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Abstract

Estimators based on ω-dependent generalized weighted Cramér-von Mises
distances are defined for data that are subject to a possible right censorship.
The distance between the data, summarized by the Kaplan-Meier estimator,
and the target model is allowed to depend on the sample size and, for ex-
ample, on the number of censored items. It is shown that the estimators are
consistent and asymptotically multivariate normal for every p dimensional
parametric family fulfilling some mild regularity conditions. The results are
applied to finite mixtures. Simulation results for finite mixtures indicate
that the estimators are useful for moderate sample sizes. Furthermore, the
simulation results reveal the usefulness of sample size dependent and cen-
soring sensitive distance functions for moderate sample sizes. Moreover, the
estimators for the mixing proportion seems to be fairly robust against a
’symmetric’ contamination model even when censoring is present.

Keywords: Minimum distance estimators, censored data, finite mixture
models, Generalized weighted Cramér-von Mises estimators
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1 Introduction

One of the basic problems in statistics is to fit a parametric family F = {Fθ; θ ∈
Θ ⊂ Rp} to data. One approach to achieve this for uncensored data is based
on goodness-of-fit statistics leading to minimum distance estimators which were
first discussed in detail by Wolfowitz (1957). A minimum distance estimator of θ

is a value, θ̂, which minimizes the distance between the data, summarized by the
empirical distribution function, and the model F = {Fθ; θ ∈ Θ ⊂ Rp}. Minimum
distance estimators have been studied for several goodness-of-fit measures such
as weighted Cramér-von Mises, Kolmogorov-Smirnov or Hellinger distances; see,
for example, Beran (1977), Beran (1984), Hettmansperger et al. (1994), Öztürk
& Hettmansperger (1997), and Parr & Schucany (1980).
In the context of finite mixture models and uncensored data, several authors
investigated the use of minimum distance estimators as an alternative to maxi-
mum likelihood estimation for the estimation of the mixing proportions; see, for
example, Choi & Bulgren (1968), Cutler & Cordero-Brara (1996), Pardo (1997),
Woodward et al. (1984), and Woodward et al. (1995). For general accounts on
finite mixture models one may refer to Titterington et al. (1985) and McLachlan
& Peel (2000).

Under random censorship the maximum likelihood method is well adapted to
classical parametric families including Weibull, log-normal, etc. A general maxi-
mum likelihood theory under right censoring based on counting processes can be
found in Andersen et al. (1993). However, this method fails to be adapted to com-
plicated parametric families including, for example, finite mixtures of parametric
distributions. Many alternative methods under random censorship are based on
minimum distance estimators. Yang (1991) considers minimum Hellinger dis-
tance estimators while Ying (1992) introduces a new Hellinger-type minimum
distance estimator based on hazard functions incorporating random censorship
in a natural way. However, although these methods are general and can be
adapted to any parametric family regular enough, they require to specify some
bandwidth and to approximate the integrals to be minimized. This last drawback
is, in the complete i.i.d case, also observed for generalized weighted Cramér-von
Mises minimum distance estimators (cf. Öztürk & Hettmansperger (1997)). Re-
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cently, Ferland et al. (2003) introduced a Cramér-von Mises type minimum dis-
tance estimator for the estimation of the weights in a finite mixture model under
random censorship and studied its properties through a simulation study. Their
estimator is a direct extension of the Cramér-von Mises type estimator used by
Choi & Bulgren (1968) and does not require any approximation of the functional
to be minimized.

In this article, we propose a class of estimators based on ω-dependent gen-
eralized weighted Cramér-von Mises distances under random censorship which
do not require an approximation method to compute the functionals to be min-
imized. We examine the asymptotic properties of these estimators and present
results from a simulation study on the estimation of the mixing proportion in
a finite mixture model. The material is organized as follows. In Section 2 we
provide background material on minimum distance estimators and motivate the
class of estimators based on ω-dependent generalized weighted Cramér-von Mises
distances considered hereafter. In Section 3 we present strong consistency and
asymptotic normality results for our class of estimators based on ω-dependent
generalized weighted Cramér-von Mises distances under random censorship and
discuss the conditions imposed to obtain these results. The proofs of the main
theorems are also presented in Section 3. Moreover, we derive the influence curves
for our class of estimators based on ω-dependent generalized weighted Cramér-
von Mises distances under random censorship. Finally, in Section 4 we present
results from a simulation study to compare the moderate sample size behavior
of different estimators contained in our class of estimators based on ω-dependent
generalized weighted Cramér-von Mises distances. It will turn that good results
are, in particular, obtained by estimators based on sample size dependent and
censoring sensitive generalized weighted Cramér-von Mises distances. The proofs
of all results used to show the main theorems are given in the Appendix.
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2 The Cramér-von Mises type minimum distance es-

timators

To motivate our choice of Cramér-von Mises type minimum distance estima-
tors under random censorship let us briefly recall the complete i.i.d case. Let
X1, . . . , Xn be a complete i.i.d sample with unknown distribution function, and
let F = {Fθ; θ ∈ Θ ⊂ Rp} be a parametric family. The Cramér-von Mises
distance DCvM between distribution functions G1 and G2 is given by

DCvM (G1, G2) =
∫

(G1(x)−G2(x))2dG2(x).

A minimum Cramér-von Mises distance estimator of θ is then any θ̂n such that

DCvM (Fn, Fθ̂n
) ≤ DCvM (Fn, Fθ) + 1/n, ∀θ ∈ Θ,

where Fn is the empirical distribution function based on X1, . . . , Xn (cf. Wood-
ward et al. (1984)). Please recall that

DCvM (Fn, Fθ) = 1/(12n) +
n∑

i=1

(
Fθ(X(i))− i/n + 1/(2n)

)2
, (1)

by the probability integral transform. Here X(i) denotes the ith order statistic
in the sample X1, . . . , Xn. In the context of estimating the weights in a finite
mixture model Choi & Bulgren (1968) proposed to estimate the parameter of
interest as the argmin of

n∑
i=1

(
Fθ(X(i))− i/n

)2
. (2)

MacDonald (1971) (see also Section 4) provides empirical evidence that the small
sample bias of the estimator based on (1) is smaller than the small sample bias
of the estimator based on (2), although their asymptotic properties are the same.
Öztürk & Hettmansperger (1997) introduced generalized weighted Cramér-von
Mises distance estimators to control the asymptotic distribution and the robust-
ness. They defined their estimator by

θ̂ = argmin
θ∈Θ

∫
G(Fn(t)− Fθ(t))w(t, θ) dt (3)
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where G is taken from a broad class of distance functions, and G and w fulfill
certain regularity conditions.

Let us now turn to the extension of the above approaches to right censorship.
Here, we shall mean that, in addition to the i.i.d random variables X1, . . . , Xn

with distribution function (d.f.) Fθ0 , there exist censoring variables C1, . . . , Cn

with d.f. H independent of each other and independent of X1, . . . , Xn such that
only

(Ti,∆i) ≡
(
Xi ∧ Ci, I{Xi≤Ci}

)
, i = 1, . . . , n

are observed. Here, and in the following I denotes the indicator function. Through-
out, we assume that Fθ0 belongs to a parametric family F = {Fθ; θ ∈ Θ ⊂ Rp},
which is supposed to be dominated by the Lebesgue measure. Then, to each Fθ

in F we associate its cumulative hazard function Λθ. It is well-known that Fθ0

can be nonparametrically estimated by the Kaplan-Meier estimator (see Kaplan
& Meier (1958)) defined on [0, τ ] by

F̂n(t) = 1−
∏

{i:Ti≤t}

(
1− ∆i

Y (Ti)

)
,

where Y (s) =
∑n

i=1 I{Ti≥s}.
We define the ω-dependent generalized weighted Cramér-von Mises distance un-
der random censorship by∫ τ

0
Gn

(
F̂n(t)− Fθ(t), ω

)
wn(t)dF̂n(t), θ ∈ Θ, (4)

where wn is a weight function, Gn is a distance function, which is allowed to
depend on n as well as on ω, and τ , wn and Gn satisfy Conditions A, B and C
below. In the following, we shall drop the integration variable t.

Definition 1. An estimator of θ0 based on a ω-dependent generalized weighted
Cramér-von Mises distance under random censorship is then any θ̂n such that∫ τ

0
Gn

(
F̂n − Fθ̂n

, ω
)

wndF̂n ≤
∫ τ

0
Gn

(
F̂n − Fθ, ω

)
wndF̂n, for all θ ∈ Θ. (5)

Besides from the facts that it accounts for right censoring and that the dis-
tance is allowed to depend on ω, one of the main advantages of the above estima-
tion procedure is that, contrary to many minimum distance estimation method,
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it does not require an approximation method to compute the integrals. Indeed,
integration holds with respect to the empirical measure, transforming the integral
into a simple sum. Therefore, this integral may be minimized by using standard
routines from differential optimization.

Remark 1. To avoid the problem of existence and attainability of a minimum,
θ̂n can be defined as in equation (2.1) of Woodward et al. (1984)∫ τ

0
Gn

(
F̂n − Fθ̂n

, ω
)

wndF̂n ≤
∫ τ

0
Gn

(
F̂n − Fθ, ω

)
wndF̂n +

1
n

for all θ ∈ Θ.

Let us briefly comment on the class of distances given by (4). Firstly, allowing
the distance function Gn to depend on n has several advantages. For example, if
there is no censoring, we obtain, by choosing Gn(·, ω) = (·+1/(2n))2 and wn ≡ 1,
that minimizing (4) is equivalent to minimizing the Cramér-von Mises distance
(cf. (1)). If we did not allow the distance to depend on n, it would be impossi-
ble to include the distance obtained from the Cramér-von Mises goodness-of-fit
statistic since, here, we are integrating with respect to the measure induced by
the Kaplan-Meier estimator. Moreover, we can define censoring sensitive distance
functions if we allow Gn to depend on ω. For example taking Gn(·, ω) = (·+ 1/

(2
∑n

i=1 I{Xi≤Ci,Xi≤τ}))2 and wn ≡ 1, the small sample behavior can be consider-
able improved compared to Gn(·, ω) = (·)2 and wn ≡ 1 (see Section 4), although
their large sample behavior is the same. Secondly, by introducing a weight func-
tion wn the tail probabilities can be emphasized or de-emphasized. As, under
right censoring, we usually have less observations in the right tail this is desirable.

3 Asymptotic results and robustness

This section is devoted to studying the properties of the estimator defined by
(5). We first discuss the conditions imposed to derive consistency and asymp-
totic normality (Subsection 3.1), then we give the proofs (Subsection 3.2), and
finally we derive the influence curves (Subsection 3.3).

3.1 Discussion of the conditions

Let us introduce the following conditions:
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A. Let τ > 0 be a real number such that τ < sup{t > 0; (1−Fθ0(t))(1−H(t)) >

0}.

B. Let wn be a sequence of random nonnegative functions on [0, τ ] satisfying

sup
[0,τ ]

|wn − w0|
P−→ 0,

where w0 is a bounded deterministic function on [0, τ ].

C. Let the set Υ consists of all functions G such that

(i) G : [a, b] → R+, a ≤ −1, 1 ≤ b, is nonnegative,

(ii) the restriction of G to the interval [−1, 1] is twice continuously differ-
entiable,

(iii) G(0) = G′(0) = 0 and G′′(0) > 0.

We then assume that Gn : [a, b] × Ωn → R+ is such that Gn(·, ω) =
G (·+ op(1/

√
n)) for some G ∈ Υ. Here Ωn is the sample space.

D. If θn ∈ Θ ⊂ Rp, n ∈ N∗ then

lim
n→+∞

∫ τ

0
G (Fθ0 − Fθn) w0dFθ0 = 0

implies limn→+∞ θn = θ0.

E. There exists a measurable function η = (η1, . . . , ηp)t : (0, q) ≡ (0, Fθ0(τ)) →
Rp such that Σ(τ) =

∫ τ
0 η(Fθ0(s))η

t(Fθ0(s))w0(s)dFθ0(s) is positive definite,
and

sup
0≤s≤τ

|Fθ(s)− Fθ0(s)− (θ − θ0)tη ◦ Fθ0(s)| = o(‖θ − θ0‖)

as ‖θ − θ0‖ → 0.

Let us briefly discuss the assumptions imposed. Condition A together with the
assumptions on the sample ensures that the standard results for the Kaplan-Meier
estimator hold true on the interval [0, τ ].

The sequence wn can be equal to w(F̂n) with w Lipschitz on [0, 1]. In this
case we have w0 = w(Fθ0) and Condition B is fulfilled since F̂n converges to Fθ0

uniformly on [0, τ ]. Taking for w the functions w1(x) = xp, w2(x) = (1 − x)p,
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or w3(x) = xp + (1− x)p with p > 1 leads to the empirical versions of the three
weight functions considered in Öztürk & Hettmansperger (1997). However, many
other choices adapted to right censoring are also possible; for example, we can
take wn = n/Y which satisfies Condition B too.

The sequence of functions Gn(·, ω) = G(·+1/(2n)), where G(·) = (·)2, fulfills
Condition C so that our model contains the estimator defined by (1) as well as
the one defined by (2) and therefore allows for a unique treatment. Furthermore,
it is seen that under Condition A we have that (1/n)

∑n
i=1 I{Xi≤Ci,Xi≤τ} con-

verges to
∫ τ
0 (1 − H)dFθ0 ≥ (1 − H(τ))Fθ0(τ) > 0 (assuming that Fθ0(τ) > 0).

Therefore, Gn(·, ω) =
(
·+ 1/

(
2
∑n

i=1 I{Xi≤Ci,Xi≤τ}
))2, also fulfills Condition C.

The conditions imposed by C on the function G are stronger than the condition
imposed by Öztürk & Hettmansperger (1997) on their distance functions. Our
Condition C implies that G and its two first derivatives are bounded on [−1, 1].
If this condition is false, taking for example G(x) = x2/(x + 1) as in Öztürk &
Hettmansperger (1997), existence and asymptotics may be obtained by reduc-
ing the parameter space Θ to a compact subset (see Öztürk & Hettmansperger
(1997)).

Condition D is similar to Condition C of Woodward et al. (1984), and if
w0 = 1 they are equal. As discussed by these authors, if it is not satisfied, the
search for any consistent estimator seems hopeless (cf. Woodward et al. (1984,
Note 2)). Notice that Condition D implies that the model restricted to the
interval [0, τ ] is identifiable. To see this suppose that Pθ|[0,τ ] = Pθ0|[0,τ ] (where
Pθ|[0,τ ] is the restriction of Pθ to [0, τ ]), then taking θn = θ for all n we have

lim
n→+∞

∫ τ

0
G (Fθ0 − Fθn) w0dFθ0 = 0,

which by Condition D implies θ = limn→+∞ θn = θ0. Sufficient conditions to
obtain D will be discussed below.
Condition E is very similar to Condition D in Woodward et al. (1984) but we
assume that η is measurable which insures that it belongs to any Lr(0, q) for
1 ≤ r ≤ ∞. As discussed by these authors, Condition E allows a first order
Taylor expansion of θ 7→ Fθ(x) around θ0 uniformly in x.
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Let us now turn to some sufficient conditions to obtain Condition D. First,
let us write

d(θ) =
∫ τ

0
G(Fθ − Fθ0)w0dFθ0 .

Obviously, d(θ0) = 0 and if θ 7→ d(θ) is twice continuously differentiable on Θ,
then we have

d(θn) = d(θ0) + (θn − θ0)tḋ(θ0) +
1
2
(θn − θ0)td̈(θ∗n)(θn − θ0)

=
1
2
(θn − θ0)td̈(θ∗n)(θn − θ0), (6)

where ḋ and d̈ denote the first and second order derivative of d with respect to θ,
respectively, and θ∗n belongs to the line segment connecting θn and θ0. Let σ(A)
be the minimum eigenvalue of the p× p matrix A.

Sufficient condition (I) to obtain D:

inf
θ∈Θ

σ
(
d̈(θ)

)
> 0.

If (I) holds then by (6) it is clear that Condition D holds.
For example if Fθ(t) = 1− exp(−θt) for t > 0 we obtain choosing G(x) = x2,

τ = +∞, and w0 ≡ 1

d(θ) = θ0

(
1

2θ + θ0
− 2

θ + 2θ0
+

1
3θ0

)
and

d̈(θ) = 4θ0

(
2

(2θ + θ0)3
− 1

(θ + 2θ0)3

)
.

Here we see that if Θ = (0,+∞) we can have d̈(θ) < 0 for large values of θ.
In fact, it is generally difficult to obtain Sufficient condition (I) on the whole
parameter space Θ, but if we reduce the parameter space Θ to a subset Θ1 where
the minimum eigenvalue of d̈ is bounded from above by a positive constant then
Condition D is satisfied. Such a reduction of the parameter space to a (finite)
subset is generally possible when d is twice continuously differentiable with d̈(θ0)
positive definite. In this case we obtain a local version of Condition D and it is
easy to check that

d̈(θ0) = G′′(0)
∫ τ

0
Ḟθ0Ḟ

t
θ0

w0dFθ0 .
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In the exponential example we obtain:

d̈(θ0) = 4G′′(0)/(27θ3
0) > 0.

Sufficient conditions (II) to obtain D:

(i) There exist ε > 0 and η > 0 such that B(θ0, η) ≡ {θ ∈ Rp, ‖θ− θ0‖ ≤ η} ⊂
Θ, and if θ ∈ Θ\B(θ0, η) then d(θ) ≥ ε,

(ii) d is continuous on B(θ0, η),

(iii) d ≥ 0 and d(θ) = 0 if and only if θ = θ0.

Functions satisfying (iii) are generally called contrast functions. Now using
(ii) and (iii) we have that for any α > 0 there exists β > 0 such that if
θ ∈ B(θ0, η)\B(θ0, α) then d(θ) ≥ β. This with (i) imply that if ‖θ − θ0‖ > α

we have d(θ) ≥ min(β, ε). As a consequence if d(θn) → 0 this means that for n

large enough θn belongs to B(θ0, α), and since α is arbitrary this proves that θn

tends to θ0.

In the above exponential example with Θ = (0,+∞) it is easy to check that
(i)–(iii) of the Sufficient conditions (II) hold. Thus, Condition D is satisfied in
that case. Indeed (ii) and (iii) are obvious and (i) holds because d is nonincreas-
ing on (0, θ0) and nondecreasing on (θ0,+∞).

More generally, if Fθ0 and the Lebesgue measure are contiguous on (0, τ), if
G is strictly positive on [−1, 1]\{0}, and if w0 is strictly positive on (0, τ), then
d(θ) = 0 leads to Fθ = Fθ0 on [0, τ ]. Moreover if τ is sufficiently large and if
F is an identifiable parametric family we obtain (iii) of the Sufficient conditions
(II) . Actually, F is identifiable for many parametric families like exponential,
Weibull, gamma, lognormal, etc. Identifiability of mixtures of parametric fam-
ilies also holds for many parametric families. Teicher (1963) gave a sufficient
condition for a finite mixture to be identifiable and applied it to the normal and
gamma families. This result was extended to usual survival distributions, and
recently Atienza et al. (2006) gave some new conditions for identifiability of finite
mixture distributions and showed that the class of all finite mixture distributions
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generated by the union of lognormal, gamma and Weibull distributions is identi-
fiable. For references concerning identifiability of finite mixture distributions we
refer to the paper of Atienza et al. (2006).

Obtaining property (ii) of Sufficient conditions (II) is generally easy by
Lebesgue’s dominated convergence theorem.

Checking property (i) of Sufficient conditions (II) may be more fussy. For
example, let us consider the following two-component mixture of exponential
distributions:

Fθ(t) = 1− λ exp(−αt)− (1− λ) exp(−βt), t > 0,

with θ = (λ, α, β) ∈ Θ = (0, 1)×∆ where ∆ = {(x, y) ∈ R2; 0 < x < y}. In this
case d(θ) can be written in closed form and (i) is fulfilled.

3.2 Consistency and asymptotic normality

In the proof of the consistency we will need the following Lemma a proof of which
is given in the appendix.

Lemma 1. Let G fufill Condition C. Then, we have that the class of functions
Z = {G ◦ (Fθ0 − Fθ)w0; θ ∈ Θ} is P–Glivenko-Cantelli.

We then have the following result.

Theorem 1. Any sequence (θ̂n)n≥1 defined by (5) is consistent if Conditions
A–D hold.

Proof. Notice first that∫ τ

0
Gn

(
F̂n − Fθ0 , ω

)
wndF̂n ≤ sup

[0,τ ]
Gn

(
F̂n − Fθ0 , ω

)
× sup

[0,1]
|wn|

=sup
[0,τ ]

G
(
F̂n − Fθ0 + op(1/

√
n)
)
× sup

[0,1]
|wn|. (7)

Moreover, by definition∫ τ

0
Gn

(
F̂n − Fθ̂n

, ω
)

wndF̂n ≤
∫ τ

0
Gn

(
F̂n − Fθ0 , ω

)
wndF̂n. (8)
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Finally, we have

sup
θ∈Θ

∣∣∣∣∫ τ

0
Gn

(
F̂n − Fθ, ω

)
wndF̂n −

∫ τ

0
G (Fθ0 − Fθ) w0dFθ0

∣∣∣∣
= sup

θ∈Θ

∣∣∣∣∫ τ

0

[
G
(
F̂n − Fθ + op(1/

√
n)
)
−G (Fθ0 − Fθ)

]
wndF̂n

+
∫ τ

0
G(Fθ0 − Fθ)(wn − w0)dF̂n +

∫ τ

0
G (Fθ0 − Fθ) w0

(
dF̂n − dFθ0

)∣∣∣∣
≤ sup

θ∈Θ

∣∣∣∣∫ τ

0

[
G
(
F̂n − Fθ + op(1/

√
n)
)
−G (Fθ0 − Fθ)

]
wndF̂n

∣∣∣∣
+ sup

[−1,1]
|G| × sup

[0,τ ]
|wn − w0|+ sup

θ∈Θ

∣∣∣∣∫ τ

0
G (Fθ0 − Fθ) w0d

(
F̂n − Fθ0

)∣∣∣∣
≤ sup

θ∈Θ
sup
[0,τ ]

∣∣∣G(F̂n − Fθ + op(1/
√

n)
)
−G (Fθ0 − Fθ)

∣∣∣× sup
[0,τ ]

|wn|

+ sup
[−1,1]

|G| × sup
[0,τ ]

|wn − w0|+ sup
θ∈Θ

∣∣∣∣∫ τ

0
G (Fθ0 − Fθ) w0d

(
F̂n − Fθ0

)∣∣∣∣ .
(9)

Following the proof of Theorem 2.4.1 in van der Vaart & Wellner (1996), the
uniform convergence to zero of the third term on the right hand side follows from
the fact that the class Z = {(w0G◦z : z = Fθ0−Fθ, θ ∈ Θ} is P–Glivenko-Cantelli
(cf. Lemma 1). The second term converges to zero in probability by Conditions
B and C. The first term can be majorized by

sup
θ∈Θ

sup
[0,τ ]

∣∣∣G(F̂n − Fθ + op(1/
√

n)
)
−G

(
F̂n − Fθ

)∣∣∣× sup
[0,τ ]

|wn|

+sup
θ∈Θ

sup
[0,τ ]

∣∣∣G(F̂n − Fθ

)
−G (Fθ0 − Fθ)

∣∣∣× sup
[0,τ ]

|wn|. (10)

Using Condition C the first summand in (10) can, for every θ, be majorized by

sup
[−1,1]

|G′| × |oP (1/
√

n)| × sup
[0,τ ]

|wn|.

Using Conditions B and C this turns to zero in probability which proves that the
first summand in (10) converges to zero in probability. To obtain the convergence
of the second summand in (10) notice that by Condition C we again obtain for
every θ ∈ Θ∣∣∣G(F̂n − Fθ

)
−G (Fθ0 − Fθ)

∣∣∣ ≤ sup
[−1,1]

|G′| × sup
[0,τ ]

∣∣∣F̂n − Fθ0

∣∣∣ .
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From Fleming & Harrington (2005, p. 115) we have

sup
[0,τ ]

∣∣∣F̂n − Fθ0

∣∣∣ P−→ 0, (11)

because under Condition A and the strong law of large numbers we have, for all
t ∈ [0, τ ], Y (t) → +∞ as n → +∞. Hence, using the boundedness of G′ we
obtain

sup
θ∈Θ

sup
[0,τ ]

∣∣∣G(F̂n − Fθ

)
−G (Fθ0 − Fθ)

∣∣∣ P−→ 0.

Using again that by Condition B we have sup[0,τ ] |wn| = OP (1), we obtain that
the second summand in (10) is also oP (1). Hence, as a consequence the remaining
term in (9) is also a oP (1).

Putting the above results all together we obtain for n large enough∫ τ

0
G
(
Fθ0 − Fθ̂n

)
w0dFθ0

(9)

≤
∫ τ

0
Gn

(
F̂n − Fθ̂n

, ω
)

wndF̂n + oP (1)

(8)

≤
∫ τ

0
Gn

(
F̂n − Fθ0 , ω

)
wndF̂n + oP (1)

(7)

≤ sup
[0,τ ]

G
(
F̂n − Fθ0 + op(1/

√
n)
)

sup
[0,τ ]

|wn|+ oP (1)

≤ sup
[−1,1]

|G′|

(
sup
[0,τ ]

∣∣∣F̂n − Fθ0 + op(1/
√

n)
∣∣∣) sup

[0,τ ]
|wn|

+oP (1). (12)

Hence, using (11) we obtain than under Conditions B and C the right hand side in
(12) converges to zero in probability. We conclude by Condition D that (θ̂n)n≥1

converges to θ0 in probability.

Remark 2. (i) It can be seen from the above proof that the consistency result
also holds if we only require Gn(·, ω) = G(·+ oP (1)).
(ii) The above uniform consistency result also holds with probability one if the
op(1/

√
n) term (or the oP (1) term) converges almost surely since, from Stute

& Wang (1993), we have that the uniform convergence of the Kaplan-Meier
estimator holds almost surely on [0, τ ]. For example, the op(1/

√
n) term converges

almost surely for Gn(·, ω) = (·+ 1/(2n))2 and
Gn(·, ω) =

(
·+ 1/

(
2
∑n

i=1 I{Xi≤Ci,Xi≤τ}
))2.
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Before continuing with the asymptotic distribution we introduce the follow-
ing covariance function for (s, t) ∈ [0, τ ]2

ρ(s, t) = (1− Fθ0(s))(1− Fθ0(t))
∫ s∧t

0

dFθ0(u)
(1− Fθ0(u))2(1−H(u))

,

and we state the next result.

Lemma 2. Under Conditions A–E,
√

n
(
θ̂n − θ0

)
is bounded in probability.

The proof is presented in the Appendix. We now proceed with the asymptotic
distribution.

Theorem 2. Let B be a centered Gaussian process on [0, τ ] with covariance func-
tion ρ. If Conditions A–E hold, then

√
n(θ̂n−θ0) converges to a centered normal

distribution with variance Σ−1(τ)C(τ)Σ−1(τ) where C(τ) = Var
(∫ τ

0 Bη ◦ Fθ0w0dFθ0

)
.

Proof. First let us define the two following sequences of stochastic processes X̄n

and Xn by

X̄n(ξ) =
G′′(0)

2

∫ τ

0

(
Bn − ξtη ◦ Fθ0

)2
w0dFθ0 , ξ ∈ Rp,

where Bn =
√

n(F̂n − Fθ0) and

Xn(ξ) = n

∫ τ

0
Gn

(
F̂n − Fθ0+ξ/

√
n, ω

)
wndF̂n, ξ ∈ Rp.

Then for any A = {ξ ∈ Rp; ‖ξ‖ < c} we have

sup
ξ∈A

∣∣Xn(ξ)− X̄n(ξ)
∣∣ P−→ 0. (13)

Indeed first note that

sup
[0,τ ]

|F̂n − Fθ0+ξ/
√

n| ≤ sup
[0,τ ]

|F̂n − Fθ0 |+ sup
[0,τ ]

|Fθ0 − Fθ0+ξ/
√

n|

≤ sup
[0,τ ]

|F̂n − Fθ0 |+ sup
[0,τ ]

∣∣∣∣ 1√
n

ξtη ◦ Fθ0

∣∣∣∣+ 1√
n

o(‖ξ‖), (14)

where the right hand side converges to 0 in probability since ξ ∈ A and by
using Condition E and properties of the Kaplan-Meier estimator. Multiplying
the above inequality by

√
n we also obtain that

sup
ξ∈A

sup
[0,τ ]

√
n|F̂n − Fθ0+ξ/

√
n| = OP (1).



15

Now by using Condition C and a second order expansion of G around 0 we have

Xn(ξ) = n

∫ τ

0
G
(
F̂n − Fθ0+ξ/

√
n + op(1/

√
n)
)

wndF̂n,

=
n

2

∫ τ

0
G′′(Hn)

(
F̂n − Fθ0+ξ/

√
n + oP (1/

√
n)
)2

wndF̂n, (15)

where Hn belongs to the line segment connecting 0 and F̂n−Fθ0+ξ/
√

n+op(1/
√

n).
Since |Hn| ≤ |F̂n − Fθ0+ξ/

√
n + op(1/

√
n)| we have from (14) that sup[0,τ ] |Hn| =

oP (1) and obtain

Xn(ξ) =
n

2
G′′(0)

∫ τ

0

(
F̂n − Fθ0+ξ/

√
n + op(1/

√
n)
)2

wndF̂n + oP (1)

=
n

2
G′′(0)

∫ τ

0

(
F̂n − Fθ0+ξ/

√
n + op(1/

√
n)
)2

w0dF̂n + oP (1),

where the last equality follows from Condition B and where the oP (1) is uniform
in ξ ∈ A. Then we can write

Xn(ξ) =
n

2
G′′(0)

∫ τ

0

(
F̂n − Fθ0 + Fθ0 − Fθ0+ξ/

√
n + op(1/

√
n)
)2

w0dFθ0

+
n

2
G′′(0)

∫ τ

0

(
F̂n − Fθ0 + Fθ0 − Fθ0+ξ/

√
n + op(1/

√
n)
)2

w0d(F̂n − Fθ0)

=
1
2
G′′(0)

∫ τ

0

(√
n(F̂n − Fθ0)− ξtη ◦ Fθ0 + Rn + oP (1)

)2
w0dFθ0

+
1
2
G′′(0)

∫ τ

0

(√
n(F̂n − Fθ0)− ξtη ◦ Fθ0 + Rn + oP (1)

)2
w0d(F̂n − Fθ0)

= X̄n(ξ) +
1
2
G′′(0)

∫ τ

0
(Rn + oP (1))[Rn + oP (1) + 2(Bn − ξtη ◦ Fθ0)]w0dFθ0

+
1
2
G′′(0)

∫ τ

0

(
Bn − ξtη ◦ Fθ0 + Rn + oP (1)

)2
w0d(F̂n − Fθ0).

Since Rn converges uniformly to 0 on [0, τ ] by Condition E, since sup[0,τ ] |Bn|
is bounded in probability, since ξ ∈ A and because the component functions of
η◦Fθ0 are in L2(0, q) the two last terms of the right hand side of the last equation
are oP (1) uniformly in ξ, and (13) holds.

Let ξ̄n be the maximizer of X̄n it is straightforward to see that

ξ̄n = Σ−1(τ)
∫ τ

0
Bnη ◦ Fθ0w0dFθ0
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converges weakly to

ξ0 = Σ−1(τ)
∫ τ

0
Bη ◦ Fθ0w0dFθ0 .

Let ξ̂n be the maximizer of Xn it easy to see that ξ̂n =
√

n(θ̂n − θ0). Now, to
prove the theorem, let us show that ξ̂n − ξ̄n = oP (1).

Let ε > 0 be a real number. Notice that from Lemma 2 and the weak
convergence of ξ̄n to the normal random variable ξ0 it is possible to chose c > 0
such that the probability of En = {ξ̄n ∈ A, ξ̂n ∈ A} is as large as we want for n

large enough.
Let us define Bn = {ξ ∈ Rp; ‖ξ − ξ̄n‖ < ε}. We have

{ξ̂n ∈ A\Bn} ⊂
{

inf
ξ∈A\Bn

Xn(ξ) ≤ Xn(ξ̄n)
}

and if ξ ∈ A\Bn we can write

Xn(ξ) = Xn(ξ)− X̄n(ξ) + X̄n(ξ)

≥ Xn(ξ)− X̄n(ξ) + inf
ξ∈A\Bn

X̄n(ξ)

≥ − sup
ξ∈A

∣∣Xn(ξ)− X̄n(ξ)
∣∣+ inf

ξ∈A\Bn

X̄n(ξ),

thus
inf

ξ∈A\Bn

Xn(ξ) ≥ inf
ξ∈A\Bn

X̄n(ξ)− sup
ξ∈A

∣∣Xn(ξ)− X̄n(ξ)
∣∣

and therefore

{ξ̂n ∈ A\Bn}

⊂
{

inf
ξ∈A\Bn

Xn(ξ) ≤ Xn(ξ̄n)
}

⊂

{
inf

ξ∈A\Bn

X̄n(ξ)− sup
ξ∈A

∣∣Xn(ξ)− X̄n(ξ)
∣∣ ≤ Xn(ξ̄n)

}

⊂

{
inf

ξ∈A\Bn

X̄n(ξ)− X̄n(ξ̄n) ≤ sup
ξ∈A

∣∣Xn(ξ)− X̄n(ξ)
∣∣+ Xn(ξ̄n)− X̄n(ξ̄n)

}

⊂

{
inf

ξ∈A\Bn

X̄n(ξ)− X̄n(ξ̄n) ≤ 2 sup
ξ∈A

∣∣Xn(ξ)− X̄n(ξ)
∣∣}

⊂

{
G′′(0)ε2σ(τ) ≤ 2 sup

ξ∈A

∣∣Xn(ξ)− X̄n(ξ)
∣∣} (16)
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with σ(τ) > 0 the smallest eigenvalue of Σ(τ) and where the last inclusion holds
because X̄n(ξ) being quadratic in ξ we have

X̄n(ξ)− X̄n(ξ̄n) =
(
ξ − ξ̄n

)t
X̄ ′

n(ξ̄n)︸ ︷︷ ︸
=0

+
1
2
(
ξ − ξ̄n

)t
G′′(0)Σ(τ)

(
ξ − ξ̄n

)
=

1
2
G′′(0)

(
ξ − ξ̄n

)t Σ(τ)
(
ξ − ξ̄n

)
≥ 1

2
G′′(0)ε2σ(τ) on A\Bn.

Combining (13), (16) and the fact that the probability of En is as close to one
as we want we conclude that ξ̂n − ξ̄n = oP (1). By the Slutsky lemma it follows
that ξ̂n converges weakly to ξ0 which finishes the proof.

Remark 3. If w0 ≡ 1 the asymptotic variance of the estimator θ̂n is the same for
all sample size and ω-dependent functions Gn fulfilling Condition C. This extends
an observation by Öztürk & Hettmansperger (1997) who remarked that taking
G(F̂n − Fθ), where G fulfills some regularity conditions, instead of (F̂n − Fθ)2

as in Woodward et al. (1984) does not change the asymptotic variance of the
estimator θ̂n when w0 ≡ 1.

3.3 Robustness

One of the main advantages of using minimum distance estimators is their stabil-
ity in the neighborhood of the model. Öztürk & Hettmansperger (1997) showed
that the influence curve at the model of their estimator defined by (3) does
not depend on the choice of G; see also Lindsay (1994). Therefore, the ro-
bustness of their estimator can be obtained by choosing an appropriate weight
function. Here, in contrast to the approach of Öztürk & Hettmansperger (1997),
we are integrating with respect to the empirical measure if there is no censoring,
i.e. P (Ci = ∞) = 1, and with respect to the measure induced by the Kaplan-
Meier estimator if censoring is present. The influence curves in the latter case are
readily obtained by using the results of Reid (1981) once we have obtained the
influence curve in the former case. Therefore, if there is no censoring we obtain
the next theorem.

Theorem 3. Let H be an arbitrary distribution function, ∆x the degenerate dis-
tribution function at x, and T (H) = arg minθ∈Θ

∫ τ
0 Gn (H − Fθ, ω) wndH. Sup-
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pose that

Mn(H) =
∫ τ

0
G̈n(H − Fθ)|θ=T (H)

wndH

is invertible. Then

(i) If wn does not depend on H the influence curve of H at ∆x, denoted by
IC∆x(H), is given by

IC∆x(H) = M−1
n (H)

[∫ τ

0
Ġn(H − Fθ)|θ=T (H)

× wnd(∆x −H)

+
∫ τ

0
G′′

n

(
H − FT (H)

)
Ḟθ|θ=T (H)

[∆x −H]wndH

]
.

(ii) If wn depends on H the influence curve of H at ∆x is given by

IC∆x(H) + M−1
n (H)

∫ τ

0
G′

n

(
H − FT (H)

)
Ḟθ|θ=T (H)

× [∆x −H]w′
n(H) dH.

If H belongs to the parametric family F and if Gn(·, ω) = G(·), the influence
curve simplifies as follows.

Lemma 3. If H ∈ F and Gn(·, ω) = G(·), then (i) and (ii) in Theorem 3 are
equal and IC∆x(H) is given by

IC∆x(H) = M̃−1
n (H)

∫ τ

0
Ḟθ|θ=T (H)

× [∆x −H]wndH,

where

M̃n(H) =
∫ τ

0

(
ḞθḞ

t
θ

)
|θ=T (H)

× wndH.

The proofs are given in the Appendix.
If Gn(·, ω) = G(·) as in Öztürk & Hettmansperger (1997) we see from Lemma 3
that their above mentioned observation is still true if we integrate with respect
to the empirical measure instead of Lebesgue measure, i.e. by choosing an ap-
propriate weight function the influence curves are bounded with respect to x.
Moreover, we already observed in Theorem 2 that the asymptotic distribution of
the estimator does not depend on the choice of Gn(·, ω) = G(·); a result which
is also suggested by Theorem 3 since we have G′(0) = 0 and oP (1/

√
n) → 0.
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Finally, if censoring is present we obtain the influence curves from Theorem 3,
Lemma 3 and by using the results of Reid (1981). Under the conditions of Lemma
3 they are given by:

IC1
∆x

(H) = −M̃−1
n (H)

∫ τ

0
H(t)

(∫ x∧t

0

dSu(t)
(Su(t) + Sc(t))2

+
I{x≤t}

Su(t) + Sc(t)

)
×Ḟθ(t)|θ=T (H)

wn(t)H ′
+(t)dt,

IC2
∆x

(H) = −M̃−1
n (H)

∫ τ

0
H(t)

(∫ x∧t

0

dSu(t)
(Su(t) + Sc(t))2

Ḟθ(t)|θ=T (H)

)
×wn(t)H ′

+(t)dt

where H ′
+ is the right hand derivative of H, Su(t) = P (Ti > t, ∆i = 1), and

Sc(t) = P (Ti > t,∆i = 0).

4 Simulation study

In this section, we present some findings from extensive simulations to compare
several estimators contained in our class of estimators based on ω-dependent
generalized weighted Cramér-von Mises distances and to illustrate the usefulness
of the estimators for moderate sample sizes (Subsection 4.1). Furthermore, we
study the behavior of the estimators under three different contamination models
(Subsection 4.2).

4.1 Illustrative examples - part I

For the simulation results presented here we took a two component Weibull mix-
ture with d.f. Fθ(x) = 1− 0.3 exp(−(x/5)3)− 0.7 exp(−(x/2)3), and we assumed
that only the mixing proportion π = 0.3 is unknown. We assumed that cen-
soring might be present and we simulated data from the above mixture model
with 0%, 20%, 40% and 60% censoring. The censoring times were assumed to
be exponentially distributed. The sample size were taken to be equal to 20, 40,
and 80. For each amount of censoring, and each sample size (12 cases in all),
we simulated N = 10, 000 samples and we calculated the mean π̂ and the mean
square error (MSE) of different estimators. We took two groups of estimators.
For the first group, which we shall call G1 type estimators, the basis was the
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function G(x) = x2, and we looked at several modifications of this function, for
example, sample size dependent modifications, i.e. Gn(x) = (x + 1/(2n))2 or
Gn(x) = (x + 1/n)2. These functions were then combined with different weight
functions. The results are given in Tables 1, 2 and 3. In the first column the differ-
ent estimators can be found and the rows give the effect of censoring. For the sec-
ond group called G3 type estimators we took the function G3(x) = (

√
x + 1−1)2

as the basis (cf. Öztürk & Hettmansperger (1997)). We looked again at mod-
ifications of this function, for example Gn(x) = (

√
x + 1 + 1/(2n) − 1)2 or

Gn(x) = (
√

x + 1 + 1/n−1)2. Again, we combined these functions with different
weight functions. The results are given in Tables 4, 5 and 6. The values given in
Tables 1–6 were all calculated with the same (simulated) data. Throughout, cn

stands for (2n− 2
∑n

i=1 δi) where δi = I{Ci<Ti}, i = 1, . . . , n.

Censoring 0% 20% 40% 60%

Gn(·) wn π̂ MSE π̂ MSE π̂ MSE π̂ MSE

(·)2 1 0.254 0.132 0.241 0.142 0.218 0.148 0.172 0.153

(·+ 1/(2n))2 1 0.297 0.136 0.283 0.145 0.258 0.154 0.206 0.163

(·+ 1/n)2 1 0.341 0.135 0.326 0.147 0.299 0.158 0.243 0.171

(·+ 1/cn)2 1 0.297 0.135 0.294 0.147 0.288 0.161 0.273 0.191

(·)2 (1− F̂n)2 0.264 0.158 0.258 0.167 0.250 0.175 0.223 0.185

(·)2 (1− F̂n)4 0.268 0.180 0.265 0.186 0.260 0.195 0.237 0.203

(·+ 1/(2n))2 (1− F̂n)1.1 0.307 0.149 0.300 0.159 0.286 0.169 0.253 0.185

(·+ 1/(2n))2 (1− F̂n)2 0.314 0.161 0.308 0.171 0.298 0.180 0.267 0.194

(·+ 1/cn)2 (1− F̂n)1.1 0.307 0.149 0.311 0.161 0.319 0.176 0.331 0.211

Table 1: Estimation of the mixture parameter π = 0.3 based on distance functions
of the type G1 and on n = 20 observations from a Weibull mixture with cdf
Fθ(x) = 1− 0.3 exp(−(x/5)3)− 0.7 exp(−(x/2)3)). The values given in the table
are based on 10,000 simulations.
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Censoring 0% 20% 40% 60%

Gn(·) wn π̂ MSE π̂ MSE π̂ MSE π̂ MSE

(·)2 1 0.276 0.096 0.270 0.106 0.257 0.115 0.221 0.129

(·+ 1/(2n))2 1 0.298 0.096 0.291 0.106 0.278 0.115 0.242 0.131

(·+ 1/n)2 1 0.320 0.095 0.313 0.106 0.300 0.116 0.263 0.133

(·+ 1/cn)2 1 0.298 0.098 0.297 0.106 0.293 0.117 0.276 0.138

(·)2 (1− F̂n)2 0.279 0.121 0.275 0.130 0.271 0.137 0.256 0.153

(·)2 (1− F̂n)4 0.279 0.144 0.277 0.152 0.274 0.157 0.264 0.171

(·+ 1/(2n))2 (1− F̂n)1.1 0.303 0.109 0.298 0.119 0.292 0.127 0.272 0.145

(·+ 1/(2n))2 (1− F̂n)2 0.306 0.120 0.302 0.130 0.297 0.137 0.281 0.154

(·+ 1/cn)2 (1− F̂n)1.1 0.303 0.109 0.304 0.119 0.307 0.129 0.310 0.151

Table 2: Estimation of the mixture parameter π = 0.3 based on distance functions
of the type G1 and on n = 40 observations from a Weibull mixture with cdf
Fθ(x) = 1 − 0.3 exp(−(x/5)3) − 0.7 exp(−(x/2)3). The values given in the table
are based on 10,000 simulations.

Censoring 0% 20% 40% 60%

Gn(·) wn = 1 π̂ MSE π̂ MSE π̂ MSE π̂ MSE

(·)2 1 0.289 0.069 0.284 0.074 0.278 0.082 0.258 0.098

(·+ 1/(2n))2 1 0.300 0.069 0.295 0.074 0.289 0.082 0.269 0.098

(·+ 1/n)2 1 0.311 0.069 0.306 0.074 0.300 0.082 0.279 0.098

(·+ 1/cn)2 1 0.300 0.069 0.297 0.074 0.296 0.083 0.285 0.099

(·)2 (1− F̂n)2 0.289 0.088 0.286 0.093 0.284 0.101 0.277 0.116

(·)2 (1− F̂n)4 0.287 0.108 0.285 0.112 0.284 0.120 0.280 0.133

(·+ 1/(2n))2 (1− F̂n)1.1 0.301 0.078 0.298 0.083 0.295 0.092 0.285 0.107

(·+ 1/(2n))2 (1− F̂n)2 0.303 0.087 0.300 0.092 0.297 0.101 0.290 0.116

(·+ 1/cn)2 (1− F̂n)1.1 0.301 0.078 0.301 0.083 0.303 0.092 0.304 0.109

Table 3: Estimation of the mixture parameter π = 0.3 based on distance func-
tions of the type G1 and on n = 80 observations from a Weibull mixture with cdf
Fθ(x) = 1 − 0.3 exp(−(x/5)3) − 0.7 exp(−(x/2)3). The values given in the table
are based on 10,000 simulations.

In what follows we discuss how the use of sample size dependent and censor-
ing sensitive estimators as well as the use of weight functions affect the quality
of the estimation. A general observation, as expected, is that as the sample size
increases, the bias due to censoring decreases. More explicitly, consider the first
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three rows of Tables 1, 2 and 3. If there is no censoring the use of the correction
term 1/(2n), i.e. Gn(·, ω) = (·+ 1/(2n))2 leads to an estimator with a negligible
bias, whereas the uncorrected version, i.e. Gn(·, ω) = (·)2, leads to underestima-
tion, and the correction term 1/n, i.e. Gn(·, ω) = (·+ (1/n))2, leads to overesti-
mation. As censoring increases from 0% to 60% the mean of all three estimators
also decreases. This decrease in the mean is for all three estimators of approx-
imately the same value. As already mentioned increasing the sample size leads
to a smaller bias for this three estimators. Comparing this three estimators with
the sample size dependent and censoring sensitive version, i.e. Gn(·, ω) = (·+ 1/

cn)2, it is directly seen from Tables 1, 2 and 3 that the overall performance of
the sample size dependent and censoring sensitive version is much better. Even
for a censoring of 60% the mean of the estimate for n = 20, n = 40, and n = 80
is 0.273, 0.276, and 0.285. The reason for this good performance seems to be as
follows: In the complete i.i.d case based on n failures the correction term 1/(2n)
leads to nearly unbiased estimates. Under censoring we only observe n−

∑n
i=1 δi

failures. Therefore, using the correction term 1/(2(n −
∑n

i=1 δi)) seems to be
appropriate in the case of right censoring.
Comparing the first row of Tables 1, 2, and 3 with the fourth and fifth line of
these Tables, clarifies the use of a weight function in the case where Gn does
neither depend on the sample size nor on the censoring. As censoring increases
the weighted versions of Gn(·) = (·)2 performs much better than the unweighted
version. A similar behavior is seen if we take Gn(·) = (· + 1/(2n))2 although
the unweighted version already leads to considerable good results. Thus, when
censoring is present, the small sample bias can be further reduced by using a
weight function which de-emphasize the largest observations. (cf. lines 2, 7 and
8 of Tables 1, 2 and 3).

Remark 4. It should be mentioned that using Gn(·, ω) = (·)2 with wn = 1 and
Gn(·, ω) = (· + 1/n)2 with wn = 1 does not always lead to underestimation and
overestimation, respectively. For example, if we take Fθ(x) = 1 − 0.3 exp(−(x/

2)3) − 0.7 exp(−(x/5)3) instead of Fθ(x) = 1 − 0.3 exp(−(x/5)3) − 0.7 exp(−(x/

2)3), then Gn(·, ω) = (·)2 with wn = 1 leads to overestimation and Gn(·, ω) = (·+
1/n)2 with wn = 1 to underestimation, whereas the behavior of Gn(·, ω) = (·+1/

(2n))2 with wn = 1, and Gn(·, ω) = (·+ 1/cn)2 with wn = 1, respectively, is not
changed.
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Censoring 0% 20% 40% 60%

Gn(·) wn π̂ MSE π̂ MSE π̂ MSE π̂ MSE

(
√
·+ 1− 1)2 1 0.250 0.132 0.236 0.141 0.212 0.147 0.165 0.150

(
√
·+ 1 + 1/(2n)− 1)2 1 0.293 0.135 0.278 0.145 0.252 0.153 0.199 0.161

(
√
·+ 1 + 1/n− 1)2 1 0.336 0.136 0.321 0.147 0.293 0.157 0.235 0.170

(
√
·+ 1 + 1/cn − 1)2 1 0.293 0.135 0.289 0.147 0.281 0.160 0.264 0.189

(
√
·+ 1− 1)2 (1− F̂n)2 0.259 0.158 0.253 0.166 0.244 0.174 0.217 0.183

(
√
·+ 1− 1)2 (1− F̂n)4 0.263 0.180 0.260 0.186 0.254 0.194 0.231 0.202

(
√
·+ 1 + 1/(2n)− 1)2 (1− F̂n)1.1 0.302 0.149 0.294 0.159 0.280 0.168 0.247 0.183

(
√
·+ 1 + 1/(2n)− 1)2 (1− F̂n)2 0.309 0.161 0.302 0.170 0.291 0.179 0.260 0.193

(
√
·+ 1 + 1/cn − 1)2 (1− F̂n)1.1 0.302 0.149 0.305 0.161 0.312 0.175 0.323 0.209

Table 4: Estimation of the mixture parameter π = 0.3 based on distance functions
of the type G3 and on n = 20 observations from a Weibull mixture with cdf
Fθ(x) = 1 − 0.3 exp(−(x/5)3) − 0.7 exp(−(x/2)3). The values given in the table
are based on 10,000 simulations.

Censoring 0% 20% 40% 60%

Gn(·) wn π̂ MSE π̂ MSE π̂ MSE π̂ MSE

(
√
·+ 1− 1)2 1 0.274 0.096 0.267 0.106 0.253 0.115 0.216 0.128

(
√
·+ 1 + 1/(2n)− 1)2 1 0.296 0.096 0.289 0.106 0.275 0.115 0.236 0.130

(
√
·+ 1 + 1/n− 1)2 1 0.318 0.096 0.311 0.106 0.297 0.116 0.257 0.132

(
√
·+ 1 + 1/cn − 1)2 1 0.296 0.096 0.294 0.106 0.289 0.117 0.270 0.137

(
√
·+ 1− 1)2 (1− F̂n)2 0.276 0.122 0.272 0.131 0.267 0.137 0.251 0.152

(
√
·+ 1− 1)2 (1− F̂n)4 0.276 0.144 0.273 0.152 0.270 0.157 0.259 0.170

(
√
·+ 1 + 1/(2n)− 1)2 (1− F̂n)1.1 0.300 0.109 0.295 0.119 0.288 0.127 0.267 0.145

(
√
·+ 1 + 1/(2n)− 1)2 (1− F̂n)2 0.303 0.121 0.299 0.130 0.293 0.137 0.276 0.154

(
√
·+ 1 + 1/cn − 1)2 (1− F̂n)1.1 0.300 0.109 0.301 0.119 0.307 0.129 0.305 0.151

Table 5: Estimation of the mixture parameter π = 0.3 based on distance functions
of the type G3 and on n = 40 observations from a Weibull mixture with cdf
Fθ(x) = 1 − 0.3 exp(−(x/5)3) − 0.7 exp(−(x/2)3). The values given in the table
are based on 10,000 simulations.
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Censoring 0% 20% 40% 60%

Gn(·) wn π̂ MSE π̂ MSE π̂ MSE π̂ MSE

(
√
·+ 1− 1)2 1 0.287 0.069 0.283 0.074 0.276 0.082 0.254 0.097

(
√
·+ 1 + 1/(2n)− 1)2 1 0.298 0.069 0.294 0.074 0.287 0.082 0.265 0.098

(
√
·+ 1 + 1/n− 1)2 1 0.309 0.069 0.305 0.074 0.298 0.082 0.276 0.098

(
√
·+ 1 + 1/cn − 1)2 1 0.298 0.069 0.296 0.074 0.294 0.083 0.282 0.099

(
√
·+ 1− 1)2 (1− F̂n)2 0.287 0.088 0.284 0.093 0.281 0.102 0.274 0.116

(
√
·+ 1− 1)2 (1− F̂n)4 0.285 0.108 0.283 0.113 0.281 0.120 0.277 0.134

(
√
·+ 1 + 1/(2n)− 1)2 (1− F̂n)1.1 0.300 0.079 0.296 0.083 0.293 0.092 0.282 0.108

(
√
·+ 1 + 1/(2n)− 1)2 (1− F̂n)2 0.301 0.088 0.298 0.092 0.295 0.101 0.287 0.116

(
√
·+ 1 + 1/cn − 1)2 (1− F̂n)1.1 0.300 0.079 0.299 0.084 0.301 0.092 0.301 0.109

Table 6: Estimation of the mixture parameter π = 0.3 based on distance func-
tions of the type G3 and on n = 80 observations from a Weibull mixture with cdf
Fθ(x) = 1 − 0.3 exp(−(x/5)3) − 0.7 exp(−(x/2)3). The values given in the table
are based on 10,000 simulations.

The qualitative behavior of the estimators based on versions of G3 seems to be
the same as for G1. It is interesting to see, that the correction term 1/(2n), which
was suggested by MacDonald to improve the small sample behavior of (·)2, seems
also to improve the small sample behavior of the G3 based estimator. Moreover,
comparing the results in Tables 1–6 it seems that Gn(·) = (

√
·+ 1 + 1/cn − 1)2

with wn = (1 − F̂n)1.1 has the best performance in terms of small sample bias
without decreasing too much the MSE performances.

4.2 Illustrative examples - part II

It is well known that minimum distance estimators, for example for a location
parameter, are robust against symmetric contamination models. To study the
behavior of the estimators defined by (5) under a contamination model when cen-
soring might be present, we took three different contamination models, namely,
CMi = {F̃ = (1 − ε)F + εHi}, for i = 1, 2, 3 where ε = 0.05, F is the d.f. of
the Part-I Weibull mixture, and H1, H2 and H3 are gamma mixtures df with
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respective density functions:

h1(x) = 0.1/5 exp(−x/5) + 0.9/(21.4Γ(1.4))x0.4 exp(−x/2),

h2(x) = 0.1/(50.5Γ(0.5))x−0.5 exp(−x/5) + 0.9/(20.2Γ(0.2))x−0.8 exp(−x/2),

h3(x) = 0.1/(51.5Γ(1.5))x0.5 exp(−x/5) + 0.9/(24.5Γ(4.5))x3.5 exp(−x/2).

We simulated data from the above contamination models with censoring equal
to 0% and 40%. In the case of censoring, the censoring time was taken to be
exponential with parameter 0.218. The sample size was taken to be equal to
40. Please note that h1 corresponds to a ’symmetric’ contamination model in
the sense that P (X < Y1) ≈ P (X > Y1), where X ∼ F, Y1 ∼ H1, and that the
probability of being censored is approximately equal for X and Y1. Furthermore,
h2 corresponds to a ’left’ contamination model, i.e. P (X < Y2) ≈ 9%, Y2 ∼ H2,
and the probability for X to be censored is much larger than the probability
for Y2 to be censored, and h3 corresponds to a ’right’ contamination model, i.e.
P (X < Y3) ≈ 93%, Y3 ∼ H3, the probability for Y3 to be censored much larger
than the probability for X to be censored. The results are given in Tables 7
(CM1), 8 (CM2), and 9 (CM3). The qualitative behavior of the estimators
based on G1 and G3, respectively, is the same. We therefore only present the
results for the G1-type estimators.
Now, consider Table 7. Comparing these values with the values in Table 2 it
is easily seen that the values of π̂ are hardly affected, both, when there is no
censoring and when censoring is present. In particular, the size dependent and
censoring sensitive estimator Gn(·) = (· + 1/cn)2 still performs rather well. To
conclude, it seems that the estimators are fairly robust to ’symmetric’ contami-
nation models even when censoring is present. Let us briefly discuss the effects
of CM2 and CM3. When there is no censoring we have under CM2 and CM3

that π̂ is shifted to the left and to the right, respectively (cf. Tables 8 and 9). A
simple heuristic seems to explain these observations. On average, we have under
CM2 two small observations. Therefore, by minimizing the distance between the
Weibull mixture and the empirical distribution function one puts less weight on
the stochastically larger component of the mixture, i.e. the Weibull distribution
with d.f. 1 − exp(−(x/5)3). Under CM3 we have, on average, two large obser-
vations. Thus, one puts less weight on the stochastically smaller component of
the Weibull mixture, i.e. the Weibull distribution with d.f. 1 − exp(−(x/2)3).
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This behavior can also be seen from Lemma 3. Since for Fθ(t) = 1− θ exp(−(t/
5)3)− (1− θ) exp(−(t/2)3) and wn ≡ 1 the influence function of H at x is, up to
a positive constant, given by∫ τ

0

(
− exp(−(t/5)3) + exp(−(t/2)3)

)
· (I{t≥x} −H(t))dH(t).

This expression is negative for small x and positive for large x, x ≤ τ .
Given the above observations, one would expect that under right censoring π̂ is
further shifted to the left under CM2 and that under CM3 the shift to the right
of π̂ is reduced. That is exactly what can be seen from Tables 8 and 9.

Censoring 0% 40%

Gn(·) wn π̂ MSE π̂ MSE

(·)2 1 0.278 0.100 0.258 0.117

(·+ 1/(2n))2 1 0.300 0.100 0.280 0.117

(·+ 1/n)2 1 0.322 0.100 0.301 0.118

(·+ 1/cn)2 1 0.300 0.100 0.295 0.119

(·)2 (1− F̂n)2 0.274 0.125 0.267 0.141

(·)2 (1− F̂n)4 0.268 0.148 0.265 0.162

(·+ 1/(2n))2 (1− F̂n)1.1 0.300 0.113 0.290 0.131

(·+ 1/(2n))2 (1− F̂n)2 0.300 0.125 0.293 0.142

(·+ 1/cn)2 (1− F̂n)1.1 0.300 0.113 0.307 0.132

Table 7: Estimation of the mixture parameter π = 0.3 based on distance functions
of the type G1 and on n = 40 observations from contamination model CM1. The
values given in the table are based on 10,000 simulations.

Censoring 0% 40%

Gn(·) wn π̂ MSE π̂ MSE

(·)2 1 0.245 0.099 0.224 0.115

(·+ 1/(2n))2 1 0.267 0.099 0.245 0.116

(·+ 1/n)2 1 0.289 0.099 0.267 0.117

(·+ 1/cn)2 1 0.267 0.099 0.259 0.118

(·)2 (1− F̂n)2 0.225 0.124 0.217 0.137

(·)2 (1− F̂n)4 0.203 0.142 0.200 0.152

(·+ 1/(2n))2 (1− F̂n)1.1 0.258 0.113 0.246 0.129

(·+ 1/(2n))2 (1− F̂n)2 0.250 0.125 0.241 0.139

(·+ 1/cn)2 (1− F̂n)1.1 0.259 0.113 0.261 0.132

Table 8: Estimation of the mixture parameter π = 0.3 based on distance functions
of the type G1 and on n = 40 observations from contamination model CM2. The
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values given in the table are based on 10,000 simulations. The 40% censoring is
with respect to the Weibull mixture. The overall censoring being less.

Censoring 0% 40%

Gn(·) wn π̂ MSE π̂ MSE

(·)2 1 0.321 0.097 0.299 0.117

(·+ 1/(2n))2 1 0.343 0.097 0.320 0.117

(·+ 1/n)2 1 0.365 0.096 0.342 0.117

(·+ 1/cn)2 1 0.343 0.097 0.337 0.119

(·)2 (1− F̂n)2 0.317 0.119 0.307 0.136

(·)2 (1− F̂n)4 0.314 0.142 0.308 0.157

(·+ 1/(2n))2 (1− F̂n)1.1 0.342 0.107 0.329 0.126

(·+ 1/(2n))2 (1− F̂n)2 0.344 0.118 0.333 0.136

(·+ 1/cn)2 (1− F̂n)1.1 0.343 0.107 0.347 0.128

Table 9: Estimation of the mixture parameter π = 0.3 based on distance functions
of the type G1 and on n = 40 observations from contamination model CM3. The
values given in the table are based on 10,000 simulations. The 40% censoring is
with respect to the Weibull mixture. The overall censoring being larger.

5 Concluding remarks

In this paper we studied a new class of minimum distance estimators for para-
metric models. An advantage of these estimators is that the minimum distance
function, which is an extended empirical version of the generalized weighted
Cramér-von Mises distance, can be obtained in closed form and accounts for
right censoring. Furthermore, as indicated by a simulation study, allowing the
distance function to depend on the number of censored items reduces the bias
considerably without deteriorating the standard deviation of the estimates. Ro-
bustness properties of our estimators are established and checked numerically.
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Atienza, N., Garcia-Heras, J. & Muñoz-Pichardo, J. M. (2006). A new condition
for identifiability of finite mixture distributions. Metrika 63, 215-221.



28

Beran, R. (1977). Minimum Hellinger distance estimates for parametric models.
Ann. Statist. 5, 445–463.

Beran, R. (1984). Minimum distance procedure. In Handbook of Statistics,
Vol. 4 (eds Krishnaian, P. R., Sen, P. K.), 741–754. Elsevier Science. Am-
sterdam.

Choi, K. & Bulgren, W. B. (1968). An estimation procedure for mixtures of
distributions. J. R. Stat. Soc. Ser. B Stat. Methodol. 30, 444-460.

Cutler, A. & Cordero-Brara, O. I. (1996). Minimum Hellinger distance estima-
tion for finite mixture models. J. Amer. Statist. Assoc. 91, 1716–1723.

Ferland, R., Froda, S. & Lavigne, J. (2003). A simulation study of a mini-
mum distance estimator for finite mixtures under censoring. In Mathemat-
ical Statistics and Applications: Festschrift for Constance van Eeden (eds
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Öztürk, Ö. & Hettmansperger, T. P. (1997). Generalised Weighted Cramér-von
Mises Distance Estimators. Biometrika 84, 283-294.



29

Pardo, M. C. (1997). A comparison of some estimators of the mixture proportion
of mixed normal distributions. J. Comput. Appl. Math. 84, 207–217.

Parr, W. C. & Schucany, W. R. (1980). Minimum distance and robust estima-
tion. J. Amer. Statist. Assoc. 75, 616–624.

Reid, N. (1981). Influence functions for censored data. Ann. Statist. 9, 78–92.

Stute, W. & Wang, J.-L. (1993). The Strong Law under Random Censorship.
Ann. Statist. 21, 1591–1607.

Teicher, H. (1963). Identifiability of finite mixtures. Ann. Math. Statist. 34,
1265-1269.

Titterington, D. M., Smith, A. F. M. & Makov, U. E. (1985). Statistical Analysis
of Finite Mixture Distributions. John Wiley, Chichester.

van der Vaart, A. W. & Wellner, J. A. (1996). Weak Convergence and Empirical
Processes. Springer, New York.

van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge University
Press, New York.

Wolfowitz, J. (1957). The minimum distance method. Ann. Math. Statist. 28,
75–88.

Woodward, W. A., Parr, W. C., Schucany, W. R. & Lindsey, H. (1984). A
comparison of minimum distance and maximum likelihood estimation of a
mixture proportion. J. Amer. Statist. Assoc. 79, 590-598.

Woodward, W. A., Whitney, P. & Eslinger, P. W. (1995). Minimum Hellinger
distance estimation for mixture proportions. J. Statist. Plann. Inference
48, 303–319.

Yang, S. (1991). Minimum Hellinger distance estimation of parameter in the
random censorship model. Ann. Statist. 19, 579–602.

Ying, Z. (1992). Minimum Hellinger-Type Distance Estimation for Censored
Data. Ann. Statist. 20, 1361–1390.



30

Eric Beutner, Department of Quantitative Economics, Maastricht University,
P.O.Box 616, NL-6200 MD Maastricht, The Netherlands
e-mail: e.beutner@ke.unimaas.nl
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Appendix

Proof of Lemma 1. It follows from Condition C that G has finite variations on
[−1, 1] and then is the difference of two bounded increasing functions G+ and
G−. Now, let W = {Fθ; θ ∈ Θ}. Then W = {Fθ; θ ∈ Θ} ⊂ M where M is
the set of monotone increasing functions. The class M has a finite bracketing
number (see van der Vaart and Wellner (1996, Theorem 2.7.5)), and hence W ′ =
{Fθ − Fθ0 ; θ ∈ Θ} has a finite bracketing number. Obviously, given ε–brackets
[li, ui], i = 1, . . . ,m, coveringW ′, the brackets [w0G

+◦li, w0G
+◦ui], i = 1, . . . ,m,

cover G+◦W ′ = {w0G
+◦z; z ∈ W ′} and have L1 size proportional to ε. Applying

the same argument to G− ◦ W ′ = {G− ◦ z; z ∈ W ′} the result follows as Z ⊂
G+ ◦W ′ −G− ◦W ′ and as G+ ◦W ′ −G− ◦W ′ is again P–Glivenko-Cantelli (see
van der Vaart and Wellner (1996, p. 125)).

Proof of Lemma 2. From Condition E and Theorem 1 we have sup[0,τ ] |Fθ̂n
−

Fθ0 | = oP (1). By a second order expansion of G around 0 we then obtain

n

∫ τ

0
G
(
Fθ̂n

− Fθ0 + op(1/
√

n)
)

wndF̂n

=
n

2

∫ τ

0
G′′
(
Hθ̂n,θ0

)(
Fθ̂n

− Fθ0 + op(1/
√

n)
)2

wndF̂n,

where Hθ̂n,θ0
satisfies 0 ≤ |Hθ̂n,θ0

| ≤ |Fθ̂n
−Fθ0 +op(1/

√
n)|. Notice that by using

Condition E we now have

n

2

∫ τ

0
G′′

n

(
Hθ̂n,θ0

)(
Fθ̂n

− Fθ0 + op(1/
√

n)
)2

wndF̂n

=
n

2

∫ τ

0
G′′

n

(
Hθ̂n,θ0

)((
θ̂n − θ0

)t
η ◦ Fθ0 + o

(
‖θ̂n − θ0‖

)
+ op(1/

√
n)
)2

wndF̂n,
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where the right hand side is equal to√
n

2

(
θ̂n − θ0

)t
×
[∫ τ

0
G′′

n

(
Hθ̂n,θ0

)
(η ◦ Fθ0) (η ◦ Fθ0)

t wndF̂n

+2
∫ τ

0
G′′

n

(
Hθ̂n,θ0

)
η ◦ Fθ0wndF̂n

(θ̂n − θ0)to(‖θ̂n − θ0‖)
‖θ̂n − θ0‖2

+
∫ τ

0
G′′

n

(
Hθ̂n,θ0

)
wndF̂n

(
o(‖θ̂n − θ0‖)
‖θ̂n − θ0‖

)2

+2
∫ τ

0
G′′

n

(
Hθ̂n,θ0

)
op(1/

√
n)

η ◦ Fθ0(θ̂n − θ0)t + o(‖θ̂n − θ0‖)
‖θ̂n − θ0‖2

wndF̂n

]

×
√

n

2

(
θ̂n − θ0

)
+ oP (1)

∫ τ

0
G′′

n

(
Hθ̂n,θ0

)
wndF̂n.

From Conditions B, C, and E, Theorem 1, and properties of the Kaplan-Meier
estimator we obtain that the term within brackets converges to the positive def-
inite matrix G′′(0)Σ(τ) and that oP (1)

∫ τ
0 G′′

n

(
Hθ̂n,θ0

)
wndF̂n converges to zero

in probability. Then we have√
n

2
(θ̂n − θ0)t

[
G′′(0)Σ(τ) + oP (1)

]√n

2
(θ̂n − θ0)

= n

∫ τ

0
G
(
Fθ̂n

− Fθ0 + op(1/
√

n)
)

wndF̂n. (17)

Let us now show that An ≡ n
∫ τ
0 G

(
Fθ̂n

− Fθ0 + op(1/
√

n)
)

wndF̂n is bounded
in probability from which, using (17), the assertion follows. Let ε > 0 be a
real number. By Condition C there exists a neighborhood V of 0 and constants
0 < α < β < +∞ such that αx2 ≤ G(x) ≤ βx2 on V . Hence, on V we have

G(x + y) ≤ 2β(G(x)/α) + 2βy2. (18)

From Condition E and Theorem 1 we have sup[0,τ ] |Fθ̂n
− Fθ0 | = oP (1) and by

properties of the Kaplan-Meier estimator we have for n ≥ n0 both sup[0,τ ] |F̂n −
Fθ0 | and sup[0,τ ] |Fθ̂n

− Fθ0 + op(1/
√

n)| in V with probability more than 1 − ε.
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It follows that

1− ε
(18)

≤ P
(

An ≤ 2nβ

∫ τ

0

[
(1/α)G(F̂n − Fθ̂n

+ op(1/
√

n)) + (F̂n − Fθ0)
2
]
wndF̂n

)
def. θ̂n

≤ P
(

An ≤ 2nβ

∫ τ

0

[
(1/α)G(F̂n − Fθ0 + op(1/

√
n)) + (F̂n − Fθ0)

2
]
wndF̂n

)
≤ P

(
An ≤ 2nβ

∫ τ

0

[
(β/α)(F̂n − Fθ0 + op(1/

√
n))2 + (F̂n − Fθ0)

2
]
wndF̂n

)
≤ P (An ≤ Bn) ,

where, Bn is equal to

2β

(β

α
+ 1
)(

sup
[0,τ ]

∣∣∣√n
(
F̂n − Fθ0

)∣∣∣)2

+ 2 sup
[0,τ ]

|oP (1)
√

n(F̂n − Fθ0)|+ oP (1)


× sup

[0,τ ]
|wn|.

Under Condition B, by the continuous mapping theorem and because
√

n(F̂n −
Fθ0) converges weakly to a Gaussian process in D[0, τ ], the sequence Bn is a
OP (1). By this with the above inequality we obtain that An = OP (1) and since
Σ(τ) is positive definite we have by (17) that

√
n(θ̂n − θ0) = OP (1).

Proof of Theorem 3 and Lemma 3. All results follow by differentiating the right
hand side in the following equation with respect to ε at ε = 0 and using that
G(0) = G′(0) = 0.

0 =
∫ τ

0
G′ ((1− ε)H + ε∆x − FT ((1−ε)H+ε∆x) + oP (1/

√
n)
)

×Ḟθ|θ=T ((1−ε)H+ε∆x)
wn((1− ε)H + ε∆x) d((1− ε)H + ε∆x).


