Discrete Analytical Ridgelet Transform

Philippe Carré 1, * Eric Andres 1
* Auteur correspondant
Abstract : In this paper, we present a new implementation of the Ridgelet transform based on discrete analytical 2-D lines: the discrete analytical Ridgelet transform (DART). This transform uses the Fourier strategy for the computation of the associated discrete Radon transform. The innovative step of the DART is the construction of discrete analytical lines in the Fourier domain. These discrete analytical lines have a parameter called arithmetical thickness, allowing us to define a DART adapted to a specific application. Indeed, the DART representation is not orthogonal it is associated with a flexible redundancy factor. The DART has a very simple forward/inverse algorithm that provides an exact reconstruction. We apply the DART and its extension to a local-DART (with smooth windowing) to the denoising of some images. These experimental results show that the simple thresholding of the DART coefficients is competitive or more effective than the classical denoising techniques.
Liste complète des métadonnées

Contributeur : Eric Andres <>
Soumis le : mercredi 21 janvier 2009 - 10:37:44
Dernière modification le : lundi 13 octobre 2014 - 15:43:25
Document(s) archivé(s) le : mardi 8 juin 2010 - 18:53:08




Philippe Carré, Eric Andres. Discrete Analytical Ridgelet Transform. Signal Processing, Elsevier, 2004, 84 (11), pp.2165 - 2173. <10.1016/j.sigpro.2004.07.009>. <hal-00354722>



Consultations de
la notice


Téléchargements du document