
HAL Id: hal-00354781
https://hal.science/hal-00354781

Submitted on 21 Jan 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enterprise model verification and validation: an
approach

Vincent Chapurlat, Bernard Kamsu-Foguem, François Prunet

To cite this version:
Vincent Chapurlat, Bernard Kamsu-Foguem, François Prunet. Enterprise model verifica-
tion and validation: an approach. Annual Reviews in Control, 2003, 27 (2), pp.185-197.
�10.1016/j.arcontrol.2003.08.001�. �hal-00354781�

https://hal.science/hal-00354781
https://hal.archives-ouvertes.fr

page 1/16

ENTERPRISE MODEL VERIFICATION AND VALIDATION:
AN APPROACH

V.Chapurlat*, B.Kamsu-Foguem*, F.Prunet**

* LGI2P - Laboratoire de Génie Informatique et d'Ingénierie de Production
site EERIE de l’Ecole des Mines d’Alès - Parc Scientifique Georges Besse - F30035 Nîmes cedex 1

Tel : (+33) 466 387 065 - Fax : (+33) 466 387 074
Mél : Vincent.Chapurlat@.ema.fr

** LIRMM - Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier
161, rue ADA, 34192 Montpellier cedex 5

Mél : prunet@lirmm

Abstract: This article presents a Verification and Validation approach which is used
here in order to complete the classical tool box the industrial user may utilize in
Enterprise Modeling and Integration domain. This approach, which has been defined
independently from any application domain is based on several formal concepts and
tools presented in this paper. These concepts are property concepts, property reference
matrix, properties graphs, enterprise modeling domain ontology, conceptual graphs and
formal reasoning mechanisms.

Keywords: Enterprise Modeling, Verification, Validation, Proof

1. Introduction

Enterprise Modeling and Integration is now considered as an important research and application domain by
industrial users. They dispose of several approaches (AMICE 1993, Loucopoulos 1995, Vernadat 1997, Crestani
1997, Bernus 1998, Sheer 1998, Menzel 1998, GERAM 1999, Tissot 1999, Vernadat 1999, Chen 2001, Chorafas
2002, Revelle 2002, Chen 2002) consisting of modeling languages, norms, architecture reference models and
derivative tools allowing them to describe their processes, their information systems, their knowledge and know-
how, to better understand and to test the organization behavior by using for example simulation mechanisms, to
communicate more efficiently in the enterprise, to exchange information and data without loss of sense with each
other partners, to decide several system and organization improvements and so on.

Nevertheless, the user can doubt of the amount of confidence he can have in the different built models such as
processes models or human resources ability models for example. Indeed, before considering a model is well
suited to be use, this one must be bound by some phases during which it has to be verified (« is the model
correctly built ? ») and to be validated (« is the model corresponds accurately to the reality ? is it the good one
taking into account the needs and the context ? ») summarized Figure 1. Results of this global step of verification
/ validation (V&V) depends on two causes. First, the previous modeling step induces several problems on
account of loss quality of the model which have to be taken into account during verification and validation:

• The user may not be clear in one’s mind and his point of view may evolve during modeling process,

• Modeling hypothesis (temporal, behavioral rules and so on) limit model’s expressiveness and accuracy. They
are caused by system typology, system complexity level, by modeling concepts or formalisms which may be
restricted to particular kinds of systems,

• The verification and validation need to highlight a user’s defined analysis perspective (performance, temporal
independence, functionalities, reliability and so on). The model may be unsuitable to respond correctly to
some of the possible analysis perspectives,

• It stay often difficult to take into account the modeled system environment, its own dynamics, the different
interaction between components and possible unforeseen events which may be the origin of some emerging
and unexpected phenomena,

• Furthermore, the lack of knowledge and the oversight about particular characteristics, data and information

page 2/16

from the system itself or from its environment must limit again the model V&V process.

What comes out of these causes is that a part of the knowledge needed for assuming the quality and the
relevance of a model (from a static point of view in a first way then taking into account dynamic evolution rules)
remains informal and misunderstands during modeling process.

Identify Causes

n

Verification
/

 Validation

Verified
Validated

Model

Formal
analysis

Dynamic
analysis

Environment

System

Results/Errors

Results/Errors
Static

analysis

Model

- Modelling languages
- Concepts and constructs

-Norms
- Experiments

Results/Errors

Modelling

Properties

Basic errors
(syntactic, semantic)

Behavioural errors

Find other
Problems ?

Model Improvement

Model Use

Model must be used for
decision process, system
improvement,
communicating process, …

Figure 1 : A model life cycle vision highlighting verification and validation phases

This lack of knowledge may be justified by taking into account the user’s behavior during modeling step. He can
objectively rule out some information, data and events because of their nature, the time needed to describe them,
their relevance considering his own point of view and so on. He can also forgot them because of its limited
vision of the system or the different situations in which this system must evolve. It may be then interesting to
develop some mechanisms allowing us to show the user the relevance of some of these information and data
because of their possible interaction with the information and data gathered in the model it self in order to
complete and/or to improve this model.

Second, each V&V phases shown Figure 1 set to work concepts and tools allowing syntactic checking (not
considered here), semantic checking and behavioral analysis which use mainly simulation, emulation, human
expertise of model execution results in particular in enterprise modeling and integration domain. The analysis
results must be altogether questionable considering several points such as formalization and detail levels of the
model for example. The way consisting on developing some other kind of tools allowing us to employ formal
properties proof mechanisms seems to be interesting to use in this domain such as proposed in (Van der Aalst
2000, Lemboley 2001, Covès 2000).

So, the research results presented in this paper intent to cover the V&V step by using a formal verification and
validation approach allowing to improve user’s knowledge about its model and to manage it in order to establish
the relevance and the suitability of a model. The modeling and model/system improvements steps are not
considered in this article.

page 3/16

2. Verification / Validation step approach

The proposed approach is based on several concepts detailed in the following. These concepts have been defined
independently from a given application domain and, as we intent to show in the example at the end of this
article, they have been specialized and putted into concrete form in Enterprise modeling domain. These elements
shown in Figure 2 are:

• The property model is the base of a formal modeling language allowing the user to specify a particular
knowledge he wants to prove on the model in order to verify and to validate it.

• A domain ontology (Uschold 1996, Fox 1994) describes a given whole application domain by defining the
different concepts and relations between these concepts which are necessary.

• This ontology is then translated by using formal rules into two lattices needed for the V&V chosen tool based
on conceptual graphs by splitting up concepts and relations.

• In same time, this ontology allows us to define a set of generic properties associated to the chosen domain and
are gathered into a data base named Reference matrix. These properties cannot be proved directly on the
model. Their goal is to guide the user, to remember him some crucial information which may be forgotten or
misunderstand and to help him to specify completely the relevant and useful properties the model must
respect.

• These generic properties will be interpreted, instantiated or translated respecting the model and will be
gathered in the Property Graph. This one represents all the properties which have to be proven on the model.

• Some reasoning mechanisms have been developed taking into account Conceptual Graphs theory in order to
prove the proposed properties on the model and to make emerging when it is possible some additional
knowledge.

��������	
�
����
���

����

������	
���
�	�����������	
�����
�����

�����
�	�����
�
����
��

���
����

��	���

�����������
�

���
��������
�

���
����

��� �	�
������

�	���
����

���
����
�
���
�

���
����

!"�������
!�
	��	���

!���	�������

�#
��
������
�

��$�

!��	�����
�%	�

�	����

&�
��
��
����

���
���

�	����
����

�	����
��������

!����'��&'$�

����	
���
�

������	
�(�
�������"����

������	
�)��������

���
	��	�
��������

�

���
�&����

���

�	�
�����
�������� �	��
���

&'$�
(����'��

������	
���������'��

������	
��� �	��
��������

�����
���

�	�
�������������
�

�	�
�����&�#	�
������

������	
�(�
���"��

&'$�
���'���"��

�	�
�����	

(����

���

&'$�
�	�
����

���	��
�	�

��������'�� &'$�
(����'�������'��

����������

����

	�������

*+���������+���������
*���
��
�+���
+
���
	�

�
*+��	��+���
++����	����
�
*+�	���	
�+�����

������	��������	�
����
�������
�������	��

���	������

����	�
����
���

��������
��������������	�

������	��
������	���

���������

 �����

����

������������
��
��	���
���	���

InputOutput

T

Fact
Type

T2

Equal(p,p)

Math(p,p)

Sup(p,p)

Transform(p,p)Follow(p,p)

SupE(p,p)SupS(p,p)

Activity

Continuous Discrete

�������	��������

��������
���
!�����
���
��"

!���	�����

���
��

���	��������
���	������	���
�����
���

��������
���
!�����
���
��"

������

���������

Figure 2 : Global approach and components

page 4/16

3. Property model

A property may be defined in the literature with several points of view (Feliot 2000, Meinadier, 1998, Thome,
1993, Manna 1982, Henzinger 1994, Manna 1982, Manna 1990). We will consider in the following the
definition given by (Lamine 2001): a property translates an expectation, a requirement (behavioral, functional,
structural or organic, dependent or not of time) or an objective (performance, safety, reliability and so on)
which have to be respected, strictly or with a reliable level being enough by a model.

3.1. Informal model property

The proposed model property we will use in the following is based on a causal relation named R between two
sets named C (the set of causes) and E (the set of effects). Each of these sets is composed by a collection of
objects called facts issued directly from the model. As proposed by (Pearl 2000, Pearl 1999, Sowa 2000), the
causal relation R indicates how occurrence of elements of E depends on the occurrence or on the interaction
between elements of C. The property may be verified by computing in which cases a condition on the causes and
the result on the effects are true by respecting temporal hypothesis and causal relation typology between causes
and effects. Before presenting the formal model, it is necessary to define two particular concepts named facts and
granularity.

3.2. Facts

Facts come from several origins:

• From the modeling language concepts (entities of modeling such as process, activities or resources) and
relations between these entities (such as the link between activities and resources for example) as the
modeling language evolution laws and rules. They are called handle functions. For example, the stateOf(A,t)
handling function allows to define what is the state of the Activity A in time t.

• From the modeled system context and application domain. This needs to define a domain ontology allowing
us to define the existing concepts, relations and possible situations in the domain which are not completely or
already described into the model. All this added knowledge is then translated into new facts allowing us to
merge it with the information coming from the model. They are called modeling variables and modeling
parameters. It may represent for example the external temperature of the modeled system which is an input of
the model but which has been forgotten during modeling step. It may also represent some external events from
the environment or internal events such as data evolution.

• From the model itself. This needs to extract all the information contained in the model as new modeling
variables and modeling parameters. It may be for example a modeling parameter containing the maximum
level of water in a tank or a modeling variable containing a computerized data such as production rates or the
input model vector state at each moment.

• From other existing properties in which the user can trust at a given moment: these properties are then
considered by new facts as properties. This may be for example a property specifying what is the speed
limitation taking into account some constraints at each moment.

At last, fact may be valued quantitatively or qualitatively (a property is true, a data is set to '30' or to ‘good’).
Most formally, the set of facts F is defined as follows:

F = MV ∪ MP ∪ HF ∪ P

where MV, MP, PR and P gather four kinds of facts :

• MV is the set of facts named modeling variables : each ones evolves within the modeled system:

MV={var / var = < name1, type2, value, Def3 >}

• MP is the set of facts named modeling parameters : they described data which have constant values:

MP={par / par = <name, type, value>}

• HF is the set of facts named handle functions. They allow to manipulate all the facts and then to characterize

1 name is a tag defining each fact on an unique manner
2 type is the fact’s type: �, �, Boolean, Character or structured type
3 def is the fact’s definition domain (Def ⊂ Type)

page 5/16

the model or the environment dynamic and structure. For example, if the model is a transition model such as a
Petri Net, it exists function allowing to describe net structure (before(place), follow(place), weight(arc),
tempo(transition) and so on), to describe marking evolution (mark(net,t), fire(transition,t) and so on):

HF={hf / hf = < name, paramaters4, type >}

• P is the set of user-defined properties

3.3. Granularity

The property concerns a given and unique model. It is an interpretation of some user’s requests and must be then
proven only on this model However, establishing a complex system model need often to define a hierarchy of
description by using decomposition or substitution rules. User may then define system’s model(s) then
sub(system(s) model(s) and so on in order to manage more efficiently the system complexity. In an other hand,
in user’s minds there exist some properties which may be assignable to only one detail level of the global system
description but the interaction between these properties of a given level could be at the origin of the appearance
(that is to say the emergence) of some new properties of a lower level. The granularity G is then defined in order
either to allow the user to respect the different detail levels which are necessary to manage the system
description, whether to allow this user to choose a particular sets of own detail levels. A granularity G is then the
resulting set of chosen detail levels, called degrees.

The example presented Figure 3 shows a granularity allowing us to define four levels of decision from strategic
one to execution one. Strategic level is the needed set of activities and processes allowing to define or to better
understand enterprise finality and its objectives. Tactic level has to take into account some strategic decision and
to define piloting orders and planning allowing the organization to reach these objectives. Operational and
execution levels have then to schedule different production processes, to define stocks size, to manage
production resources and so on. A temporal dimension may be associated to each level in order to help the user
when we will define a property of a given level.

Granularity : ‘Decision organization’

Commands

Orders

Execution plan

Reports

Reports

Reports

Degree 1 : ‘Strategic (three months)’

Degree 2 : ‘Tactic (two weeks)’

Degree 3 : ‘Operational (two days)’

Degree 4 : ‘Execution (hour)’

Granularity : ‘Decision organization’

Commands

Orders

Execution plan

Reports

Reports

Reports

Degree 1 : ‘Strategic (three months)’

Degree 2 : ‘Tactic (two weeks)’

Degree 3 : ‘Operational (two days)’

Degree 4 : ‘Execution (hour)’
Figure 3 : Granularity and degrees

At the Execution level, there are lot of exchanges of flows and several humans skills needed during the
production process execution based on the resources cooperation. For example, in case of a long enough
mechanical failure of a given machine (a given property is then not verified) it will be then possible that
operational level intents to re define all scheduling orders which cannot be applied at the execution level.

3.4. Formal Property Model

A property Pr is defined by a 5-tuple:

Pr = < name, Cp , Rp , Ep , Dp >

Where :

• Cp = { cause / cause ∈ F} / card(Cp)≥0 (set of causes may be empty)

• Ep = { effect / effect ∈ F } / card(Ep)>0 (a tangible effect must always exist) and Cp ∩ Ep = ∅

• Dp = < Type , G > is the degree of Pr in a given granularity G

4 parameters is a set of facts

page 6/16

• Rp is the relation defining the causal link between causes and effects. Type of Rp may be of:

- Logical: it describes implication and equivalence (a reciprocity between cause and effect) relations.

- Temporal : it describes temporal links such as antecedence in which the cause must be prior to, or at
least simultaneous with the effects.

- Influence : the knowledge about some cause modifies the opinion about the verification of the effect
(Pearl 2000). It allows then to describe how causes and effects must be linked respecting some
particular events or situation. A sense of variation is associated to each influence relation. It can be
interpreted as beneficial or at the opposite harmful influence on the effect.

- Emergence : Each modeled system can be described by some characteristics which are not directly
deductible from the own characteristics of its components but which result from relations between
these components. The explanation of this kind of property needs then to take into account all the
interactions and the feedback which connect the referent with its environment or with its context.

The relation Rp is defined by the 4-tuple:

Rp = < Type , θc , θe , d > where:

• The Boolean functions θc describes in which conditions (by interpretation of causes), the property is verified. θc
is defined as follows :

- θc : C → {true, false} ; If there is an empty cause then θc = true

• The Boolean functions θe describes with which results (by release of effects), the property is verified. θe is
defined as follows :

- θe : E → {true, false}

3.5. Short examples

In a manufacturing process, an activity Ai transforms one or several of its inputs in order to furnish one or
several outputs taking into account constraints, rules and mechanisms as shown in Figure 4.

#��	�	���#	
����
+ ��,�
-�����.

&�
��
+ ��,�
-�'$�

���.

���
	��+ ��,�
-	����+���+/��,�����.

�����	
��+ ��,�
-�'���
���+���+/��,*��,.�

	�'�
��

Figure 4 : Activity seen as a transformation scheme

This activity induces then modifications in the time, in the form or in the space of some of these inputs attributes
which corresponds then to one several of the outputs attributes (Mayer 1995, Feliot 1997). This implies some
relation between the inputs and the outputs. For example, if the output is of energy type, this induces that one of
the input may be of material or of energy type in the same time. This kind of property may be wrote as follows:

[∀Activity.OutputInformation / OutputInformation.OperationalDomain = Energy]

implication (�)

[∃ Activity.InputInformation, (InputInformation.OperationalDomain = Material ∨
InputInformation.OperationalDomain = Energy)]

Last, the following property may allow the user to detect an error in the model. The property is the following: ‘a
transport link ensures continuity of parts flow in manufacturing system between two sub-systems’. Figure 5
shows the model which may respect this property. It shows a manufacturing process composed of a drilling
activity and a polishing activity. If the drill station is not near the polisher station or if the two functions (to
polish and to drill) are not assumed by the same machine, the user forgets some transportation activity and
support as shown in Figure 6.

page 7/16

Monitoring
Machined

Part

 To manufacture part

Operators

Technical data Manufacturing
order

Raw

Machines

Monitoring
Machined

Part

To Polish

Polisher

To Drill

Drill station

Raw

part
Drilled

Figure 5 : A part of a process model to check

Monitoring
Machined

Part

 To manufacture part

Operators

Technical data Manufacturing
order

Raw

Machines

Monitoring
Machined

Part

To Polish

Polisher

Conveyor

To Drill

Drill station

Raw

part
Drilled

To Transport

Figure 6 : Modified process model

The modeling language for the property specification has been defined and integrated into the LUSP Language
support tool (French acronym of Properties Specification Unified Language) used for specifying, managing and
formally proving a property (Chapurlat 2000).

4. Domain ontology

Before representing knowledge as properties, it is necessary to determine an ontology (Uschold 1997) dedicated
to what we need to represent in a given application domain. Thus, the formalism chosen here was adapted to take
into account the systemic concepts (Mayer 1995, Le Moigne 1999, CEA 1998, Braesch 1995) and the other
concepts dedicated for Enterprise Modeling domain (Schlenoff 1996, Tissot 1999, ISO 2002) by the
construction of an object class model by using the Unified Modeling Language (UML). This formalism has been
used taking into account its readability, the opportunity to represent concepts and relation and the industrial
recognition of this modeling language.

Thus constituted, the obtained set of concepts and relations can represent a common base of a modeling language
allowing the user to describe each enterprise organization part. This point allows the authors to link and to justify
the presented work concerning V&V approach with the current work in progress on Unified Enterprise
Modeling Language (UEML) (Vernadat 2002, Vallespir 2003, see also www.UEML.org) which aims on the
definition of a common enterprise modeling language. Figure 7 shows a simplified version of this concept lattice
composed by a pre-defined set of concepts. It is divided into four parts: abstract types, behavioral types,
modeling types and the entity types.

OppositeToCoupling

FunctionProcess

Processor

Transaction

NonDeterministicChoiceActivityPSL

XorPSL

ComplexPosetActivityPSLPosetActivityPSL

IdefProcessPSL

PrimitiveActivityPSLAtomicActivityPSl

TechnologicRessourceFrom

Hardware

EquipmentEnterprise

Environment

Machine

TechnicalResource

Tool

Software

System

Figure 7 : Extract from one of the object diagrams showing the ontology

page 8/16

5. Properties reference matrix

As shown before, specifying a property needs to extract all the facts from the model and to add some new facts
extracted from its environment by using the domain ontology. However, the specification work remains difficult
for a non specialist user taking into account formal concepts such as those presented in (Van Lamsweerde 2000)
and the model presented before.

First it is necessary to fix some idea about the goal of the V&V step which has to be done. There exist three
possible perspectives of analysis (CEA 1998) which can be used independently from the other ones or which can
be combined:

• Stability which aims on the ability of the system to maintain its viability all along its life (that is to say to
maintain a sufficient relation between its structure and its coherence).

• Reliability which aims on the ability of the system to reach its objective (that is to say to ensure its function
with a high level of compliance).

• Integrity which aims on the ability of the system to stay coherent and to be able to ensure its function.

Second, the goal is then to develop a properties data base called Properties reference matrix (Chapurlat 2002). It
gathers usual knowledge describe by using property model considering a given application domain, a given set
of modeling language and taking into account a systemic vision of the pointed out system and/or model to
analyze. These properties cannot be proved on a given model because of these generic nature. They must be
instantiated (the user create an occurrence of the generic property by filling in its causes, effects and relation) or
to be simply interpreted (the user can be inspired by this generic property).

The property reference matrix uses a property typology which has been inspired from a literature and research
works analysis such as (Paynter 1961, Lamport 1980, Manna and al. 1990, Manna and al. 1992, Sahraoui, 1994,
Feliot 1997, CEA 1998, Lamboley 2001). This typology discerns three kinds of properties :

• System properties : These properties express the constraints and the functional or not functional requirements
in which each system of a given application domain is (or will be) subjected and its assigned objectives. They
are properties of functioning (temporal or not), of security, of volume, describing needed performance
(productivity, availability, reliability and so on).

• Modeling Language properties : These properties describe the model structure (by defining and representing
the modeling language construction rules and the possible existing constructs proposed in the modeling
language), the behavioral laws (by defining execution rules effects on the model (Chapurlat 1999)) and the
possible properties of liveliness, completeness, coherence, of reinitializing, describing the presence or the
absence of parallelism, of synchronization mechanisms, of sequence, of temporary or definitive blocking and
so on. For example, considering Petri Nets modeling language, the Model Properties describe structural rules
concerning places and transitions placement, marking vector evolution, temporal hypothesis of synchronism
or parallelism and so on.

• Axiomatic properties: They permit to describe basic knowledge, that is to say a set of information
collectively and unanimously recognized and accepted such as laws of nature, norms, standards and also some
existing property which is already verified for the user. Thus, they are indisputable and the user may choose
them as facts for describing and proving other properties.

6. Properties graph

The properties reference matrix help the user to choose and to specify the relevant properties he wants to prove.
The results of this specification phase is a graph in which:

• each nodes represents the different sets of facts considered as causes or as effects of a given property,

• each arc represents a typed relation between these causes and these effects .

This graph takes into account simultaneously the knowledge about the model, the modeled system and its
environment. All this knowledge is described by using the unique property model (and then the modeling
language LUSP). That allows to take into account all this knowledge simultaneously and with the same
mechanisms of analysis. In order to structure the user’s work a properties graph may be represented as a third
axes area in which:

page 9/16

• The first axe called target allows to separate into three level of detail what are the different objects (systems or
models of these systems) which represents the target of the V&V step or which interact with this target and
can influence then the V&V results. These objects are chosen by the user by respecting the selected analysis
perspective (stability, integrity, reliability or a combination of them). The central level called referent level
highlight the pointed out system which has been modeled and the resulting model representing the V&V goal.
The upper level called upper referent allows to describe the pointed system’s environment regarding the user’s
point of view. For example if the user has chosen stability perspective the upper referent may represent either
all the encountered process in the company whether the process’s customer inputs/outputs. For each referent
level it may then possible to define several upper referent. The lower level is composed of other objects (sub
systems, sub models) which compose an interacting network either corresponding to the decomposition
whether having the same global behavior from the object belonging to the referent level. Each of these three
levels is connected with the above respecting rules. These ones depends on decomposition rules imposed by a
given modeling language if the referent level object is a model or user decomposition point of view if it is the
system.

• The second dimension called typology permits to separate system and model properties. For each ones, it is
then necessary to clarify the properties which are connected to the structural aspect, to the behavioral aspect or
to the functional aspect expected from the object O chosen considering the target axe. Systems properties may
be interpreted or instantiated taking into account the properties reference matrix. They represent the current
state of the system or the needs at which the system must respond in term or performance and constraints.
Model properties are issued from the translation of modeling language properties.

• The third axe is called time. Past, present and future of an object O must be taken into account in order to
manage the possible evolution of the properties of O. It allows the user to reuse part of existing properties and
to complete them during life cycle evolution of the target.

Figure 8 summarizes these three axes and each case may be considered as a property graph. Figure 9 shows an
example of these different object. The referent level is then defined by a given process to improve and the user
wants first to verify its model. Doing this needs to define what is the environment of this process and what the
possible sub systems. In the same idea it may exists some model describing this environment or each of these
sub systems. The information gathered into these new models must be then employed for the V&V phase.

Referent
level

Super Referent
level

Upper Referent
level

Typology

Target

Time

 Past
 Now
 Future

System Model

Properties
graph of the model
seen at the present

moment

Properties graph of
the Upper system

needed in the
future

Figure 8 : Property graph represented as a third

dimensions area

System Model

Referent
level

Super Referent
level

Upper Referent
level

Typology

Target

The pointed out
Process to
improve

The process
model to be

analysed

Other
interacting
enterprise
processes

Process 2
Model

A sub
process

An
Activity

Process 2
Model
Process 1

model

Sub process
modelActivity

model

Time

 Past
 Now
Future

Figure 9 : Property graph objects example

7. Conceptual graphs

It is necessary to dispose of a set of mechanisms allowing us:

• To manage all the previous highlighted knowledge for V&V steps. As shown before, this knowledge occurs
from user’s specified properties which are gathered into the properties graph. However additional knowledge
depending directly from the system or from its environment but which may be absent and not already defined
into the property graph have to be added again.

• To prove formally the proposed properties. This phase may use different kinds of concepts and tools (Rushby
1995). It may be based on some theorem prover such as Zeves (dedicated only for the Z modeling (Barden

page 10/16

1994) language which is more appropriate for proving the structure coherence and adequacy of a given
modeling language even a model than properties as proposed below). It may also use model checkers such as
PVS (Owre 1999), Stanford Temporal Prover STeP (Bjorner 2001), SMV (see http://www-
2.cs.cmu.edu/~modelcheck/smv.html), SPIN (Holzmann 2003) and other. All these tools are formal proof
tools based mainly on state diagrams or transition models properties verification and data analysis. Their
utilization, very limited in Enterprise Modeling domain, can then make easier proof of behavioral properties if
the modeling language uses the same concepts of state, transition and temporal hypothesis. Last, this phase
may use simulation or emulation tools allowing the user to execute the model by taking into account some
pre-defined scenarios. This kind of solution is now a well known one in the industry but the problem comes
first from the scenarios, second from the execution mechanisms used. Scenarios may be subjectively forgotten
or wrong defined (for example, some particular and relevant events or system’s situations may be ignored).
Execution mechanisms i.e. the set of evolution rules are not sufficiently formally defined (Petit 1997, Panetto
2001) in an indisputable way. So, the simulation may give some questionable results.

• To make emerge new knowledge allowing the user to complete again and again its system’s representation.

This research work intents to ameliorate and to extent the existing V&V concepts in Enterprise Modeling
domain. So, the Conceptual Graphs have been chosen for the followings reasons (Kamsu-Foguem 2003). First, it
allows to conceptualize the pre-defined domain ontology as a formal vocabulary. Second, it disposes of a range
of formal reasoning mechanisms (rules, projection, first order logic isomorphism and other) permitting to verify
facts and to complete (or to make emerging) a new knowledge by combination of existing knowledge.

The goal now consists to define the adapted vocabulary and to translate the model and the properties graph
obtained before in order to use the reasoning tools associated to conceptual graphs.

7.1. Formalism Presentation

A simple conceptual graph is a finite, connected, directed, and bipartite graph composed of two kinds of nodes
called concepts and conceptual relations. A concept is composed of a type and a marker:

[<type>: <marker>]
where:

• type represents the concept typology which is necessary to describe a given domain. They are grouped into a
hierarchical structure called concept lattice (see a simplified version of it in).

• marker specifies the meaning of a concept by specifying an occurrence of the type of concept. They can be of
various natures, in particular individual or generic.

For example [Process: Customer needs definition] means that Customer needs definition is one the numerous
processes of the enterprise. Its represents then an occurrence of the Process concept into the modeled domain.

A conceptual relation binds two or many concepts according to the following diagram:
[C1] → (relation) → [C2] (means "C1 interact with C2 by relation")

For example, [Activity: ‘To specify needs list’] → (usage) → [Actor: Specialist] means that Specialist who is an
Actor uses the activity named ‘To specif needs list’. Each relation is characterized by a signature which fixes its
arity and gives the types of concepts which are in relation.

The pre-defined ontology is then translated into two needed lattices allowing to organize all the needed concepts
and relations by using a hierarchical approach. The translation rules used are summarized in Figure 10 and
Figure 11 and Figure 12 show a simplified version of each of these lattices.

Lattice

Concept
Concept hierarchy
Nested concepts
Relation
Relation
Relation

Class
Inheritance

Encapsulation
Method

Relation
Attribute

Object Diagram
(UML)

Figure 10 : Object Diagram / Lattice translation rules

page 11/16

T
+ ModellingConcept

+ Object
+ ProcessedObject

+ TangibleObject
+ ObjetTangibleNuisible
+ Consomable

Energie
Furniture
Material

+ Product
+ SymbolicObject

Data
Information

Flow
HumanResource
+ Processor

+ ActivityFunction
PrimitiveActivityPSL
NonDeterministicChoiceActivityPSL
ComplexPosetActivityPSL
PosetActivityPSL
IdefProcessPSL
AtomicActivityPSl
XorPSL

...
+ AbstractConcept

+ Verb
+ Attribute
+ Objective

+ AnalysisObjective
Performance
Stability
Integrity

…
+ MathematicalConcept

Figure 11: Extract from Concepts lattice

+ T2
InternalFact
ExternalFact
Coupling
Transaction
+ CausalityRelation
+ MathematicalRelation
+ Interaction
+ Decomposition
+ Substitution
+ Agregation

Team
Service
Indicators
+ ResourceOf

InformationResource
HumanResource
TechnologicalResource

+ Abilities
HumanSkills
+ TechnicalSkills

HardwareSkills
SoftwareSkills

+ NeededAbilities
NeededHumanAbilities
+ NeededTechnicalAbilities

NeededSoftwareSkills
NeededHardwareSkills

+ Component
SoftwareComponent
HardwareComponent

ActorOf
Figure 12 : Extract from Relations lattice

The Figure 13 illustrates how a given model is then translated by using these two lattices into a conceptual
graph. Due to the paper size limitations, the translation rules are not presented here. The same rules are then used
to translate each of the graph properties into several little conceptual graphs allowing the user to use now the
formal mechanisms associated to the conceptual graphs in order to prove each of these property.

page 12/16

Concept
(Generic)

Instance of
concept
issued from
model

Relation
Concept
(Generic)

Instance of
concept
issued from
model

Relation

#��	�	���
#$

%$ �&#��	�	���
#$

%$ �&

Relation(T,T)

��
��	���
���	��

Transform(2,Activity,Fact)
In(2,Fact,Activity)

Nature(2,T,Type)

Relation(T,T)

��
��	���
���	��

Transform(2,Activity,Fact)
In(2,Fact,Activity)

Nature(2,T,Type)

Relation(T,T)

��
��	���
���	��

Transform(2,Activity,Fact)
In(2,Fact,Activity)

Nature(2,T,Type)

InputOutput

T

Fact

��������
���	��

ActivityType

Nature

Activity: A1 Transformin

Type: Energy

Output: O2

Nature

Input: I1

Type: Material

Nature

Type: Transportation

Nature

Activity: A1 Transformin

Type: Energy

Output: O2

Nature

Input: I1

Type: Material

Nature

Type: Transportation
Figure 13 : Use of lattices for model translation into a conceptual graph

7.2. Reasoning concepts and mechanisms : First order logic isomorphism and canonical formation rules

(Sowa 1984) has established the existence of an isomorphism between the Conceptual Graphs and first order
Logic. For that, an operator Φ has been defined in order to translate conceptual graphs into a set of first-order
formulas manipulating predicate and logical relations:

- Each conceptual relation between two concepts is translated into an n-ary predicate

- Each concepts is transformed into an unary predicate

- Each individual marker becomes a constant

- Each generic marker becomes a quantified variable.

Thus, this operator provides a formal semantics to the conceptual graphs. In the following example, the sentence
"James, the employee drills a part" which is represented by the conceptual graph G will have, as an equivalent
logical formula Φ(G) :

G : [Employee : James] →(agent) →[Machine : drill] ←(object) ←[Part : *]

Φ(G) : ∃x, (Employee(James) ∧ Machine(drill) ∧ Part(x) ∧ Agent (James, drill) ∧ Object(x, drill))

In addition, Sowa defined four elementary operations on the conceptual graphs, called canonical formation rules,
which allows to handle them easily and to derive canonically from other graphs: copy, restriction, simplification
and joint. These basic operations allows to handle and to transform graphs containing one information into other
graphs that may contain a new unexpected information or which appeared not very interesting to the modeler: a
new property can then emerge from the graph of existing properties and be thus proposed to this modeler.

7.3. Reasoning concepts and mechanisms : Projection

The handling operation called projection is the basic operation of a reasoning process in conceptual graphs.
Projection corresponds to a graph morphism. The projection search of a graph G in a graph H can be seen as the
inclusion search of the information represented by G in H. This leads to calculate a specialization between two
graphs.

7.4. Reasoning concepts and mechanisms : Graph Rules

The conceptual graph rules (Salvat 1996) permit to represent knowledge in the form of inference rules of kind
"If information H is in a graph, information C can be added to this graph". H and C are expressed as conceptual
graphs related by co-reference links between some concept nodes. In other words a rule is composed of an
hypothesis and a conclusion, and is used in the following classical way: given a simple graph, if the hypothesis
of the rule projects to the graph, then the information contained into the conclusion is added to the graph. In this

page 13/16

way, we define static rules to express some immutable domain laws and dynamic rules such as shown in Figure
14 to model the world evolutions with the change conditions of states.

State:cause

System: Si cooperate System: Sj

State:effect

Transport:Tk agent ensure object Link: L

Event

 Become-true
agent send object Parts_ManufacSystem:Si

receiver System:Sj

Dynamic-rule (Transport)

Figure 14 : Example of dynamic rule

7.5. Reasoning concepts and mechanisms : Constraints

A constraint defines conditions for simple graph to be valid. It is composed of a condition part and a mandatory
part. The condition must be a simple graph. In particular, a condition can be an empty graph. Roughly said, a
graph satisfies a constraint if for every projection of its condition part, its mandatory part also projects to the
graph. We consider positive and negative constraints. A positive constraint expresses a property such as ‘if
information A is present, then information B must also be present’. A negative constraint expresses a property
such as ‘if information A is present, then information B must be absent’.

Hence, constraints are used to check validity of world. For example, let G be a simple graph. The graph G
satisfies a positive constraint Pc if every projection of the condition of Pc into G can be extended to a projection
of Pc as a whole. The graph G satisfies a negative constraint Nc if no projection of the condition of Nc into G
can be extended to a projection of Nc as a whole. It allows to verify the graph G validity that is to say all the
properties modeled as constraints are satisfied.

7.6. Application example

This way, conceptual graphs provides inference mechanisms for proving properties by using projection, rules
and constraints. These demonstrative abilities make validation knowledge possible. For example, we consider an
enterprise composed of some departments and of several workshops. The goal is to verify the property P1 :

P1 “a department and a workshop have one person in common at the most ”.

For doing this, it is possible to use the negative constraint Nc (see) and the rule R1 presented below:
Nc “incompatibility of membership relation with non-membership relation”

R1 “if two persons x and y working in a workshop C are the members of a same department D, then all the
persons of the workshop C are members of this department D ”.

Entity: x

member

Set: A

non-member
—

Figure15 : The negative constraint Nc

The proof by reductio ad absurdum of P1 (by stating a proposition and then showing the resulting contradiction,
thus demonstrating the proposition to be false) is as follows : supposing that in the company, there are two
different persons x and y which both are the members of a department D and a workshop C, with C is not a
subset of D. The previous rule R1 tells us that all the persons of the workshop C are members of this department
D, therefore C is a subset of D. This result belies our starting hypothesis, so it all goes to prove property P1. This
proof mechanism is formalized in conceptual graphs as follows:

• The starting hypothesis of proof is represented by the conceptual graph Gh in Figure 16.

• The result of the application of rule R1 to graph Gh is represented by the conceptual graph Gc in Figure 17.

page 14/16

• The condition of negative constraint Nc is the empty graph, which can be projected into Gc. And this
constraint is violated since there exists a projection of Nc as a whole into Gc. It's a contradiction in terms, so
the proof of property P1 is established.

different Workshop:C

Person: y member

Person: x member

Department:Dnon-member

member

member

Figure 16 : Graph Gh of the starting hypothesis to proof

Department:DWorkshop:C non-member

member

different

Person: y member

Person: x member

member

member

Figure 17 : Graph Gc resulting from the application of

rule R1 to graph Gh reveals one contradiction

8. Conclusion and Perspectives

The property is an opportunity allowing an user to complete knowledge about a complex system and to formally
investigate about it by using some formal mechanisms, concepts, ontology and tools supporting Verification and
Validation step.

Evolution perspectives of this work are numerous but we will focus on the two following axes. First the
proposed approach stays for the moment a little bit disturbing for an engineer or a consultant in charge of several
processes. It is then necessary to develop some supporting and automated tools. Second it is necessary to
integrate this approach in a global ‘Enterprise Modeling and Analysis’ method in which it will be possible to
improve the V&V abilities of the main modeling approaches used in industry.

9. References

A.E.K.Sahraoui (1994), Contributions au domaine de la spécification des systèmes réactifs complexes :
commande et surveillance, PhD Thesis Univ. P.Sabatier, Toulouse (in french)
A.Van Lamsweerde (2000) Formal Specification: a Roadmap, The Future of Software Engineering, A.
Finkelstein (ed.), ACM Press
A.-W. Scheer (1998), ARIS, Business Process Frameworks (Second edition), Springer-Verlag
AMICE (1993) Consortium AMICE, CIMOSA : Open Architecture for CIM, Berlin, Springer Verlag.
B.Kamsu-Foguem, V.Chapurlat, F.Prunet (2003), Complex System Properties Representation and Reasoning by
using the Conceptual Graphs, CIMCA 2003, Vienna, Austria.
B.Thomé (1993), Definition and scope of systems engineering, Systems engineering. Principles and practice of
computer-based systems engineering, Editor B.Thomé, John Wiley and Son Ltd
B.Vallespir, C.Braesch, V.Chapurlat, D.Crestani (2003), L'intégration en modélisation d'entreprise : les chemins
d'UEML, 4ème Conférence Francophone de Modélisation et SIMulation MOSIM'2003 (in french)
C.Braesch, A.Haurat, J.M.Beving (1995), L'entreprise-système in La modélisation systémique en entreprise,
Paris, Hermès (in french)
C.Covès, D.Crestani, V.Chapurlat, F.Prunet (2000), Implementation of an Approach of Performance Estimation
for Enterprise Process Analysis, MCPL'2000, Grenoble, France
C.Feliot (1997) Modélisation de systèmes complexes : intégration et formalisation de modèles, PhD Thesis Lille
I University (in french)
C.P.Menzel, R.J.Mayer (1998), The IDEF Family of Languages. in Handbook on architectures of information
systems, Bernus P., Mertins K. et Schmidt G. ed., Berlin, Springer.
C.Schlenoff, A.Knutilla, S.Ray (1996) Unified Process Specification Language, NIST IR 5910, U.S. Department
of Commerce
CEA (1998) SAGACE : le systémographe, Training manual, CEA Ed. (in french)

page 15/16

D.Chen, B.Vallespir, G.Doumeingts (2002), Designing Manufacturing Systems : Contribution to the
Development of an Enterprise Engineering Methodology (EEM) within the Frame of GERAM, in 15th IFAC
World Congress on Automation Control (B'02), Barcelona, SPAIN, 21-26 July 2002.
D.Chen, F.Vernadat (2001), Standardisation on Enterprise Modelling and Integration : Achievements, on-going
Works and Future Perspectives, Actes du 10ème symposium Information Control in Manufacturing (INCOM01),
Vienne, Austria
D.Crestani, F.Prunet, V.Chapurlat, M.Larnac, J.Magnier, D.Chalvet (1997) A generic model oriented multi
criterion Added-Value analysis for factory modeling, World Manufacturing Congress WMC'97, New Zealand
D.N.Chrorafas (2002), Enterprise Architecture and new generation Information Systems, Information
Technology coll., St. Lucie press
E.Lamine (2001) Définition d'un modèle de propriété et proposition d'un langage de spécification associé : LUSP
, Ph.D. Thesis, Montpellier 2 University, December 2001 (in french)
E.Salvat, M.L..Mugnier (1996) Sound and Complete Forward and backward Chaining of Graph Rules,
Proceedings of 4 th International Conference on Conceptual Structures, Melbourne, Australia, eds Springer
Verlag, Lecture Notes in Artificial Intelligence
ISO (2002) EN/DIS 19440 : Language Constructs for Enterprise Modelling
F.Mayer (1995), Contribution au Génie Productique : Application à l'ingénierie pédagogique en Atelier Inter
établissements de Productique Lorrain, PhD thesis Henri Poincaré/Nancy I University (in french)
F.Tissot, M.Gruninger (1999), Process Specification Language PSL Informal documentation, Draft report
contract 50-DKNB-8-90142, version 0.1
F.Vernadat (1997), Enterprise Modeling Languages, Enterprise Engineering and Integration: Building
international consensus, proceedings of ICEIMT'97, International conference on Enterprise integration and
Modeling Technology, Research reports Esprit Volume 1, K. Kosanke and J.G. Nell editors, Springer, pages 212
to 224
F.Vernadat (1999), Techniques de Modélisation en Entreprise : Application aux Processus Opérationnels, Paris,
Economica, Collection Gestion (in french)
F.Vernadat (2002), UEML : Toward an Unified Enterprise Modelling Language, International Journal of
Production Research, vol. 40, n° 17, pp. 4309 - 4321
GERAM (1999) GERAM : Generalised Enterprise Reference Architecture and Methodology Version 1.6.1,
IFIP-IFAC Task Force on Architectures for Enterprise Integration
G.J.Holzmann (to be publisehed in september 2003) The Spin Model Checker : Primer and Reference Manual,
Addison-Wesley, ISBN 0-321-22862-6
H.M.Paynter (1961) Analysis and design of engineering systems, MIT Press, Cambridge
H.Panetto, F.Mayer F., P.Lhoste (2001), Unified Modelling Language for meta-modelling : towards Constructs
definition, Acts of 10th symp. Information Control in Manufacturing (INCOM01), Vienne, Autria
M.Ischold, M.King, S.Morales, Y.Zorgios (1997) The enterprise ontology, AIAI, the University of Edimburgh
J.B.Revelle Editor (2002), Manufacturing handbook of best practices : an innovation, productivity and quality
focus, St; Lucie Press, APICS series on resource management
J.F Sowa (1984), Conceptual Structures : Information Processing in Mind and Machine, Addison-Wesley
Publishing Company, Reading, MA
J.F.Sowa (2000), Knowledge Representation: Logical, Philosophical, and computational Foundations, Brooks
Cole Publishing Co
J.L. Le Moigne (1999), La modélisation des systèmes complexes, Ed. Dunod in french)
J.P.Meinadier (1998) Ingénierie et intégration des systèmes Coll. Etudes et Logiciels Informatiques, Ed. Hermès
(in french)
J.Pearl (1999), Reasoning with cause and effect, Proceedings IJCAI99
J.Pearl (2000), Causality: Models, Reasoning, and Inference, Cambridge University Press
J.Rushby, N.Shankar (1995), Theorem proving and model checking for software, Tutorial of CSR/ENCRESS,
Bruges, Belgium
L.Lamport (1980) Sometimes is sometimes "not never", On the temporal logic of programs. In Proc. 7th ACM
Symp. on Principles of Programming Languages, p 174-185
M. Petit, J. Goossenaerts, M. Gruninger, J. G. Nell, F. Vernadat (1997), Formal Semantics of Enterprise Models,
proceedings of ICEIMT'97, International conference on Enterprise integration and Modeling Technology, Turin,
Italie, 28-30 octobre, Kosanke K. et Nell J. ed., Berlin, Springer.

page 16/16

M.Chein, M.L.Mugnier (1997), Positive Nested Conceptual graphs, in D. Luckose, H. Delugah, M. Keeler, L.
Searle and J.F. Sowa publishers: Conceptual Structures: Fulfilling Peirce's Dream, proceedings of the fifth
International Conference on Conceptual Structures (ICCS'97), Seattle, USA, volume 1257 of Lecture Notes in
Artificial Intelligence. pages 95-109, Springer Verlag
M.S.Fox, M.Barbuceanu (1994) Organizational Ontology for TOVE, EIL (Enterprise Integration Laboratory),
Department of Industrial Engineering, University of Toronto Canada, Working Paper
N.Bjorner, Z.Manna, H.Sipma, T.Uribe (2001) Deductive Verification of Real-time systems using SteP in
Theoretical Computer Science, Vol. 253, pp 27-60
O.De Smet, J.J.Lesage, J.M.Roussel (2001) Formal verification of industrial control systems, , Acts of 10th
symp. Information Control in Manufacturing (INCOM01), Vienne, Autria
P.Bernus, K.Mertins, G.Schmidt (Editors) (1998), Handbook on Architectures of Information Systems,
International Handbook on Information Systems coll., Springer.
P.Lamboley (2001) Proposition d'une méthode formelle d'automatisation de systèmes de production à l'aide de la
méthode B, PhD Thesis University Henri Poincaré Nancy I (in french)
P.Loucopoulous, E.Kavakli (1995), Enterprise Modelling and theological Approach to Requirements
Engineering., International Journal of Intelligent and cooperative Informations Systems, 4(1) : 45-79, 1995.
R.Barden, S. Stepney, D. Cooper (1994) Z in practice, Prentice Hall Ed.
S.Owre, N.Shankar, J.M.Rushby, D.W.J.Stringer-Calvert (1999) PVS Language Reference. Computer Science
Laboratory, SRI International, Menlo Park, CA
T.Henzinger, Z.Manna, A.Pnueli (1994) Temporal Proof Methodologies for Timed Transition Systems.
Information and Computation, 112(2) : 273-337
M.Uschold, M.Grunninger (1996), Ontologies : principles, Methods and applications, Knowledge Engineering
review, Volume 11, Number 2, June 1996
V.Chapurlat, B.Kamsu Foguem (2002) A Property Relevance Model and associated Tools For System Life-
Cycle Management, in 15th IFAC World Congress on Automation Control (B'02), Barcelona, SPAIN, 21-26
July 2002
V.Chapurlat, E.Lamine, J.Magnier (2000), Unified Property Specification Language for industrial systems
analysis: LUSP, MCPL'2000, Grenoble, France
V.Chapurlat, M.Larnac, E.Lamine, J.Magnier (1999), Definition of a formal analysis framework for existing
enterprise modelling approaches. Actes de Annual conf. of ICIMS-NOE, Life cycle approaches to production
systems: management, control, supervision (ASI), Louvain, Belgique, 22-24 septembre.
W.M.P. Van der Aalst (2000), Workflow Verification : Finding Control-Flow Errors Using Petri-Nets-Based
Techniques, Business Process Management : Models, techniques and Empirical Studies, W. Van der Aalst, J.
Desel, A. Oberweis (Eds.), Springer.
Z.Manna, A.Pnueli (1982) How to cook a temporal proof system for your pet language Report n°STAN-CS-82-
954, Department of Computer Sciences, Stanford University , USA
M.Uschold, M.Grunninger (1996), Ontologies : principles, Methods and applications, Knowledge Engineering
review, Volume 11, Number 2, June 1996
Z.Manna, A.Pnueli (1990) Tools and Rules for the Practicing Verifier, Technical Report STAN-CS90 -1321,
Department of Computer Science, Stanford University

