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A generalized preimage for the digital analytical
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Abstract

A new digital hyperplane recognition method is presented. This algorithm allows the
recognition of digital analytical hyperplanes, such as Naive, Standard and Supercover
ones. The principle is to incrementally compute in a dual space the generalized
preimage of the ball set corresponding to a given hypervoxel set according to the
chosen digitization model. Each point in this preimage corresponds to a Euclidean
hyperplane the digitization of which contains all given hypervoxels. An advantage
of the generalized preimage is that it does not depend on the hypervoxel locations.
Moreover, the proposed recognition algorithm does not require the hypervoxels to
be connected or ordered in any way.
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1 Introduction

In digital geometry, objects are usually considered as digital point or hyper-
voxel (pizels in 2D and wvozels in 3D) sets. Indeed, this is the structural de-
composition mostly used to store digital information. A drawback of this kind
of representation is that it does not provide any information on the shape
or topology of digital objects. Another way of obtaining the description of
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digital objects is the hyperplane decomposition. This process, called digital
hyperplane recognition, consists of determining if a digital point set forms a
hyperplane segment, that is a hyperplane bounded region.

The recognition problem has so far mainly been studied in dimensions 2 and 3
(see [1] for an overview on 2D recognition algorithms), with various approaches
such as linear programming techniques [2,3], computational geometry meth-
ods [4-6] or preimage computation based algorithms |7,8]. Very few papers
handle the problem in arbitrary dimensions [9,10|. Computational and ef-
ficiency aspects of digital hyperplane recognition problems are investigated
in [11].

The present paper is an extension of [8] in which we propose a generalized
approach for the recognition of digital analytical hyperplanes such as Naive,
Standard and Supercover hyperplanes using generalized preimages. Informally,
the preimage [12] of a hypervoxel set consists of all Euclidean hyperplanes
the digitization of which contains the given hypervoxels. More precisely, the
preimage of a hypervoxel set is computed in a dual space where each point
is mapped onto a Euclidean hyperplane. Preimage computation algorithms
depending on the hypervoxel locations have been proposed in dimensions 2
and 3 [7,13].

In this work, we perform the recognition of digital analytical hyperplanes
by computing the set of Euclidean hyperplanes which intersect the ball set
associated to a given hypervoxel set according to the chosen digitization model.
In order to do that, we incrementally compute the generalized preimage of
the balls corresponding to the hypervoxels. This preimage is defined in any
dimension and is independent of the hypervoxel connectivity and location.
More precisely, it is computed from the dual of the ball corresponding to each
hypervoxel. Indeed, each point in this dual object corresponds to a Euclidean
hyperplane which cuts the ball corresponding to the hypervoxel. Hence, a
major part of this paper is devoted to determining the formulas describing
the dual of a polytope in order to compute the one corresponding to the
balls associated to an analytical digitization model. First, a positive and a
negative extrusion are defined. Then, we show that the dual of a polytope
can be computed from the extrusions of the dual of its vertices. Finally, the
intersection of all ball duals forms the generalized preimage. The recognition
process consists therefore simply in computing the generalized preimage of
a ball set corresponding to a hypervoxel set (i.e. computing the dual of a
ball set corresponding to a hypervoxel set). More precisely, we start with the
dual of a ball corresponding to a hypervoxel and add the duals of the balls
corresponding to the other hypervoxels as long as the generalized preimage is
not empty.

In Section 2, we introduce some notations and definitions as well as the Naive,



Standard and Supercover analytical hyperplane descriptions. In Section 3,
we determine the dual of a polytope and introduce the notion of generalized
preimage of a polytope set. Then, we explain in Section 4 how our digital
analytical hyperplane recognition algorithm works. We especially focus on
the Naive, Standard and Supercover hyperplane cases. Conclusion and future
works are proposed in Section 5.

2 Preliminaries

In this section, we first propose some notations and give the definitions of a
hypervoxel and a ball. Then, we present four digitization analytical models
considered in this work: the Naive and closed Naive models, the Standard
model and the Supercover model.

2.1 Notations and definitions

Let n € Z, n > 0. In the following, we will denote by &, the classical
n-dimensional Euclidean space, and by [1,k] the subset of integer values
{1,...,k} C Z. Moreover, a point with integer-valued coordinates p € Z"
will be called a digital point.

We define an a-hypercube, o € R, as follows:

Definition 1 (Hypervoxel) The hypervozel (or n-dimensional cube) cen-
tered on the digital point (cy,...,c,) € Z", is the set of points (x1,...,x,) €
R™ wverifying

1 1
Vz’e[[l,n]],ci—ﬁgxiﬁci—l—ﬁ

Hypervoxels in dimensions 2 and 3 are respectively called pizels and vozels.

Definition 2 (Ball) Let d be a distance in R™. Then, the ball By(c,r) with
center ¢ € R"™ and radius v € R is defined by

Bi(c,r) = {zx € R"|d(c,z) <1}

2.2 Discrete analytical models

In this work, we study four digital analytical models: the Naive model [14,15],
the closed Naive model |16|, the Standard model [17| and the Supercover



model [18,19]. These models are defined in any dimension and provide a digi-
tization of Euclidean objects. Moreover, a distance and a ball is associated to
each model.

In this section, we give for each model the definition of the digital hyperplane
(or n-dimensional planes) and describe precisely the digitization of a Euclidean
hyperplane according to the distance and the ball associated to the model.

2.2.1 The Naive models [14,16]

Naive and closed Naive hyperplanes are defined analytically as follows (see Fig-
ure 1):

Definition 3 (Naive Hyperplane [14]) The Naive hyperplane with param-
eters (co,...,cn) € R" is the set of points (x1,...,1,) € Z" verifying

_ maxlgign |Cz|

2

maxlgign |Cz|

n
SCO+ZCiIi< 9

i=1

where ¢ > 0, orc; = 0 and co > 0, or ..., orci=co=...=¢p_1 =0
and ¢, > 0.

Definition 4 (Closed Naive Hyperplane [16]) The closed Naive hyper-

plane with parameters (co, . .., c,) € R"™ s the set of points (v1,...,,) € Z"
verifying
. . n . .
_ MaXicicn |G| e+ S e < max; <icn |Gl
2 - 2
L] L]
/ /
// //
(a) (b)

Fig. 1. Examples of Naive and closed Naive hyperplanes in dimension 2: (a) Naive
line, (b) Closed Naive line.

Remark 5 Let p = (z1,...,2,) € R" and p/ = (2],...,2)) € R*. The dis-
tance assoctated to the Naive models is the distance dy defined by

n
dl(pvp/) = Z |z — $2|
i=1

and the corresponding ball is By, (c, %), c € Z". For instance in dimension 2,
the ball By, (c,3) is a reqular rhombus.



Hence, the closed Naive digitization of a Euclidean hyperplane also consists of
the centers of all balls which are intersected by the hyperplane (see Figure 2b),
whereas the Naive one consists of the centers of all balls cut by the hyperplane
except when a ball vertex is intersected (see Figure 2a). In this case, several
hypervoxels adjacent to the corresponding hypervoxel do not belong to the
Naive digitization. This is due to the fact that one inequality in Definition 4
is strict.

Fig. 2. Mlustration of the balls associated to the Naive models: (a) Balls associated
to a Naive line, (b) Balls associated to a closed Naive line.

Proposition 6 Let B be a ball By, (¢, %), d eZ", and let H be a Euclidean
hyperplane with equation co + .1 c;x; = 0 that passes through a vertex v =
(v1,...,v,) of B. Moreover, we assume that the first c; # 0 verifies ¢; > 0.

Let j € [1,n] such that |¢;| = max], |¢;|. Then, if ¢; > 0 (resp. ¢; < 0),

1=
. . . 1
the digital point (vi,...,v;_1,V; — 5,Vj41,---,Vn) (T€SP. (V1,...,05_1,0; +

%, Vjg1,--.,Un)) belongs to the Naive digitization of H.

PROOF. By definition, a digital point p = (x1, ..., x,) belonging to a Naive
hyperplane verifies the following inequalities:

n
SCO—FZC,{L’Z’ <

i=1

_ maxj<i<n ‘Cz‘

2

maxj<i<n ‘ C; ‘

2

Since |¢;| = max], |¢;|, we want to determine k£ € {—1,1} such that

el

- 1
5 co+ >, cvi+c(v+=k)

i=1i#j 2
Then, since ¢y + >, ¢;v; = 0, we have

g 1

Hence, if ¢; > 0, we have



c;i 1
—Ej = 5]{70]‘,]{7 - {—1, 1}
and so we deduce that k = —1. Else, if ¢; > 0, we have
C; 1
5] = iij,]{Z S {—1, 1}
and then we deduce that k = 1. (]

Proposition 6 is illustrated in Figure 3.

/

Fig. 3. Digital points belonging to the Naive digitization of a Euclidean line according
to the slope of the line (in dark grey).
2.2.2  The Standard [17] and Supercover [18,19] models

Standard and Supercover hyperplanes are defined analytically as follows
(see Figure 4):

Definition 7 (Standard Hyperplane [17]) The Standard hyperplane with

parameters (co, . .., c,) € R is the set of points (x1,...,3,) € Z" verifying
o es n mes
o 2—1‘ 2‘ S CO+ZCiIi < 2—1‘ 2‘
2 2 2
where ¢ > 0, or¢c; = 0 and cg > 0, or ..., orci=c=...=C_1 =0

and ¢, > 0.

Definition 8 (Supercover Hyperplane [19]) The Supercover hyperplane
with parameters (co,...,c,) € R"™ s the set of points (xy,...,3,) € Z"



verifying

_ i |cil §00+Zcz‘1’i§ i |cil

=1

(a) (b)

Fig. 4. Examples of Standard and Supercover hyperplanes in dimension 2: (a) Stan-
dard line, (b) Supercover line.

Remark 9 Let p = (z4,...,2,) € R" and p' = (2],...,2)) € R*. The dis-
tance associated to the Standard and Supercover models is the distance d
defined by

doo(p>p/) = Ssup |£EZ - ZE';|
€1,n]

and the corresponding ball is By_(c,1), ¢ € Z". For instance in dimension 2,
the ball By (c,1) is a pizel.

Hence, the Supercover digitization of a Euclidean hyperplane also consists
of the centers of all hypervoxels which are intersected by the hyperplane (see
Figure 4b), whereas the Standard one consists of the centers of all hypervoxels
cut by the hyperplane except when a hypervoxel vertex is intersected (see
Figure 4a). In this case, several hypervoxels adjacent to this vertex do not
belong to the Standard digitization. This is due to the fact that one inequality
in Definition 7 is strict.

Proposition 10 Let B be a ball By (', 1), ¢ € Z™, and let H be a Fuclidean
hyperplan with equation cy + Y., c;x; = 0 that passes through a vertex v =
(v1,...,v,) of B. Moreover, we assume that the first ¢; # 0 verifies ¢; > 0.

Then, each digital point (z1,...,x,) belonging to the standard digitization of
H werifies for all i € [1,n]:

chl < 0;
ZfCZ > 0,
or r; = v; — % ZfCZ = 0.

o T, =0; +
® U, =V; —
o T, =0; +

[N I



PROOF. By definition, a digital point p = (x4, ..., z,) belonging to a Stan-
dard hyperplane verifies the following inequalities:

i |cil
2

=1 |CZ|

n
SCO+ZCiIi< 9

i=1

We want to determine k; € {—1,1}, ¢ € [1,n], such that

_Z?:l |ci

1
-y
5 )

= (Cp +ZC¢(U¢ + 5
i=1

that is, since co + > c;v; = 0,

Zn 1 |cil =1
=5 T2k
Hence, we have

and then

> (ke — ki) = i(l{;é —ki)e; =0
i=1 =1

with &k} € —1,1 and kl¢; > 0

However, since Vi € [1,n], (ki — k;)c; > 0 we deduce that

i€ [1,n]),k; =k
that is
e if ¢; > 0 then k; = —1,

e if ¢; <0 then k; =1,
[} ifcizothen ]{322—1 or ]{5221

Proposition 10 is illustrated in Figure 11.
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Fig. 5. Digital points belonging to the Naive digitization of a Euclidean line according
to the slope of the line (in dark grey).

3 Dual of a polytope

In order to define the dual of a polytope, we use a dual transformation similar
to the well known Hough transform which is an efficient tool usually used in
image processing to recognize parametric shapes in an image. A review on
existing variations of this method is presented in [20].

In the two following sections, we first define the parameter space in which
our dual transformation is performed as well as the positive and negative
extrusions of a point. Then, we describe the dual of a polytope and define the
notion of generalized preimage, which is the basis of the recognition algorithm
presented in Section 4.

3.1 Definitions and properties

In this work, we use the n-dimensional parameter space P,, C R", and define
the two functions D¢ : &, — P, and Dp : P, — &, by:

n—1
Dg(l'l,. . axn) = {(y17- .- ayn) € Pn|yn = - Z$1yz +xn}

i=1
n—1
DP(yla e >yn) = {(Ila e '>$n) € €n|xn = Zyz$z ‘I'yn}

i=1

Informally, each point in &, (resp. P,) is transformed by D¢ (resp. Dp) into a
hyperplane in P, (resp. &,). In the rest of this paper, we will generically write
Dual for De or Dp.

Definition 11 (Dual object) Let O be a subset of R™. Then,

Dual(O) = | J Dual(p)

peO

15 called the dual of O.



Proposition 12 Let O and Oy be two subsets of R™ such that O; C O,.
Then

Dual(Oy) € Dual(Os)

PROOF. Since O; € O,, we deduce that Dual(O2) = U,co, Dual(p) =
[Upeo1 Dual(p)} U |:Up602\01 Dual(p)}. Then, Dual(O1) C Dual(Os). O

Moreover, the following properties can be deduced from our definition of the
duality.

Proposition 13 Let Oy and O, be two subsets of R™. Then,

Dual(O1 U Os) = Dual(O1) U Dual(Os)

PROOF. Dual(O; U Oy) = Upeo,uo, Dual(p) =
[Upeo1 Dual(p)} U [Upeo2 Dual(p)} = Dual(O1) U Dual(Os). O

Proposition 14 Let O, and O, be two subsets of R™. Then,

Dual(01 N 02) Q Dual(Ol) N DUCLZ(OQ)

PROQOF. Since O N Oy C O; and O; N Oy C 0Oy, we deduce
that Dual(O1; N Os) C Dual(O1) and Dual(O; N O3) € Dual(O3). Thus,
Dual(O1 N Os) € Dual(O1) N Dual(Oy). O

Remark 15 Let p € R" be a point. The dual of each point which lies in
Dual(p) is a hyperplane which passes through p.

Moreover, in order to describe the dual of a polytope, we need to define the
positive and negative extrusions of a point as follows:

Definition 16 (Positive and Negative Extrusions) Let
p=(x1,...,2,) € R be a point. The positive extrusion of p is defined
by:

pt={p =(),....2) e R" Vi € [1,n— 1], x; = 2 and =, < x,}

In the same way, the negative extrusion of p is defined by:

10



p-={p =(),...,2)) e R"|Vi e [1,n—1],z; = =, and x, > z/,}

Let O; and Oy be two subsets of R™ such that O; € O,. Then, O C OF
and O7 C O; . Moreover, the following properties can be deduced from Defi-
nition 16.

Proposition 17 Let O, and O, be two subsets of R™. Then,
(01 U0yt =0 UO5

In the same way, (O; UO9)~ = Oy UO;.

PROOF. (01U O0:)" = Upco,u0,P" = [Up€O1 P+] U [UpEOz P+] =07 V03,
The proof of (O; UO2)~ = O7 U Oy is obtained in the same way.

Proposition 18 Let p € R™ be a point. Then,
Dual(p)t = Dual(p*)

In the same way, Dual(p)~™ = Dual(p™).

PROOF. Let us consider p = (zy,...,x,) € &,. Then, Dual(p™) = De(pt) =

n—1
U Duad(p)= U AW 90) € Palyn == D iy + a3} =
p'ept p'=(z,....x},)EpT i=1
n—1
{(r, o oyn) €Palyn = =Y wyi +aat = |J 0" =De(p)” = Dual(p)™.
i=1 p'€De(p)
The proof of Dual(p)~ = Dual(p~) can be obtained in the same way. O

Proposition 18 is illustrated in Figure 6.

3.2 Polytope dual representation

In this work, we need to define the dual of a polytope. An n-polytope, n € 7Z,
is defined as follows:

11



Dual(p)

Dual(p)

(a) (b)

Fig. 6. Positive and negative extrusions of a point p (half-lines) and their dual object:
a half-space, (a) Positive extrusion of p, (b) Negative extrusion.

Definition 19 (n-polytope) Let P be a polytope in dimension n, or n-
polytope. Then, there exists a finite set of k half-spaces H = {Hy, ..., Hy}
such that P = ﬂleﬁi, and such that if H; is the hyperplane forming
the boundary of the half-space H; (or boundary hyperplan of H;), then
Vi € [1,k], H; N P # 0.

Notations: Let P be an n-polytope, and let H be the corresponding half-
space set. We define three subsets of H, denoted Hy, H, and H_, as follows:

e H, is the half-space set in H defined by an equation similar to
Cn + 2?2—11 ¢; X; > 0 or similar to ¢, + 2?2—11 ¢ X; <0, with (¢q,...,¢,) € E™.

e H, is the half-space set in H defined by an equation similar to
Xo >+ X0 6 X, (e, 0) €E™
e H_ is the half-space set in H defined by an equation similar to

Xn <c,+ ?:_11 CiXi (Cl,...,Cn) e&n.

Moreover, we denote Hy, H, and H_ the three boundary hyperplane sets
corresponding respectively to the half-space sets Hy, H, and H_.

Proposition 20 Let P be an n-polytope. Then,

P=PtNnpP-
with
Pr= N T
He(HoUHL)
and
P= N H
He(HoUH-_)

12



PROOF. Let us prove PF = (Ngcmum, H. The proof of P- =

C

Mie@oum.) H can be obtained in the same way.

Let p = (p1,...,pn) € PI. Then, there exists p’ = (p},...,p),) € P such that
for all 7 € [1,n — 1],

¢ =c; and ¢, = ¢,
Hence, for all H € Hy and for all H € H,, p € H. We deduce that p €
Naemum) H-

Now, let p = (p1,...,pn) € ﬂﬁe(ﬂouﬁ,) H. Let us proceed by contradiction
and assume that p ¢ Pt. Then, for all p’ = (p|,...,p)) € P., there exists
i € [1,n — 1] such that ¢; # ¢, or ¢, # c,. Then, there exists H € Hy or
H € H, such that p ¢ H. We deduce that p ¢ Ngom,0m H- O

Proposition 20 is illustrated in Figure 7 in the case of dimension 2.

5

5 /\
p* al | S 4

e

(a) (b) ()

Fig. 7. Positive and negative extrusions of a polytope in dimension 2: (a) A 2-poly-
tope P, (b) Positive extrusion of P, (c) Negative extrusion of P.

Let us now describe the dual of an n-polytope P from its vertices.

Let V be the set of vertices of P. We define two subsets of V), denoted V; and
V_, as follows:

Ve={veV|3H e Hy,ve HN P}
V. ={veV|3H e H_,ue HN P}

We can see in Figure 7 that the vertices numbered 1, 2, 3 and 4 belong to the
vertex set V. of P. In the same way, vertices numbered 4, 5 and 6 belong to
the vertex set V_.

The dual of an n-polytope can then be defined by:

13



Theorem 21 (Dual of a Polytope) Let P be an n-polytope, V., and V_ the
two vertex sets defined previously. Then:

Dual(P) =

U Dual(v)+] N [ U DU@Z(”>_]

vEV L veEV_

PROQOF. Let us first prove the following lemma:
Lemma 22 Let P be an n-polytope. Then,

Dual(P) = Dual(P)* N Dual(P)~

PROQOF. In the following, we assume that H € &,,.

Since Dual(P) C Dual(P)" and Dual(P) C Dual(P)~, we deduce that
Dual(P) C Dual(P)* N Dual(P)~.

We now prove that Dual(P)™ N Dual(P)~ C Dual(P). Consider a point
p=(1,...,2,) € Dual(P)" N Dual(P)~. Then,

W = (2},...,2,) € Dual(P) | p € p/*
and
W' = (2l,...,a) € Dual(P) | p € p/"-

We deduce that Vi € [1,n — 1], «}

Y/ / "
=z, =a] and z, <z, < 7.

Next we prove that Dual(p) N H # (), which would imply p € Dual(P). Since
p' € Dual(P) and p” € Dual(P), we have Dual(p")NP # () and Dual(p”)NP #
0. Let ¢ = (q},---,4,) € Dual(p’) N P and ¢" = (¢{,...,q) € Dual(p”)N P.
Then, we have
n—1 n—1
G =D wid; +a, and ¢y = > x:q] + 77,
i=1 i=1
Since !, < x,, < 2/, we deduce that
n—1 n—1
Gn < D wig; + x, and g > Y 3iq] + @,
i=1

i=1

Thus, Dual(p) N [¢’,¢"] # 0. Finally, since P is convex we know that [¢/, ¢"] C
P. We then deduce that Dual(p) N P # 0. O

14



Let us now define two object sets F, and F_ by
f+={HﬂP,H€H+}

and

F_={HNP,HeH_}

Let S be a set. In the following, we will denote by |S| the cardinal of the set
S. Especially, we remark that |F| (resp. |F_|) is equal to |H,| (resp. |[H_]).

For instance, in dimension 2, the set F, (resp. F_) corresponds to the segments
which belong to Thu boundary of P such that there two endpoints are vertices
in V; (resp. V_). In Figure 7, F, is composed of the segments [1, 2], [2, 3] and
[3,4]. In the same way, F_ is composed of the segments [4,5] and [5,6]. In
dimension 3, these two sets are composed of faces of P.

The following relation is then verified:

Lemma 23 Let P be an n-polytope. Then,

pr= J F*

FeFy

In the same way, P~ = Upcr_ F.

PROOF. Let us prove that

Pt = U Ft = U (Hiﬂp)+:[ U HNP
FeFy i€[L,| 7y ], HieHy i€[L|CH ], HieH +

First, we have
U HNPCP
i€[1,|CH ], Hi€H ¢

Hence,
+

[ U  HnpP| CP*

i€[1,|C+|],Hi€H+

Let now p € Pt. We know that Pt = Neeryum, H, which is equiv-
alent to P* = Npepoup, HT. Hence, we deduce that for all H; € H,,
i € [1,|C4|], there exists p; = (piy,...,pi,) € H; such that p € pf. Let
? = (piys-- -, Di,_1,P,) be the point which verifies Vi € [1,|C.|],p,, > pi, -
Then, since P is a polytope, we have p’ € P.

The second equality can be obtained in the same way. 0]

15



Lemma 24 Let P be an n-polytope. Then,

Dual(P*) = |J Dual(v)*

veEVL

In the same way, Dual(P~) = U,ey_ Dual(v)~.

PROOF. Let us prove that Dual(P") = U,ey, Dual(v)".

By definition, for each vertex v in V., there exists F' € F, such that
v € F. Hence, Uyey, v € Uper, F. Moreover, (Uyey, v)T € (Uper, )7
Then, Uyey, v© € Uper, FT. However, according to Lemma 23, we have
Uper, F* = P*. We deduce that Dual(U,ey, v*) € Dual(P"), and then
Uvev, Dual(vt) € Dual(PY).

Let us prove the second inclusion. Let p € Dual(P") = Dual(Upeg, F').
Then, there exists F' € F, such that Dual(p) N F* # (). Let us prove that
there exists one vertex v in V such that Dual(p) Nvt # (.

Let us proceed by contradiction and assume that for all v € F'; Dual(p)Novt =
(). We know that there exists H € H, such that F = HNP = HN [ﬂle E} =

ﬂle(H N H;). Hence, if we considered the hyperplane H as space, we deduce
that F is an n — l-polytope, since for all 4, H; N H is a half-space in H,
and then F' is equal to the intersection of several half-spaces. Since I is the
convex hull of its vertices, we deduce that if Vo € F, Dual(p) N v = (), then,
Vp' € F, Dual(p) Np" = 0. Moreover, F* = U,cp 0" = Uperier, P + kOX, —
Uker, C’+kO_)Xn. Hence, since F'is a polytope, F—l—k:O_)Xn is also a polytope and

the same method can be applied to prove that Vp' € F+kOX,,, Dual(p)Np' =
0.

A similar proof can be used to show that Dual(P~) = U,ey, Dual(v)”™. O

The proof of Theorem 21 is obtained from Lemma 24. 0

Theorem 21 allows us to describe the dual of a polytope from the dual of its
vertices. More precisely, the dual of a polytope is defined by the intersection
of two objects, each one being a union of several half-spaces (see Figure 8).
Each half-space is the positive or negative extrusion of the hyperplane dual of
one vertex of the polytope. In Figure 8c, we can see the representation of the
dual of the polytope in Figure 7a.
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Dual(P*)

Dual(P )

Dual(P)

(a)

(b)

Fig. 8. Dual of a 2-polytope P: (a) Dual of the positive extrusion of P, (b) Dual of
the negative extrusion of P, (c¢) Dual of P.

3.8 The notion of generalized preimage

In this section, we define the generalized preimage of a set of polytopes. This
preimage is a geometrical object computed in the parameter space from the
duals of the polytopes. Each point in the preimage is associated to a hyper-
plane which cuts all polytopes. The generalized preimage of a polytope set is
then defined as follows:

Definition 25 (Generalized Preimage) Let P = (P, ..., Py) be a set of
k polytopes, and let Dual(P;), i € [1,k], be the dual of P; in the parameter
space. The generalized preimage Gp of P is defined by:

Gp(P) = ﬁ Dual(P;)

i=1

4 Digital hyperplane recognition

In this section, we present our digital hyperplane recognition algorithm. More-
over, we assume this hyperplane is analytically defined with a distance and
a ball such as the digital hyperplanes defined in Section 2.2. The aim of our
algorithm is to determine if a hypervoxel set belongs to a digital hyperplane.
More precisely, we want to determine all Euclidean hyperplanes the digitiza-
tion of which contains given hypervoxel set. We call these hyperplanes the
solution hyperplanes.

In order to do that, the idea is to compute the set of Euclidean hyperplanes
(if it exists) which cross all balls corresponding to the given hypervoxels by
computing the generalized preimage of the balls. Then, based on the shape
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(empty or not) of this preimage, we can deduce if the hypervoxel set belongs
or not to a digital hyperplane.

However, according to the digitization model used, some points located on
the border of the dual of the ball are not associated to solution hyperplanes
(because these hyperplanes cross ball vertices), and thus some points on the
border of the generalized preimage are not associated to solution hyperplanes.
It is for instance the case for the Standard and Naive models since one in-
equality in the digital hyperplane definitions (see Definitions 3 and 7) are
strict.

In the following, we first detail our recognition algorithm. Then, we apply our
algorithm to the Naive and Standard digitization models.

4.1  Recognition algorithm

Let H = {Hy,...,Hi} be a set of k hypervoxels. The digital hyperplane
recognition (see Algorithm 1) is simply performed by computing the general-
ized preimage Gp of the balls {By, ..., By} associated to H. First, Gp(By),
i.e. the dual of By, is computed according to the polytope dual definition
given by Theorem 21. Then, Gp({ By, B2}) is computed from the intersection
of Gp(B;) and Dual(Bs). And so on until Gp({By, ..., Bx}) is computed or
Gp becomes empty. Note that the balls can be considered in any order, and
the corresponding hypervoxels do not need to be connected.

Algorithm 1: Standard and Supercover hyperplane recognition algorithm
Data: A set H of k hypervoxels Hy, ..., H; and their associated balls By,
.., By.

begin
GP «—— Dual(By);
1 — 2;
while GP # () and i < n do
GP «—— GP N Dual(B;);

L 1 +— 1+ 1;
if GP # () then

| 'H belongs to a digital hyperplane.

else
| 'H does not belong to a digital hyperplane.

end
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4.2 Bxample: application to Naive and Standard hyperplane recognition

For a given ball associated to a given digitization model, some parts in the
generalized preimage do not correspond to solution hyperplanes. It is the case
when one or several inequalities in the hyperplane digitization definition are
strict, for instance for the Standard and Naive models. In the case of the
Supercover and closed Naive digitization models, all points in the generalized
preimage are solutions.

In the following, we study the case of the Naive and Standard models and de-
scribe which part of the dual of the balls corresponds to solution hyperplanes.

4.2.1 Naive hyperplanes

We want to determine which points on the boundary of the dual of a ball
By, (c, %) are associated to solutions hyperplanes. We know that each point
(co,--.,cn_1) is associated to a hyperplane with equation cq —xn+z?:_11 Cix; =
0. Moreover, we know that this hyperplane contains a vertex of the ball.

We deduce from Proposition 6 the following property:

Proposition 26 Let B be a ball By, (¢, %), d eZ" and let H be a Euclidean
hyperplane with equation cy + X1 c;x; = 0 that passes through a vertexr v =

(v1,...,v,) of B. Moreover, we assume that the first ¢; # 0 verifies ¢; > 0.
Hence, there exists j € [1,n] such that v = (c¢},...,cj_1, ¢, + 5,5y, ... c)
(resp. v=(c},...,¢j_1,¢; — %,c;-H, ...ych)). Then, if ¢; > 0 (resp. ¢; <0), ¢

belongs to the Naive digitization of H.

Hence, from Proposition 26, we can easily determine which points in the dual of
a ball By, (¢, %) are associated to solution hyperplanes. We can see in Figure 9
an example of dual ball in dimension 2.

Figure 10 illustrates the recognition process in dimension 2 in the case of the
Naive hyperplane recognition.

4.2.2  Standard hyperplanes

We want to determine which points on the boundary of the dual of a ball
By (c,1) are associated to solutions hyperplanes. We know that each point
(o, - .., Cn1) is associated to a hyperplane with equation ¢y —z, + "' c;z; =

0. Moreover, we know that this hyperplane contains a vertex of the ball.

We deduce from Proposition 10 the following property:
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Fig. 9. Dual of a ball By, (¢, 3): (a) Points on dashed lines are not associated to
solution hyperplanes, (b) Correspondence between the ball and its dual.

—- .
’
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e
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\

Fig. 10. Example of 2D generalized preimage computation: Naive hyperplane recog-
nition.

Proposition 27 Let B be a ball By (', 1), ¢ € Z", and let H be a Euclidean
hyperplane with equation co + X1 c;x; = 0 that passes through a vertex v =
(v1,...,vn) of B. Moreover, we assume that the first ¢; # 0 verifies ¢; > 0.

Hence, if v, > ¢, (resp. v, < ¢, ) and ¢, > 0 (resp. ¢, <0), then ¢ belongs to
the Standard digitization of H.

Hence, from Proposition 27, we can easily determine which points in the dual

of a ball By_(c/,1) are associated to solution hyperplanes. We can see in
Figure 11 an example of dual ball in dimension 2.
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(a) (b)

Fig. 11. Dual of a ball By (¢/,1): (a) Points on dashed lines are not associated to
solution hyperplanes, (b) Correspondence between the ball and its dual.

Figure 12 illustrates the recognition process in dimension 2 in the case of the
Standard hyperplane recognition.

m

Fig. 12. Example of 2D generalized preimage computation: Standard hyperplane
recognition.

5 Conclusion and future works

In this article, a new digital hyperplane recognition algorithm in arbitrary
dimension has been presented. This algorithm determines if a given hyper-
voxel set belongs to a digital hyperplane by providing the set of Euclidean
hyperplanes which cut all balls associated to the given hypervoxels. This set
is deduced from the computation in a dual space of the generalized preim-
age of the balls. This preimage is defined as the intersection of the duals of
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the balls. The recognition algorithm does not require given hypervoxels to
be connected. Moreover, during the recognition process, hypervoxels can be
considered in any order.

The results proposed in this paper are very general. Indeed, since the general-
ized preimage is defined for any polytope set, this can easily lead to recognition
algorithms in multi-scale grids or heterogeneous grids, such as for instance ir-
regular isothetic grids |21].
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