for compactness histogram and SRH for
scale ratio histogram. These are geometric features, in

the sense that they are invariant to any (local) increas-

ing contrast change. We believe that these descriptors

illustrate the usefulness of the topographic map to ana-

lyze texture images, in particular allowing for relatively

easy handling of invariances.

3.3 Contrast information

The previous geometric features are invariant to any lo-

cal increasing contrast change, as defined in (Caselles et al,

1999a). This is a very strong invariance and we are not

aware of any texture analysis scheme having this prop-

erty. Now, we observed that this invariance is too strong

to efficiently recognize many texture classes. In this sec-

tion, we define contrast features that are invariant to

local affine contrast changes. This is coherent with the

contrast invariances considered in recent works to which

we will compare our results, such as (Lazebnik et al,

2005; Mellor et al, 2008; Xu et al, 2006).

We choose to compute intensity histograms after lo-

cal normalization by mean and variance on a neighbor-

hood. Such photometric normalization approaches are

relatively standard and have been used in local descrip-

tors, see (Obdrzálek and Matas, 2002; Schaffalitzky and Zisserman,

2001). Schaffalitzky et. al (Schaffalitzky and Zisserman,

2001) enable their texture descriptors to be invariant
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to local affine illumination changes by normalizing the

intensity of each point by the mean and standard de-

viation over a local adaptive neighborhood (a support

region with detected adaptive scale). We follow a sim-

ilar path, except that we rely on the topographic map

to define local neighborhoods.

More precisely, at each pixel x, a normalized grey

level value is computed as

γ(x) =
u(x) − means(x)(u)

√

vars(x)(u)
, (8)

where s(x) is the smallest shape of the topographic map

containing x, means(x)(u) and vars(x)(u) are respec-

tively the mean and the variance of u over s(x). This re-

sults in a contrast histogram (CtH), computed by scan-

ning all pixels of u. Thanks to the adopted normaliza-

tion, the resulting feature is invariant to local affine con-

trast changes, as the features in (Lazebnik et al, 2005;

Mellor et al, 2008; Xu et al, 2006).

One particularity of the proposed normalization (8)

is that the normalized value γ(x) at x will generally be

negative for shapes coming from an upper level set, and

positive for shapes coming from a lower level set (this

property is not systematic but very often satisfied on

natural images).

Observe that this last feature, CtH, is not invariant

to local similarity (or affine) transforms. Indeed, con-

trast histograms are computed on a pixel by pixel basis

which breaks the geometrical invariances we add pre-

served so far. Now, we observed that this feature is very

robust to geometrical distortions of the textures, even

in some extreme cases, as will be demonstrated by the

experimental section.

4 Experiments

In this part, we first explain in Section 4.1 how to com-

pare texture images using the features introduced in

the previous section. We then investigate in Section 4.2

the performances of the resulting comparison scheme by

confronting it with state-of-the-art texture descriptors.

More precisely, we follow the experimental protocols

presented in (Lazebnik et al, 2005) and reproduced in

(Mellor et al, 2008). These protocols consist of retrieval

and classification tasks. In order to meet the standards

of the current literature in texture indexing, these ex-

periments are performed on three different databases,

namely the classical Brodatz database, the UIUC data-

base (Lazebnik et al, 2005) and the more recent UMD

database (Xu et al, 2009). On these three databases,

the descriptors introduced in this paper show similar or

better results than the descriptors presented in (Lazebnik et al,

2005; Mellor et al, 2008; Xu et al, 2006). For the sake

of completeness, all the results of our retrieval experi-

ments are available at the Internet address (Xia, 2009).

We also investigate the scaling properties of the pro-

posed scheme on the reunion of the three aforemen-

tioned databases.

After these comparative experiments, we show in

Section 4.3 that the proposed texture indexing scheme

can strongly benefit from an unsupervised learning pro-

cedure. We show how the recognition performances are

enhanced through the use of manifold learning. Then,

Section 4.4 is devoted to a discussion on invariance to

resolution changes (illustrated by experiments on our

own high resolution texture database) as well as on the

trade-off between invariance and discriminative power.

Last, it is suggested in Section 4.6 that the features in-

troduced in this paper enable one to segment images

made of spatially varying textures regions.

For all experiments of this section, histograms EH,

CpH and SRH are computed over 25 bins for bright

shapes and 25 bins for dark shapes. Histogram CtH is

computed over 50 bins. The value of M used to compute

SRH is set to M = 3.

4.1 Descriptors comparison

Two texture samples u and v are compared through the

distribution of features, simply by comparing the corre-

sponding histograms. We choose to compare histograms

through Jeffrey divergence, a symmetric modification of

the Kullback-Leibler (K-L) divergence.

For two discrete distributions P = (p1, . . . pN ) and

Q = (q1, . . . qN ), the Jeffrey divergence between P and

Q is defined as

D(P, Q) =

N
∑

i=1

(pi log
pi

mi
+ qi log

qi

mi
) (9)

where mi = pi+qi

2 .

In our tests, probabilistic measures of similarities

such as Jeffrey divergence or χ2-divergence (used by

(Mellor et al, 2008)) yield better results than Lp-distances

(e.g. Manhattan, p = 1, or Euclidean, p = 2). Using
one-dimensional Earth mover’s distance between his-

tograms yields consequently poorer results, probably

due to a larger variability in the relative weight of bins

than in their positions.

We denote by Dk(u, v) the Jeffrey divergence be-

tween the kth histograms of the descriptors of u and

v (in this paper k ∈ {1, . . . 3} if we use the descriptor

AI+CtH and k ∈ {1, . . . 4} if we use SI+CtH). The fi-
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nal distance between u and v can be computed as a

weighted sum of the distances Dk(u, v),

D(u, v) =

∑K
k=1 ωkDk(u, v)

∑K
k=1 ωk

(10)

where ωk is the weight assigned to the kth feature. For

the sake of simplicity, in the following experiments the

weights ωk have been chosen as equal. These weights

could have been adapted by learning their respective

discriminative power on a training data set (see e.g.

(Zhang et al, 2007)).

4.2 Comparative evaluations

4.2.1 Experimental protocols

As explained before, we reproduce exactly the retrieval

and classification experiments described in the papers

of Lazebnik et al. (Lazebnik et al, 2005), Mellor et al.

(Mellor et al, 2008) and Xu et al. (Xu et al, 2009).

Recall that the approach of Lazebnik et al. relies

on local descriptors. These descriptors are computed

on a sparse set of affine invariant regions of interest.

This kind of approach is popular in computer vision and

known to be very efficient for object recognition. In the

work of Lazebnik et al., the best results are obtained

with the combination of two region detectors (Harris

and Laplacian) and two local descriptors (spin images

and RIFT descriptors). The corresponding texture de-

scription, which is denoted by (H+L)(S+R), is locally

invariant to affine transformations and locally robust to

affine contrast changes. The approach of Mellor et al.

relies on histograms of several invariant combinations

of linear filters. This description is locally invariant to

similarities and globally invariant to contrast changes.

Finally, the method developed by Xu et al. is based on a

multifractal description of textures. Their description is

invariant under many viewpoint changes and non-rigid

deformations, as well as local affine contrast changes.

In order to compare the performances of the de-

scriptors we introduced with the best results provided

by these papers, experiments are performed on three

different databases: the Brodatz database, the UIUC

database (Lazebnik et al, 2005) and UMD database (Xu et al,

2009). It is worth noticing that the corresponding re-

sults should be taken cautiously and not directly com-

pared with other retrieval or classification experiments

which do not follow exactly the same experimental pro-

tocols.

The retrieval experiment consists in using one

sample of the database as a query and retrieving the

Nr most similar samples. The average number of cor-

rectly retrieved samples (generally called recall) when

the query spans the whole database is drawn as a func-

tion of Nr.

For the classification experiment, Nt samples are

extracted from each class and used as a training set.

Each remaining sample in the database is then affected

to the class which contains the nearest training sam-

ple. For each value Nt, an average classification rate

is computed by using randomly selected training sets,

in order to eliminate the dependence of the results on

some particular sets.

4.2.2 Databases

The tree different databases used for the comparison

tasks are now briefly described.

– Brodatz Dataset: The Brodatz’s photo album (Brodatz,

1966) is a well known benchmark database used to

evaluate texture recognition algorithms. Although

it lacks some interclass variations, Lazebnik et al.

(Lazebnik et al, 2005) point out that this database

is a challenging platform for testing the discrimina-

tive power of texture descriptors, thanks to its vari-
ety of scales and geometric patterns. This database

contains 111 different texture images. Following the

protocols of (Lazebnik et al, 2005; Mellor et al, 2008),

we divide each of these images into 9 non overlap-

ping samples of resolution 215×215. As a result, the

complete dataset is composed of 111 texture classes,

each one being represented by 9 samples (all in all,

999 samples).

– UIUC Database: This texture database (Lazebnik et al,

2005) contains 25 texture classes, each one being

composed of 40 samples of size 640 × 480 (i.e. 1000

samples altogether). Inside each class, the samples

are subject to drastic viewpoint changes, contrast

changes or even non-rigid deformations.

– UMD Database: This database, introduced by Xu et

al (Xu et al, 2009) in order to test globally projec-

tive invariant features, is composed of 25 different

textures classes, each one being represented by 40

samples (1000 samples altogether). These samples

show strong viewpoint and scale changes, and sig-

nificant contrast differences. A significant propor-

tion of this database is made of textures consisting

in the repetition of objects. The resolution of these

images is 1280 × 960.



10

4.2.3 Performances on Brodatz

Figure 5 shows the retrieval and classification results

obtained with the different indexing schemes on the

Brodatz database.

In the retrieval experiment, shown on Figure 5 (a),

the number of retrieved samples Nr takes values from

8 to 50. Since each class contains 9 samples, a per-

fect indexing method should reach an average recall of

100% for Nr = 8. For this number of retrieved samples,

the affine invariant descriptor AI+CtH reaches 77.33%,

while the similarity invariant descriptor SI+CtH reaches

80.44%. These results slightly outperform those of Lazeb-

nik’s affine invariant texture descriptor (H+L)(R+S)

(76.97% recall) and Mellor’s similarity invariant texture

descriptors (77.65% recall). This trend remains valid

when Nr increases. It should be remarked that in order

to obtain such results on Brodatz, Lazebnik et al. add

a shape channel to their description, and lose thereby

their invariance to local affine changes.

Following (Lazebnik et al, 2005; Mellor et al, 2008),

classification rates are estimated by averaging the re-

sults on randomly selected training sets. When the num-

ber of training samples is 3 for each class, the aver-

age classification rate reaches 88.31% for AI+CtH and

90.66% for SI+CtH. For the same level of invariance,

these results are equivalent to those reported by Lazeb-

nik et al. (88.15%) and Mellor et al. (89.71% for their

similarity invariant descriptor) with the same protocol.

Now, as observed in (Mellor et al, 2008), some im-

ages of the original Brodatz database represent the same

texture at different scales. Nevertheless, these images

are considered as different textures by the experimental

protocol, which penalizes invariant indexing schemes. In

the same way, we should keep in mind that texture sam-

ples are created by cutting each texture of the Brodatz

database into pieces. As a consequence, the resulting

dataset lacks of viewpoint and scale changes. Conse-

quently, a well chosen non-invariant indexing scheme

should naturally provide better results on this database.

In order to check this statement and for the sake of com-

pleteness, we tried to add some non-invariant features

to our invariant descriptors. For this purpose, we added

to the SI+CtH descriptor the histogram of shapes ar-

eas and the histogram of shapes orientations (the ori-

entation being defined as the direction of the princi-

pal eigenvector of the inertia matrix (4)). The corre-

sponding retrieval and classification results are shown

in Figures 5 (a) and (b). Observe that, as it could be

expected, all the results are clearly improved by adding

these features.

4.2.4 Comparisons on UIUC Dataset

Figures 6 (a) and (b) show the retrieval and classifi-

cation results of the AI+CtH and SI+CtH descriptors

on the UIUC database. For the same level of invari-

ance, these results are better than those reported in

(Lazebnik et al, 2005) and (Mellor et al, 2008).

Let us observe that we were able to obtain better

results than those reported in Figure 6 by weighting the

contribution of each shape in the descriptors by a power

of its area. This trick allows to give more weight to large

shapes than to small ones, and hence to take more into

account the geometrical aspect of textures. Now, using

this trick on the Brodatz database yields a decrease of

performances. Therefore, and since we did not find an

automatic way to tune this weighting, we chose not to
develop this possibility in the present study.

It is also interesting to note that local similarity in-

variance is enough to correctly retrieve texture classes

with strong viewpoint variations. This property is il-

lustrated by Figure 7, which shows the 39 first sam-

ples retrieved by SI+CtH when the query is the sample

T15 01. This descriptor retrieves 38 samples of the class

perfectly, despite the strong viewpoint changes between

different samples. This is due both to the fact that three

out of four features of SI+CtH are locally affine invari-

ant, as well as to the fact that, as demonstrated by the

experiments in Mellor et al., invariance to local sim-

ilarity already enables a good handling of viewpoints

changes. In fact, local similarity invariance yields better

results than local affinity invariance on this database,

as will be further discussed in Section 4.4.2.

Another specific retrieval result is shown on Figure 8

for the texture class T25 of the UIUC database. This

class, which represents a plaid under different view-

points, contains many distortions and non-rigid defor-

mations. Nevertheless, the SI+CtH descriptor retrieves

the samples of this class quite well (the average retrieval

rate on the whole class reaches 65.26% for 39 retrieved

samples). It is also worth noting that 6 out of the 8

errors (highlighted in red on Figure 8) come from the

same class T03. The retrieval of these samples is false

but consistent. An example of a texture yielding a bad

retrieval rate is shown in Figure 9. The corresponding

texture class exhibits both blur and a very strong vari-

ability.

For classification of the UIUC database, the descrip-

tors AI+CtH and SI+CtH also show better performances

than the methods of Lazebnik et al. (Lazebnik et al,

2005) and Mellor et al. (Mellor et al, 2008). More pre-

cisely, the classification rate reached by AI+CtH is 66.56%

and the one reached by SI+CtH is 70.69% when only

one sample is used. These numbers should be compared
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(a) (b)

Fig. 5 Average retrieval (a) and classification (b) performances of different texture indexing schemes on the Brodatz dataset. The
blue curves correspond to the performances of the descriptors SI+CtH and AI+CtH (recall that SI stands for similarity invariant
local features, AI stands for affine invariant local features and CtH for locally affine invariant contrast histogram; all these features
are described in Section 3.2), while the red curves show the performances of (Lazebnik et al, 2005) and (Mellor et al, 2008). The
performance of a non-invariant indexing scheme is also shown for the sake of completeness.

(a) (b)

Fig. 6 Average retrieval (a) and classification (b) performances of different texture indexing schemes on the UIUC database. The
blue curves correspond to the performances of the descriptors SI+CtH and AI+CtH (recall that SI stands for similarity invariant local
features, AI stands for affine invariant local features and CtH for locally affine invariant contrast histogram; all these features are
described in Section 3.2), while the red curves show the performances of (Lazebnik et al, 2005) and (Mellor et al, 2008).

to the rates of 62.15% and 67.10% achieved respectively

in (Lazebnik et al, 2005) and (Mellor et al, 2008). An

interesting point is that the performances of our de-

scriptors decrease on texture classes containing blur.

The descriptors provided in the work of Lazebnik et al.

(Lazebnik et al, 2005) appear to be more robust to blur

and perform better on these specific classes. It is worth

noticing that similar findings have been reported on re-

gion detectors by Mikolajczyk et al. (Mikolajczyk et al,

2005), who observed that MSER (Matas et al, 2002), a

local region detector based on level sets, is more sen-

sitive to blur than other region detectors, e.g. Harris-

affine and Hessian-affine regions. This may be due to

the use of the linear scale space in the process of key-

points extraction and scale computation for such de-

scriptors.

4.2.5 Comparisons on UMD Database

Using the same strategy as before, Figure 10 shows the

retrieval and classification performances of the descrip-

tors AI+CtH and SI+CtH, along with the results ob-

tained by the method of Xu (Xu et al, 2006), as well

as those obtained on this database with the method of

Lazebnik (Lazebnik et al, 2005) as reported in (Xu et al,

2006). Observe that our indexing scheme is particularly

well adapted to this database. Indeed, the curves of Fig-

ure 10 show that both SI+CtH and AI+CtH descriptors
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Fig. 7 One of the best retrieval results on the UIUC database, obtained on the texture class T15 using the SI+CtH descriptor
(Similarity Invariant features + Contrast Histogram). The query image is in first position and the 39 most similar samples follow,
ordered according to their matching scores. It is worth noticing that no learning is involved in these experiments. Retrieval results for
all texture samples are available at the address (Xia, 2009).

perform significantly better than other methods. This

may be due to the fact that this representation relies on

geometry and is thereby well adapted to highly resolved
and structured textures. Figure 11 shows two specific

retrieval results, an almost perfect result on a texture

made of apple stacks, as well as a result on a texture

made of bamboos, for which the retrieval rate is roughly

the one we get on the whole database. The AI+CtH and

SI+CtH descriptors deal quite well with large scale and

illumination changes on the fruit texture. Concerning

the bamboos texture, one observes that textures RT21

and RT20 (corn leaves) are visually very similar and

relatively hard to discriminate.

Two conclusions arise after the comparison of the

descriptors proposed in this paper with the approaches

of (Lazebnik et al, 2005; Mellor et al, 2008; Xu et al,

2006) on three different texture databases. First, both

AI+CtH and SI+CtH are efficient for texture retrieval

and classification. These descriptors show robust and

consistent results on all three datasets, outperforming

state of the art approaches. Second, similarity invariant

descriptors always perform better than affine invariant

descriptors on all three databases. This aspect will be

discussed in the last part of the section.

It is also worth noting that the texture features

that we introduced are relatively compact in size. More

precisely, each texture sample is represented by 4 his-

tograms of 50 bins each, i.e. 200 values altogether. This

size is comparable to that of Xu’s descriptors (Xu et al,

2006), which use 78 values for each texture sample. In

comparison, Lazebnik et al. (Lazebnik et al, 2005) use

between 1200 and 4000 values for each sample (40 clus-

ters of 32 or 100-dimensional descriptors), while Mellor

et al. (Mellor et al, 2008) represent each sample by a
histogram of 4096 bins.

4.3 Improving the performances through geodesic

distances

In Section 4.2, we compared the texture indexing scheme

proposed in this paper with three recent sets of in-

variant descriptors. We therefore followed a prescribed
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Fig. 8 Retrieval result obtained on the texture class T25 of the UIUC database with the descriptor SI+CtH (Similarity Invariant

features + Contrast Histogram). The query image is in first position and the 39 most similar samples follow, ordered according to their
matching scores. Retrieval errors are indicated in red. It is worth noticing that no learning is involved in these experiments. Retrieval
results for all texture samples are available at the address (Xia, 2009).

protocol for classification relying on nearest neighbors.

Usually, however, classification performances can ben-

efit from some more powerful classifiers such as sup-

port vector machine (SVM) or from some classification

schemes such as Adaboost. For example, Zhang et al.

(Zhang et al, 2007) confirmed that using an SVM clas-

sifier instead of the nearest-neighbor classifier improves

the classification performance of a bag-of-features rep-

resentation.

In this section, we propose a very simple unsuper-

vised way to improve recognition performances. Tex-

tures are considered as points lying on some intrinsic

manifold obtained by the classical Isomap algorithm

(Tenenbaum et al, 2000). Distances between these points

are then computed as geodesics on the manifold. Since

we are not concerned here with dimension reduction,

we do not need to compute the manifold explicitly and

compute distances between textures as follows. We first

compute the pairwise distance matrix using Jeffrey di-

vergence as in the previous sections. We then construct

the k-nearest neighbor graph of the points (two vertices

are connected if one is among the k-nearest neighbors

of the other). The geodesic distance between two points

is then the shortest path between them on the graph.

This shortest path may for instance be computed us-

ing Floyd algorithm (Floyd, 1962). Replacing Jeffrey

divergence by this geodesic distance yields a very clear

improvement of the retrieval and classification perfor-

mances, especially for the retrieval task, as can be ob-

served in Figure 12. In these experiments, a value of

k = 10 has been used for the number of neighbors.

4.4 On invariance and discriminative power

4.4.1 Invariance to resolution changes

It was shown in section 3 that descriptors SI and AI

are invariant to, respectively, local similarities and lo-

cal affine transforms. In particular, the invariance to

scale changes was ensured by the use of normalized mo-

ments computed on the topographic map, which do not

change under a perfect, theoretical scale change. How-
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Fig. 9 A “bad” retrieval result obtained on the UIUC database with the descriptor SI+CtH (Similarity Invariant features + Contrast

Histogram). The query image is in first position and the 39 most similar samples follow, ordered according to their matching scores.
This result corresponds to the class T19. The corresponding texture class exhibits both blur and a very strong variability. Observe
also that one half of the retrieval errors (indicated in red) are from the texture class T17, which at some scales looks similar to the
class T19.

(a) (b)

Fig. 10 Average retrieval (a) and classification (b) performances of different texture indexing schemes on UMD database (Xu et al,
2009). The blue curves correspond to the performances of the descriptors SI+CtH and AI+CtH (recall that SI stands for similarity
invariant local features, AI stands for affine invariant local features and CtH for locally affine invariant contrast histogram; all these
features are described in Section 3.2), while the red curves show the performances of (Xu et al, 2009) on this database, as well as those
using the method from (Lazebnik et al, 2005) as reported by (Xu et al, 2009).
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(a)

(b)

Fig. 11 Two retrieval results, respectively on (a) class RT9 and (b) class RT21 of UMD database, using the descriptor SI+CtH
(Similarity Invariant features + Contrast Histogram). The query image is in first position and the 39 most similar samples are ordered
according to their matching scores. Both examples correspond to non-planar textures. Observe that all errors for the class RT21
(bamboos) come from the class RT20 (corn leaves), which is visually quite similar to RT21. Again, no learning is involved in these
experiments. Retrieval results for all texture samples are available at the address (Xia, 2009).
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(a) (b)

(c) (d)

Fig. 12 Improving performances through geodesic distances Average retrieval (a) and classification (b) performances of the
descriptor SI+CtH (Similarity Invariant features + Contrast Histogram) on UIUC database, with (red curve) and without (blue
curve) geodesic distances. Figures (c) and (d) : same layout for the UMD database.

ever, in practice, scale changes on images often imply

resolution changes. These changes can affect texture in-

dexing methods, as investigated in (Luo et al, 2008).

Such transformations involve blur, which affects the to-

pographic map of images. In order to check the robust-

ness of the descriptors to such changes, we set up the

following experiment. Starting from 20 highly resolved

texture images (see Figure 13), we build a database of

20 texture classes. In each class, the samples are gener-

ated by zooming each original texture image by a factor

t, using bilinear interpolation. Here t takes its values

among T as follows,

T = {0.125, 0.15, 0.175, 0.2, 0.225, 0.25, 0.3,

0.35, 0.4, 0.45, 0.5, 0.6, 0.7, 0.8, 0.9}.

As a consequence, the whole database contains 20

classes of 16 samples, i.e. 320 texture samples. The size

of the original images being 3072 × 2040, the smallest

image size is 384 × 255.

Figure 14 shows the histograms SRH, CpH, EH and

CtH of the 15-th texture shown in Figure 13 (peb-

ble beach) for different zoom factors t. Observe that

the curves coincide as long as the zoom factor remains

larger than 0.5 (blue curves). When this factor decreases,

the histograms move away from the original ones (for

t = 1) but remain close to it. Similar behaviors are ob-

served on other textures. This proves empirically the

robustness of these features to real resolution changes

with a zoom factor larger than .125.

In order to test the discriminative power of these

features within the framework of resolution changes, we

perform a simple retrieval experiment on this multires-

olution database. For each zoom value t in T , and each

texture class i, let M i
t be the subset of the class made of

the images having a resolution larger than t. A sample

of resolution t and class i being given, its retrieval rate

is defined as the proportion of well retrieved samples in

M i
t . As usual, the final retrieval rate r(t) is the mean of
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Fig. 13 Set of 3072 × 2040 texture images used to compute a multiresolution database. For each image, 15 sam-
ples are created by sub-sampling the original image with a zoom factor t taking its value in the set T =
{0.125, 0.15, 0.175, 0.2, 0.225, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.6, 0.7, 0.8, 0.9}.

the retrieval rates over all samples of resolution t. Fig-

ure 15 shows the curves of r(t) when t varies from 0.125

to 1 and when using different texture descriptors. Ob-

serve that up to a scale factor of 4, the retrieval results

are perfect for SI+CtH.

Fig. 15 Average retrieval performances of the descriptors
SI+CtH and AI+CtH (recall that SI stands for similarity in-
variant local features, AI stands for affine invariant local fea-
tures and CtH for locally affine invariant contrast histogram; all
these features are described in Section 3.2) on the multiresolution
database presented in section 4.4.1.

4.4.2 Local invariance vs discriminative power

Following the experiments of section 4.2, the question

of the level of invariance required to index a particu-

lar database arises naturally. We saw on Brodatz that

removing invariance to scale and orientation greatly im-

proved the results, which seems to be coherent with the

fact that this database does not present many geometric

distortions. Of course, the best level of invariance de-

pends on the database. On UIUC and UMD databases,

all descriptors invariant to local similarity changes show

significantly better results than locally affine invari-

ant descriptors, which confirms the results presented

in (Mellor et al, 2008) and (Zhang et al, 2007). More-

over, we observe that the advantage of similarity in-

variance on affine invariance remains true if we restrict

ourselves to textures containing strong distortions. This

can be surprising since these two databases contain

classes with strong non-rigid deformations. We could

theoretically expect that local affine invariance, or even

local projective invariance would be needed to index

such classes correctly (recall that UMD database, for

instance, has been built on purpose to test projective

invariant descriptors). The fact that features that are

only invariant to local similarities show the best results

despite these variations can only be explained by a bet-

ter discriminative power. In other words, there is a nat-

ural trade-off between the level of invariance of a tex-

ture description and the discriminative power of this

description.
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(a) (b)

(c) (d)

Fig. 14 Histograms of the pebble beach texture, the 15th texture image shown in Fig. 13: (a) Scale-ratio Histogram (SRH), (b)
Elongation Histogram (EH), (c) Compactness Histogram (CpH) and (d) Contrast Histogram (CtH), for different zoom factors t.

Observe that the question of the best level of invari-

ance needed for indexing is also addressed in (Zhang et al,

2007; Varma and Ray, 2007), where learning is used to

estimate the optimal weights of the different descrip-

tors.

These remarks also lead to question the need for fur-

ther invariance in texture indexing. The previous obser-

vations suggest that achieving invariance to local sim-

ilarities may be enough to account for viewpoint vari-

ations or non-rigid deformations. Furthermore, to the

best of our knowledge, there exists no texture database

in the literature on which complete local affine invari-

ance is needed (in the sense that it yields better results

than weaker invariances). Without such a database, it

seems vain to try to develop features with more sophis-

ticated invariances.

4.5 Scaling behavior of the analysis scheme

In this section, we briefly investigate how the proposed

texture analysis scheme behaves when the numbers of

texture classes and samples are increased. For this pur-

pose, we simply build up a single database from the

three texture databases considered so far (UIUC, UMD

and Brodatz) therefore reaching 161 classes and 2999

samples.

We repeat the retrieval and classification experi-

ments described in Section 4.2.1 for each sample of the

whole Brodatz+UIUC+UMD database. Observe that

in this configuration, classification and retrieval become

noticeably more difficult : for example, for each query

of the UIUC database, only 39 samples among 2999

belongs to the same class, instead of 39 among 1000

in the experiments of Section 4.2.1. Figure 16 shows

the retrieval and classification rates averaged over all

Brodatz samples, while Figure 17 shows the retrieval

and classification rates averaged respectively over all

UIUC samples, or over all UMD samples. Observe that

although the performances decrease when the numbers

of samples and classes increase, the proposed texture

analysis scheme scales very well. In particular, it per-

forms better on this large combined database of 2999

samples than Lazebnik’s descriptors on the single UIUC
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database (1000 samples), and its performances are com-

parable to those of Xu’s descriptors on the single UMD

database (1000 samples).

4.6 A segmentation experiment

Considering that the texture features introduced in Sec-

tion 3 are efficient for classification tasks, it is natural

to investigate their ability to segment texture images.

Observe that the topographic map has a scale-space

structure in which no regularization of the geometry is

involved. This property makes it particularly interest-

ing in the context of image segmentation. In this para-

graph, we present a simple segmentation experiment, in

which each pixel x is described by the features of s(x),

the smallest shape of the topographic map containing

x. Five features are used: the contrast information of

s(x), defined in Section 3.3, the scale ratio of s(x) de-

fined in Section 3.2, the orientation of s(x), as well as

its elongation and compactness, both defined in Sec-

tion 3.1. A recent active contour model (Houhou et al,

2008) is then applied to the resulting vectorial image.

Two examples of the resulting segmentation scheme are

displayed in Figure 18. The first one is composed of

two different textures, which have been radiometrically

corrected in order to share the same global mean and

standard deviation. The second one is a photograph of a

corn field. Because of the perspective, the corn texture

is present at different scales. The segmentation results

obtained are shown on the right column of the figure.

Although this approach show promising results, it is

important to notice that those results highly depend

on the parameters of the method (mostly the regular-

ization parameter λ in the energy and the initial con-

tour), as it is usual with active contour models. These
results could certainly benefit from recent developments

in global minimization for active contour models such

as those of (Bresson et al, 2007).

5 Conclusion

In this paper, it is shown that the topographic map is

an efficient and intuitive tool to analyze texture images.

Geometrical features are computed from the level sets

of images, enabling state-of-the-art retrieval and clas-

sification results on challenging databases. In particu-

lar, this shows that morphological, granulometry-like

indexing methods can deal with complex, potentially

highly resolved texture images, even in the case of non-

rigid transforms. To the best of our knowledge, such

invariant analysis were only reported in the literature

Fig. 18 Top: Image composed of two textures (taken from the
UIUC database), radiometrically normalized to share the same
mean and standard derivation. On the right, segmentation result
using the active contour model described in (Houhou et al, 2008)
and different features described in this paper. Bottom: same
experiment with a photograph of a corn field.

using wavelet-like features, local descriptors or pixel-

based features.

This work opens several perspectives. First, the hi-

erarchical structure of the topographic map is only par-

tially accounted for in the present work. It is of interest

to further investigate the descriptive power of statistics

on the tree of level lines, making use of specific neigh-

borhoods and higher dependencies in the tree, possibly

using probabilistic graphical models. One difficulty is

to achieve this while preserving radiometric and geo-

metric invariances. Next, and going beyond local con-

trast invariances, one could study the behavior of level

line statistics under illumination changes in greater de-

tails. We show in this paper that lines statistics yield

efficient retrieval results on databases with varying il-

lumination conditions. The next step could be either

to explicitly model level lines variations or to investi-

gate the ability of the topographic map to learn the

effects of illumination changes using databases such as

CUReT (Dana et al, 1999). Other possible applications

of the proposed framework include the registration of

non-rigid objects, shape from texture or material recog-

nition. Another possible extension is the design of lo-

cally invariant morphological filters, that could be de-

signed by pruning the topographic map depending on

features values.
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(a) (b)

Fig. 16 In red, average retrieval (a) and classification (b) performances of Brodatz samples in the entire Brodatz+UIUC+UMD
database, using SI+CtH (recall that SI stands for similarity invariant local features and CtH for locally affine invariant contrast his-
togram; all these features are described in Section 3.2). In blue, for comparison, average retrieval (a) and classification (b) performances
of the same samples among the isolated Brodatz database.

(a) (b)

Fig. 17 In red, average retrieval (a) and classification (b) performances of UIUC (resp. UMD) samples in the entire Bro-
datz+UIUC+UMD database, using SI+CtH (recall that SI stands for similarity invariant local features and CtH for locally affine
invariant contrast histogram; all these features are described in Section 3.2). In blue, for comparison, average retrieval (a) and classi-
fication (b) performances of the same samples among the isolated UIUC (resp. UMD) database.
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