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A generalized preimage for the digital analyti
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eAbstra
tA new digital hyperplane re
ognition method is presented. This algorithm allows there
ognition of digital analyti
al hyperplanes, su
h as Naive, Standard and Super
overones. The prin
iple is to in
rementally 
ompute in a dual spa
e the generalizedpreimage of the ball set 
orresponding to a given hypervoxel set a

ording to the
hosen digitization model. Ea
h point in this preimage 
orresponds to a Eu
lideanhyperplane the digitization of whi
h 
ontains all given hypervoxels. An advantageof the generalized preimage is that it does not depend on the hypervoxel lo
ations.Moreover, the proposed re
ognition algorithm does not require the hypervoxels tobe 
onne
ted or ordered in any way.Key words: Digital geometry, hyperplane re
ognition, generalized preimage
1 Introdu
tionIn digital geometry, obje
ts are usually 
onsidered as digital point or hyper-voxel (pixels in 2D and voxels in 3D) sets. Indeed, this is the stru
tural de-
omposition mostly used to store digital information. A drawba
k of this kindof representation is that it does not provide any information on the shapeor topology of digital obje
ts. Another way of obtaining the des
ription of
∗ Corresponding author.Email addresses: Martine.Dexet�lirmm.fr (M. Dexet),andres�si
.univ-poitiers.fr (E. Andres).Preprint submitted to Elsevier S
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digital obje
ts is the hyperplane de
omposition. This pro
ess, 
alled digitalhyperplane re
ognition, 
onsists of determining if a digital point set forms ahyperplane segment, that is a hyperplane bounded region.The re
ognition problem has so far mainly been studied in dimensions 2 and 3(see [1℄ for an overview on 2D re
ognition algorithms), with various approa
hessu
h as linear programming te
hniques [2,3℄, 
omputational geometry meth-ods [4�6℄ or preimage 
omputation based algorithms [7,8℄. Very few papershandle the problem in arbitrary dimensions [9,10℄. Computational and ef-�
ien
y aspe
ts of digital hyperplane re
ognition problems are investigatedin [11℄.The present paper is an extension of [8℄ in whi
h we propose a generalizedapproa
h for the re
ognition of digital analyti
al hyperplanes su
h as Naive,Standard and Super
over hyperplanes using generalized preimages. Informally,the preimage [12℄ of a hypervoxel set 
onsists of all Eu
lidean hyperplanesthe digitization of whi
h 
ontains the given hypervoxels. More pre
isely, thepreimage of a hypervoxel set is 
omputed in a dual spa
e where ea
h pointis mapped onto a Eu
lidean hyperplane. Preimage 
omputation algorithmsdepending on the hypervoxel lo
ations have been proposed in dimensions 2and 3 [7,13℄.In this work, we perform the re
ognition of digital analyti
al hyperplanesby 
omputing the set of Eu
lidean hyperplanes whi
h interse
t the ball setasso
iated to a given hypervoxel set a

ording to the 
hosen digitizationmodel.In order to do that, we in
rementally 
ompute the generalized preimage ofthe balls 
orresponding to the hypervoxels. This preimage is de�ned in anydimension and is independent of the hypervoxel 
onne
tivity and lo
ation.More pre
isely, it is 
omputed from the dual of the ball 
orresponding to ea
hhypervoxel. Indeed, ea
h point in this dual obje
t 
orresponds to a Eu
lideanhyperplane whi
h 
uts the ball 
orresponding to the hypervoxel. Hen
e, amajor part of this paper is devoted to determining the formulas des
ribingthe dual of a polytope in order to 
ompute the one 
orresponding to theballs asso
iated to an analyti
al digitization model. First, a positive and anegative extrusion are de�ned. Then, we show that the dual of a polytope
an be 
omputed from the extrusions of the dual of its verti
es. Finally, theinterse
tion of all ball duals forms the generalized preimage. The re
ognitionpro
ess 
onsists therefore simply in 
omputing the generalized preimage ofa ball set 
orresponding to a hypervoxel set (i.e. 
omputing the dual of aball set 
orresponding to a hypervoxel set). More pre
isely, we start with thedual of a ball 
orresponding to a hypervoxel and add the duals of the balls
orresponding to the other hypervoxels as long as the generalized preimage isnot empty.In Se
tion 2, we introdu
e some notations and de�nitions as well as the Naive,2



Standard and Super
over analyti
al hyperplane des
riptions. In Se
tion 3,we determine the dual of a polytope and introdu
e the notion of generalizedpreimage of a polytope set. Then, we explain in Se
tion 4 how our digitalanalyti
al hyperplane re
ognition algorithm works. We espe
ially fo
us onthe Naive, Standard and Super
over hyperplane 
ases. Con
lusion and futureworks are proposed in Se
tion 5.2 PreliminariesIn this se
tion, we �rst propose some notations and give the de�nitions of ahypervoxel and a ball. Then, we present four digitization analyti
al models
onsidered in this work: the Naive and 
losed Naive models, the Standardmodel and the Super
over model.2.1 Notations and de�nitionsLet n ∈ Z, n > 0. In the following, we will denote by En the 
lassi
al
n-dimensional Eu
lidean spa
e, and by J1, kK the subset of integer values
{1, . . . , k} ⊂ Z. Moreover, a point with integer-valued 
oordinates p ∈ Z

nwill be 
alled a digital point.We de�ne an α-hyper
ube, α ∈ R, as follows:De�nition 1 (Hypervoxel) The hypervoxel (or n-dimensional 
ube) 
en-tered on the digital point (c1, . . . , cn) ∈ Zn, is the set of points (x1, . . . , xn) ∈
Rn verifying

∀i ∈ J1, nK, ci −
1

2
≤ xi ≤ ci +

1

2Hypervoxels in dimensions 2 and 3 are respe
tively 
alled pixels and voxels.De�nition 2 (Ball) Let d be a distan
e in R
n. Then, the ball Bd(c, r) with
enter c ∈ Rn and radius r ∈ R is de�ned by

Bd(c, r) = {x ∈ R
n|d(c, x) ≤ r}2.2 Dis
rete analyti
al modelsIn this work, we study four digital analyti
al models: the Naive model [14,15℄,the 
losed Naive model [16℄, the Standard model [17℄ and the Super
over3



model [18,19℄. These models are de�ned in any dimension and provide a digi-tization of Eu
lidean obje
ts. Moreover, a distan
e and a ball is asso
iated toea
h model.In this se
tion, we give for ea
h model the de�nition of the digital hyperplane(or n-dimensional planes) and des
ribe pre
isely the digitization of a Eu
lideanhyperplane a

ording to the distan
e and the ball asso
iated to the model.2.2.1 The Naive models [14,16℄Naive and 
losed Naive hyperplanes are de�ned analyti
ally as follows (see Fig-ure 1):De�nition 3 (Naive Hyperplane [14℄) The Naive hyperplane with param-eters (c0, . . . , cn) ∈ Rn+1 is the set of points (x1, . . . , xn) ∈ Zn verifying
−

max1≤i≤n |ci|

2
≤ c0 +

n
∑

i=1

cixi <
max1≤i≤n |ci|

2where c1 ≥ 0, or c1 = 0 and c2 ≥ 0, or . . . , or c1 = c2 = . . . = cn−1 = 0and cn ≥ 0.De�nition 4 (Closed Naive Hyperplane [16℄) The 
losed Naive hyper-plane with parameters (c0, . . . , cn) ∈ Rn+1 is the set of points (x1, . . . , xn) ∈ Znverifying
−

max1≤i≤n |ci|

2
≤ c0 +

n
∑

i=1

cixi ≤
max1≤i≤n |ci|

2

(a) (b)Fig. 1. Examples of Naive and 
losed Naive hyperplanes in dimension 2: (a) Naiveline, (b) Closed Naive line.Remark 5 Let p = (x1, . . . , xn) ∈ Rn and p′ = (x′
1, . . . , x

′
n) ∈ Rn. The dis-tan
e asso
iated to the Naive models is the distan
e d1 de�ned by

d1(p, p
′) =

n
∑

i=1

|xi − x′
i|and the 
orresponding ball is Bd1

(c, 1
2
), c ∈ Zn. For instan
e in dimension 2,the ball Bd1

(c, 1
2
) is a regular rhombus.4



Hen
e, the 
losed Naive digitization of a Eu
lidean hyperplane also 
onsists ofthe 
enters of all balls whi
h are interse
ted by the hyperplane (see Figure 2b),whereas the Naive one 
onsists of the 
enters of all balls 
ut by the hyperplaneex
ept when a ball vertex is interse
ted (see Figure 2a). In this 
ase, severalhypervoxels adja
ent to the 
orresponding hypervoxel do not belong to theNaive digitization. This is due to the fa
t that one inequality in De�nition 4is stri
t.
(a) (b)Fig. 2. Illustration of the balls asso
iated to the Naive models: (a) Balls asso
iatedto a Naive line, (b) Balls asso
iated to a 
losed Naive line.Proposition 6 Let B be a ball Bd1

(c′, 1
2
), c′ ∈ Zn, and let H be a Eu
lideanhyperplane with equation c0 +

∑n
i=1 cixi = 0 that passes through a vertex v =

(v1, . . . , vn) of B. Moreover, we assume that the �rst ci 6= 0 veri�es ci > 0.Let j ∈ J1, nK su
h that |cj| = maxn
i=1 |ci|. Then, if cj > 0 (resp. cj < 0),the digital point (v1, . . . , vj−1, vj −
1
2
, vj+1, . . . , vn) (resp. (v1, . . . , vj−1, vj +

1
2
, vj+1, . . . , vn)) belongs to the Naive digitization of H.PROOF. By de�nition, a digital point p = (x1, . . . , xn) belonging to a Naivehyperplane veri�es the following inequalities:

−
max1≤i≤n |ci|

2
≤ c0 +

n
∑

i=1

cixi <
max1≤i≤n |ci|

2Sin
e |cj| = maxn
i=1 |ci|, we want to determine k ∈ {−1, 1} su
h that
−
|cj|

2
= c0 +

n
∑

i=1,i6=j

civi + cj(vj +
1

2
k)Then, sin
e c0 +

∑n
i=1 civi = 0, we have

−
|cj |

2
=

1

2
kcj , k ∈ {−1, 1}Hen
e, if cj > 0, we have 5



−
cj

2
=

1

2
kcj, k ∈ {−1, 1}and so we dedu
e that k = −1. Else, if cj > 0, we have

cj

2
=

1

2
kcj, k ∈ {−1, 1}and then we dedu
e that k = 1. �

Proposition 6 is illustrated in Figure 3.

Fig. 3. Digital points belonging to the Naive digitization of a Eu
lidean line a

ordingto the slope of the line (in dark grey).2.2.2 The Standard [17℄ and Super
over [18,19℄ modelsStandard and Super
over hyperplanes are de�ned analyti
ally as follows(see Figure 4):De�nition 7 (Standard Hyperplane [17℄) The Standard hyperplane withparameters (c0, . . . , cn) ∈ Rn+1 is the set of points (x1, . . . , xn) ∈ Zn verifying
−

∑n
i=1 |ci|

2
≤ c0 +

n
∑

i=1

cixi <

∑n
i=1 |ci|

2where c1 ≥ 0, or c1 = 0 and c2 ≥ 0, or . . . , or c1 = c2 = . . . = cn−1 = 0and cn ≥ 0.De�nition 8 (Super
over Hyperplane [19℄) The Super
over hyperplanewith parameters (c0, . . . , cn) ∈ Rn+1 is the set of points (x1, . . . , xn) ∈ Zn6



verifying
−

∑n
i=1 |ci|

2
≤ c0 +

n
∑

i=1

cixi ≤

∑n
i=1 |ci|

2

(a) (b)Fig. 4. Examples of Standard and Super
over hyperplanes in dimension 2: (a) Stan-dard line, (b) Super
over line.Remark 9 Let p = (x1, . . . , xn) ∈ Rn and p′ = (x′
1, . . . , x

′
n) ∈ Rn. The dis-tan
e asso
iated to the Standard and Super
over models is the distan
e d∞de�ned by

d∞(p, p′) = sup
i∈J1,nK

|xi − x′
i|and the 
orresponding ball is Bd∞(c, 1), c ∈ Zn. For instan
e in dimension 2,the ball Bd∞(c, 1) is a pixel.Hen
e, the Super
over digitization of a Eu
lidean hyperplane also 
onsistsof the 
enters of all hypervoxels whi
h are interse
ted by the hyperplane (seeFigure 4b), whereas the Standard one 
onsists of the 
enters of all hypervoxels
ut by the hyperplane ex
ept when a hypervoxel vertex is interse
ted (seeFigure 4a). In this 
ase, several hypervoxels adja
ent to this vertex do notbelong to the Standard digitization. This is due to the fa
t that one inequalityin De�nition 7 is stri
t.Proposition 10 Let B be a ball Bd∞(c′, 1), c′ ∈ Zn, and let H be a Eu
lideanhyperplan with equation c0 +

∑n
i=1 cixi = 0 that passes through a vertex v =

(v1, . . . , vn) of B. Moreover, we assume that the �rst ci 6= 0 veri�es ci > 0.Then, ea
h digital point (x1, . . . , xn) belonging to the standard digitization of
H veri�es for all i ∈ J1, nK:
• xi = vi + 1

2
if ci < 0,

• xi = vi −
1
2
if ci > 0,

• xi = vi + 1
2
or xi = vi −

1
2
if ci = 0.7



PROOF. By de�nition, a digital point p = (x1, . . . , xn) belonging to a Stan-dard hyperplane veri�es the following inequalities:
−

∑n
i=1 |ci|

2
≤ c0 +

n
∑

i=1

cixi <

∑n
i=1 |ci|

2We want to determine ki ∈ {−1, 1}, i ∈ J1, nK, su
h that
−

∑n
i=1 |ci|

2
= c0 +

n
∑

i=1

ci(vi +
1

2
ki)that is, sin
e c0 +

∑n
i=1 civi = 0,

−

∑n
i=1 |ci|

2
=

n
∑

i=1

1

2
kiciHen
e, we have

n
∑

i=1

(|ci| − kici) = 0and then
n

∑

i=1

(k′
ici − kici) =

n
∑

i=1

(k′
i − ki)ci = 0with k′

i ∈ −1, 1 and k′
ici ≥ 0However, sin
e ∀i ∈ J1, nK, (k′

i − ki)ci ≥ 0 we dedu
e that
i ∈ J1, nK, ki = k′

ithat is
• if ci > 0 then ki = −1,
• if ci < 0 then ki = 1,
• if ci = 0 then ki = −1 or ki = 1.

�

Proposition 10 is illustrated in Figure 11.8



Fig. 5. Digital points belonging to the Naive digitization of a Eu
lidean line a

ordingto the slope of the line (in dark grey).3 Dual of a polytopeIn order to de�ne the dual of a polytope, we use a dual transformation similarto the well known Hough transform whi
h is an e�
ient tool usually used inimage pro
essing to re
ognize parametri
 shapes in an image. A review onexisting variations of this method is presented in [20℄.In the two following se
tions, we �rst de�ne the parameter spa
e in whi
hour dual transformation is performed as well as the positive and negativeextrusions of a point. Then, we des
ribe the dual of a polytope and de�ne thenotion of generalized preimage, whi
h is the basis of the re
ognition algorithmpresented in Se
tion 4.3.1 De�nitions and propertiesIn this work, we use the n-dimensional parameter spa
e Pn ⊂ Rn, and de�nethe two fun
tions DE : En → Pn and DP : Pn → En by:
DE(x1, . . . , xn) =

{

(y1, . . . , yn) ∈ Pn|yn = −
n−1
∑

i=1

xiyi + xn

}

DP(y1, . . . , yn) =

{

(x1, . . . , xn) ∈ En|xn =
n−1
∑

i=1

yixi + yn

}Informally, ea
h point in En (resp. Pn) is transformed by DE (resp. DP) into ahyperplane in Pn (resp. En). In the rest of this paper, we will generi
ally write
Dual for DE or DP .De�nition 11 (Dual obje
t) Let O be a subset of Rn. Then,

Dual(O) =
⋃

p∈O

Dual(p)is 
alled the dual of O. 9



Proposition 12 Let O1 and O2 be two subsets of Rn su
h that O1 ⊆ O2.Then
Dual(O1) ⊆ Dual(O2)PROOF. Sin
e O1 ⊆ O2, we dedu
e that Dual(O2) =

⋃

p∈O2
Dual(p) =

[

⋃

p∈O1
Dual(p)

]

∪
[

⋃

p∈O2\O1
Dual(p)

]. Then, Dual(O1) ⊆ Dual(O2). �Moreover, the following properties 
an be dedu
ed from our de�nition of theduality.Proposition 13 Let O1 and O2 be two subsets of Rn. Then,
Dual(O1 ∪ O2) = Dual(O1) ∪Dual(O2)PROOF. Dual(O1 ∪ O2) =

⋃

p∈O1∪O2
Dual(p) =

[

⋃

p∈O1
Dual(p)

]

∪
[

⋃

p∈O2
Dual(p)

]

= Dual(O1) ∪Dual(O2). �Proposition 14 Let O1 and O2 be two subsets of Rn. Then,
Dual(O1 ∩ O2) ⊆ Dual(O1) ∩Dual(O2)

PROOF. Sin
e O1 ∩ O2 ⊆ O1 and O1 ∩ O2 ⊆ O2, we dedu
ethat Dual(O1 ∩ O2) ⊆ Dual(O1) and Dual(O1 ∩ O2) ⊆ Dual(O2). Thus,
Dual(O1 ∩O2) ⊆ Dual(O1) ∩Dual(O2). �Remark 15 Let p ∈ Rn be a point. The dual of ea
h point whi
h lies in
Dual(p) is a hyperplane whi
h passes through p.Moreover, in order to des
ribe the dual of a polytope, we need to de�ne thepositive and negative extrusions of a point as follows:De�nition 16 (Positive and Negative Extrusions) Let
p = (x1, . . . , xn) ∈ Rn be a point. The positive extrusion of p is de�nedby:

p+ = {p′ = (x′
1, . . . , x

′
n) ∈ Rn|∀i ∈ J1, n− 1K, xi = x′

i and xn ≤ x′
n}In the same way, the negative extrusion of p is de�ned by:10



p− = {p′ = (x′
1, . . . , x

′
n) ∈ Rn|∀i ∈ J1, n− 1K, xi = x′

i and xn ≥ x′
n}Let O1 and O2 be two subsets of Rn su
h that O1 ⊆ O2. Then, O+

1 ⊆ O+
2and O−

1 ⊆ O−
2 . Moreover, the following properties 
an be dedu
ed from De�-nition 16.Proposition 17 Let O1 and O2 be two subsets of Rn. Then,

(O1 ∪O2)
+ = O+

1 ∪ O+
2In the same way, (O1 ∪O2)

− = O−
1 ∪O−

2 .PROOF. (O1 ∪ O2)
+ =

⋃

p∈O1∪O2
p+ =

[

⋃

p∈O1
p+

]

∪
[

⋃

p∈O2
p+

]

= O+
1 ∪ O+

2 .The proof of (O1 ∪ O2)
− = O−

1 ∪ O−
2 is obtained in the same way. �Proposition 18 Let p ∈ Rn be a point. Then,

Dual(p)+ = Dual(p+)In the same way, Dual(p)− = Dual(p−).PROOF. Let us 
onsider p = (x1, . . . , xn) ∈ En. Then, Dual(p+) = DE(p
+) =

⋃

p′∈p+

Dual(p′) =
⋃

p′=(x′
1
,...,x′

n)∈p+

{(y1, . . . , yn) ∈ Pn|yn = −
n−1
∑

i=1

x′
iyi + x′

n} =

{(y1, . . . , yn) ∈ Pn|yn ≥ −
n−1
∑

i=1

xiyi + xn} =
⋃

p′∈DE (p)

p′+ = DE(p)+ = Dual(p)+.The proof of Dual(p)− = Dual(p−) 
an be obtained in the same way. �

Proposition 18 is illustrated in Figure 6.3.2 Polytope dual representationIn this work, we need to de�ne the dual of a polytope. An n-polytope, n ∈ Z,is de�ned as follows: 11



p
Dual(p)

(a) p
Dual(p)(b)Fig. 6. Positive and negative extrusions of a point p (half-lines) and their dual obje
t:a half-spa
e, (a) Positive extrusion of p, (b) Negative extrusion.De�nition 19 (n-polytope) Let P be a polytope in dimension n, or n-polytope. Then, there exists a �nite set of k half-spa
es H = {H1, . . . , Hk}su
h that P =

⋂k
i=1 H i, and su
h that if Hi is the hyperplane formingthe boundary of the half-spa
e H i (or boundary hyperplan of H i), then

∀i ∈ J1, kK, Hi ∩ P 6= ∅.Notations: Let P be an n-polytope, and let H be the 
orresponding half-spa
e set. We de�ne three subsets of H, denoted H0, H+ and H−, as follows:
• H0 is the half-spa
e set in H de�ned by an equation similar to

cn +
∑n−1

i=1 ciXi ≥ 0 or similar to cn +
∑n−1

i=1 ciXi ≤ 0, with (c1, . . . , cn) ∈ E
n.

• H+ is the half-spa
e set in H de�ned by an equation similar to
Xn ≥ cn +

∑n−1
i=1 ciXi, (c1, . . . , cn) ∈ En.

• H− is the half-spa
e set in H de�ned by an equation similar to
Xn ≤ cn +

∑n−1
i=1 ciXi, (c1, . . . , cn) ∈ En.Moreover, we denote H0, H+ and H− the three boundary hyperplane sets
orresponding respe
tively to the half-spa
e sets H0, H+ and H−.Proposition 20 Let P be an n-polytope. Then,

P = P+ ∩ P−with
P+ =

⋂

H∈(H0∪H+)

Hand
P− =

⋂

H∈(H0∪H−)

H12



PROOF. Let us prove P+
c =

⋂

H∈(H0∪H+) H. The proof of P−
c =

⋂

H∈(H0∪H−) H 
an be obtained in the same way.Let p = (p1, . . . , pn) ∈ P+
c . Then, there exists p′ = (p′1, . . . , p

′
n) ∈ P su
h thatfor all i ∈ J1, n− 1K,

ci = c′i and cn = c′nHen
e, for all H ∈ H0 and for all H ∈ H+, p ∈ H . We dedu
e that p ∈
⋂

H∈(H0∪H−) H .Now, let p = (p1, . . . , pn) ∈
⋂

H∈(H0∪H−) H . Let us pro
eed by 
ontradi
tionand assume that p /∈ P+
c . Then, for all p′ = (p′1, . . . , p

′
n) ∈ Pc, there exists

i ∈ J1, n − 1K su
h that ci 6= c′i or cn 6= c′n. Then, there exists H ∈ H0 or
H ∈ H+ su
h that p /∈ H . We dedu
e that p /∈

⋂

H∈H0∪H−
H . �

Proposition 20 is illustrated in Figure 7 in the 
ase of dimension 2.
1

2 3

5

6 4

P(a) 1

2 3

4P+

(b) −

5

6
4

P(
)Fig. 7. Positive and negative extrusions of a polytope in dimension 2: (a) A 2-poly-tope P , (b) Positive extrusion of P , (
) Negative extrusion of P .Let us now des
ribe the dual of an n-polytope P from its verti
es.Let V be the set of verti
es of P . We de�ne two subsets of V, denoted V+ and
V−, as follows:

V+ = {v ∈ V|∃H ∈ H+, v ∈ H ∩ P}

V− = {v ∈ V|∃H ∈ H−, v ∈ H ∩ P}We 
an see in Figure 7 that the verti
es numbered 1, 2, 3 and 4 belong to thevertex set V+ of P . In the same way, verti
es numbered 4, 5 and 6 belong tothe vertex set V−.The dual of an n-polytope 
an then be de�ned by:13



Theorem 21 (Dual of a Polytope) Let P be an n-polytope, V+ and V− thetwo vertex sets de�ned previously. Then:
Dual(P ) =





⋃

v∈V+

Dual(v)+



 ∩





⋃

v∈V−

Dual(v)−





PROOF. Let us �rst prove the following lemma:Lemma 22 Let P be an n-polytope. Then,
Dual(P ) = Dual(P )+ ∩Dual(P )−PROOF. In the following, we assume that H ∈ En.Sin
e Dual(P ) ⊆ Dual(P )+ and Dual(P ) ⊆ Dual(P )−, we dedu
e that

Dual(P ) ⊆ Dual(P )+ ∩Dual(P )−.We now prove that Dual(P )+ ∩Dual(P )− ⊆ Dual(P ). Consider a point
p = (x1, . . . , xn) ∈ Dual(P )+ ∩Dual(P )−. Then,

∃p′ = (x′
1, . . . , x

′
n) ∈ Dual(P ) | p ∈ p′+and

∃p′′ = (x′′
1, . . . , x

′′
n) ∈ Dual(P ) | p ∈ p′′−We dedu
e that ∀i ∈ J1, n− 1K, x′

i = xi = x′′
i and x′

n ≤ xn ≤ x′′
n.Next we prove that Dual(p)∩H 6= ∅, whi
h would imply p ∈ Dual(P ). Sin
e

p′ ∈ Dual(P ) and p′′ ∈ Dual(P ), we have Dual(p′)∩P 6= ∅ and Dual(p′′)∩P 6=
∅. Let q′ = (q′1, . . . , q

′
n) ∈ Dual(p′) ∩ P and q′′ = (q′′1 , . . . , q

′′
n) ∈ Dual(p′′) ∩ P .Then, we have

q′n =
n−1
∑

i=1

xiq
′
i + x′

n and q′′n =
n−1
∑

i=1

xiq
′′
i + x′′

nSin
e x′
n ≤ xn ≤ x′′

n, we dedu
e that
q′n ≤

n−1
∑

i=1

xiq
′
i + xn and q′′n ≥

n−1
∑

i=1

xiq
′′
i + xnThus, Dual(p)∩ [q′, q′′] 6= ∅. Finally, sin
e P is 
onvex we know that [q′, q′′] ⊂

P . We then dedu
e that Dual(p) ∩ P 6= ∅. �14



Let us now de�ne two obje
t sets F+ and F− by
F+ = {H ∩ P, H ∈ H+}and
F− = {H ∩ P, H ∈ H−}Let S be a set. In the following, we will denote by |S| the 
ardinal of the set

S. Espe
ially, we remark that |F+| (resp. |F−|) is equal to |H+| (resp. |H−|).For instan
e, in dimension 2, the set F+ (resp. F−) 
orresponds to the segmentswhi
h belong to Thu boundary of P su
h that there two endpoints are verti
esin V+ (resp. V−). In Figure 7, F+ is 
omposed of the segments [1, 2], [2, 3] and
[3, 4]. In the same way, F− is 
omposed of the segments [4, 5] and [5, 6]. Indimension 3, these two sets are 
omposed of fa
es of P .The following relation is then veri�ed:Lemma 23 Let P be an n-polytope. Then,

P+ =
⋃

F∈F+

F+In the same way, P− =
⋃

F∈F−
F−.PROOF. Let us prove that

P+ =
⋃

F∈F+

F+ =
⋃

i∈J1,|F+|K,Hi∈H+

(Hi ∩ P )+ =





⋃

i∈J1,|C+|K,Hi∈H+

Hi ∩ P





+First, we have
⋃

i∈J1,|C+|K,Hi∈H+

Hi ∩ P ⊆ PHen
e,




⋃

i∈J1,|C+|K,Hi∈H+

Hi ∩ P





+

⊆ P+Let now p ∈ P+. We know that P+ =
⋂

H∈H0∪H+
H , whi
h is equiv-alent to P+ =

⋂

H∈H0∪H+
H+. Hen
e, we dedu
e that for all Hi ∈ H+,

i ∈ J1, |C+|K, there exists pi = (pi1, . . . , pin) ∈ Hi su
h that p ∈ p+
i . Let

p′ = (pi1 , . . . , pin−1
, p′n) be the point whi
h veri�es ∀i ∈ J1, |C+|K, p

′
n ≥ pin .Then, sin
e P is a polytope, we have p′ ∈ P .The se
ond equality 
an be obtained in the same way. �15



Lemma 24 Let P be an n-polytope. Then,
Dual(P+) =

⋃

v∈V+

Dual(v)+In the same way, Dual(P−) =
⋃

v∈V−
Dual(v)−.PROOF. Let us prove that Dual(P+) =

⋃

v∈V+
Dual(v)+.By de�nition, for ea
h vertex v in V+, there exists F ∈ F+ su
h that

v ∈ F . Hen
e, ⋃

v∈V+
v ⊆

⋃

F∈F+
F . Moreover, (

⋃

v∈V+
v)+ ⊆ (

⋃

F∈F+
F )+.Then, ⋃

v∈V+
v+ ⊆

⋃

F∈F+
F+. However, a

ording to Lemma 23, we have

⋃

F∈F+
F+ = P+. We dedu
e that Dual(

⋃

v∈V+
v+) ⊆ Dual(P+), and then

⋃

v∈V+
Dual(v+) ⊆ Dual(P+).Let us prove the se
ond in
lusion. Let p ∈ Dual(P+) = Dual(

⋃

F∈F+
F+).Then, there exists F ∈ F+ su
h that Dual(p) ∩ F+ 6= ∅. Let us prove thatthere exists one vertex v in V su
h that Dual(p) ∩ v+ 6= ∅.Let us pro
eed by 
ontradi
tion and assume that for all v ∈ F , Dual(p)∩v+ =

∅. We know that there exists H ∈ H+ su
h that F = H∩P = H∩
[

⋂k
i=1 Hi

]

=
⋂k

i=1(H ∩Hi). Hen
e, if we 
onsidered the hyperplane H as spa
e, we dedu
ethat F is an n − 1-polytope, sin
e for all i, Hi ∩ H is a half-spa
e in H ,and then F is equal to the interse
tion of several half-spa
es. Sin
e F is the
onvex hull of its verti
es, we dedu
e that if ∀v ∈ F, Dual(p) ∩ v+ = ∅, then,
∀p′ ∈ F, Dual(p) ∩ p′ = ∅. Moreover, F+ =

⋃

p∈F p+ =
⋃

p∈F,k∈R+
p + k

−−→
OXn =

⋃

k∈R+
C+k

−−→
OXn. Hen
e, sin
e F is a polytope, F+k

−−→
OXn is also a polytope andthe same method 
an be applied to prove that ∀p′ ∈ F +k

−−→
OXn, Dual(p)∩p′ =

∅.A similar proof 
an be used to show that Dual(P−) =
⋃

v∈V+
Dual(v)−. �The proof of Theorem 21 is obtained from Lemma 24. �

Theorem 21 allows us to des
ribe the dual of a polytope from the dual of itsverti
es. More pre
isely, the dual of a polytope is de�ned by the interse
tionof two obje
ts, ea
h one being a union of several half-spa
es (see Figure 8).Ea
h half-spa
e is the positive or negative extrusion of the hyperplane dual ofone vertex of the polytope. In Figure 8
, we 
an see the representation of thedual of the polytope in Figure 7a. 16
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(
)Fig. 8. Dual of a 2-polytope P : (a) Dual of the positive extrusion of P , (b) Dual ofthe negative extrusion of P , (
) Dual of P .3.3 The notion of generalized preimageIn this se
tion, we de�ne the generalized preimage of a set of polytopes. Thispreimage is a geometri
al obje
t 
omputed in the parameter spa
e from theduals of the polytopes. Ea
h point in the preimage is asso
iated to a hyper-plane whi
h 
uts all polytopes. The generalized preimage of a polytope set isthen de�ned as follows:De�nition 25 (Generalized Preimage) Let P = (P1, . . . , Pk) be a set of
k polytopes, and let Dual(Pi), i ∈ J1, kK, be the dual of Pi in the parameterspa
e. The generalized preimage GP of P is de�ned by:

GP (P) =
k
⋂

i=1

Dual(Pi)

4 Digital hyperplane re
ognitionIn this se
tion, we present our digital hyperplane re
ognition algorithm. More-over, we assume this hyperplane is analyti
ally de�ned with a distan
e anda ball su
h as the digital hyperplanes de�ned in Se
tion 2.2. The aim of ouralgorithm is to determine if a hypervoxel set belongs to a digital hyperplane.More pre
isely, we want to determine all Eu
lidean hyperplanes the digitiza-tion of whi
h 
ontains given hypervoxel set. We 
all these hyperplanes thesolution hyperplanes.In order to do that, the idea is to 
ompute the set of Eu
lidean hyperplanes(if it exists) whi
h 
ross all balls 
orresponding to the given hypervoxels by
omputing the generalized preimage of the balls. Then, based on the shape17



(empty or not) of this preimage, we 
an dedu
e if the hypervoxel set belongsor not to a digital hyperplane.However, a

ording to the digitization model used, some points lo
ated onthe border of the dual of the ball are not asso
iated to solution hyperplanes(be
ause these hyperplanes 
ross ball verti
es), and thus some points on theborder of the generalized preimage are not asso
iated to solution hyperplanes.It is for instan
e the 
ase for the Standard and Naive models sin
e one in-equality in the digital hyperplane de�nitions (see De�nitions 3 and 7) arestri
t.In the following, we �rst detail our re
ognition algorithm. Then, we apply ouralgorithm to the Naive and Standard digitization models.
4.1 Re
ognition algorithmLet H = {H1, . . . , Hk} be a set of k hypervoxels. The digital hyperplanere
ognition (see Algorithm 1) is simply performed by 
omputing the general-ized preimage GP of the balls {B1, . . . , Bk} asso
iated to H. First, GP (B1),i.e. the dual of B1, is 
omputed a

ording to the polytope dual de�nitiongiven by Theorem 21. Then, GP ({B1, B2}) is 
omputed from the interse
tionof GP (B1) and Dual(B2). And so on until GP ({B1, . . . , Bk}) is 
omputed or
GP be
omes empty. Note that the balls 
an be 
onsidered in any order, andthe 
orresponding hypervoxels do not need to be 
onne
ted.Algorithm 1: Standard and Super
over hyperplane re
ognition algorithmData: A set H of k hypervoxels H1, . . . , Hk and their asso
iated balls B1,. . . , Bk.begin

GP ←− Dual(B1);
i←− 2;while GP 6= ∅ and i ≤ n do

GP ←− GP ∩Dual(Bi);
i←− i + 1;if GP 6= ∅ then
H belongs to a digital hyperplane.else
H does not belong to a digital hyperplane.end 18



4.2 Example: appli
ation to Naive and Standard hyperplane re
ognitionFor a given ball asso
iated to a given digitization model, some parts in thegeneralized preimage do not 
orrespond to solution hyperplanes. It is the 
asewhen one or several inequalities in the hyperplane digitization de�nition arestri
t, for instan
e for the Standard and Naive models. In the 
ase of theSuper
over and 
losed Naive digitization models, all points in the generalizedpreimage are solutions.In the following, we study the 
ase of the Naive and Standard models and de-s
ribe whi
h part of the dual of the balls 
orresponds to solution hyperplanes.4.2.1 Naive hyperplanesWe want to determine whi
h points on the boundary of the dual of a ball
Bd1

(c, 1
2
) are asso
iated to solutions hyperplanes. We know that ea
h point

(c0, . . . , cn−1) is asso
iated to a hyperplane with equation c0−xn +
∑n−1

i=1 cixi =
0. Moreover, we know that this hyperplane 
ontains a vertex of the ball.We dedu
e from Proposition 6 the following property:Proposition 26 Let B be a ball Bd1

(c′, 1
2
), c′ ∈ Zn, and let H be a Eu
lideanhyperplane with equation c0 +

∑n
i=1 cixi = 0 that passes through a vertex v =

(v1, . . . , vn) of B. Moreover, we assume that the �rst ci 6= 0 veri�es ci > 0.Hen
e, there exists j ∈ J1, nK su
h that v = (c′1, . . . , c
′
j−1, c

′
j + 1

2
, c′j+1, . . . , c

′
n)(resp. v = (c′1, . . . , c

′
j−1, c

′
j −

1
2
, c′j+1, . . . , c

′
n)). Then, if cj > 0 (resp. cj < 0), c′belongs to the Naive digitization of H.Hen
e, from Proposition 26, we 
an easily determine whi
h points in the dual ofa ball Bd1

(c′, 1
2
) are asso
iated to solution hyperplanes. We 
an see in Figure 9an example of dual ball in dimension 2.Figure 10 illustrates the re
ognition pro
ess in dimension 2 in the 
ase of theNaive hyperplane re
ognition.4.2.2 Standard hyperplanesWe want to determine whi
h points on the boundary of the dual of a ball

Bd∞(c, 1) are asso
iated to solutions hyperplanes. We know that ea
h point
(c0, . . . , cn−1) is asso
iated to a hyperplane with equation c0−xn +

∑n−1
i=1 cixi =

0. Moreover, we know that this hyperplane 
ontains a vertex of the ball.We dedu
e from Proposition 10 the following property:19
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7(b)Fig. 9. Dual of a ball Bd1
(c′, 1

2): (a) Points on dashed lines are not asso
iated tosolution hyperplanes, (b) Corresponden
e between the ball and its dual.
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Fig. 10. Example of 2D generalized preimage 
omputation: Naive hyperplane re
og-nition.Proposition 27 Let B be a ball Bd∞(c′, 1), c′ ∈ Zn, and let H be a Eu
lideanhyperplane with equation c0 +
∑n

i=1 cixi = 0 that passes through a vertex v =
(v1, . . . , vn) of B. Moreover, we assume that the �rst ci 6= 0 veri�es ci > 0.Hen
e, if vn > c′n (resp. vn < c′n) and cn > 0 (resp. cn < 0), then c′ belongs tothe Standard digitization of H.Hen
e, from Proposition 27, we 
an easily determine whi
h points in the dualof a ball Bd∞(c′, 1) are asso
iated to solution hyperplanes. We 
an see inFigure 11 an example of dual ball in dimension 2.20
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(b)Fig. 11. Dual of a ball Bd∞(c′, 1): (a) Points on dashed lines are not asso
iated tosolution hyperplanes, (b) Corresponden
e between the ball and its dual.Figure 12 illustrates the re
ognition pro
ess in dimension 2 in the 
ase of theStandard hyperplane re
ognition.
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Fig. 12. Example of 2D generalized preimage 
omputation: Standard hyperplanere
ognition.5 Con
lusion and future worksIn this arti
le, a new digital hyperplane re
ognition algorithm in arbitrarydimension has been presented. This algorithm determines if a given hyper-voxel set belongs to a digital hyperplane by providing the set of Eu
lideanhyperplanes whi
h 
ut all balls asso
iated to the given hypervoxels. This setis dedu
ed from the 
omputation in a dual spa
e of the generalized preim-age of the balls. This preimage is de�ned as the interse
tion of the duals of21



the balls. The re
ognition algorithm does not require given hypervoxels tobe 
onne
ted. Moreover, during the re
ognition pro
ess, hypervoxels 
an be
onsidered in any order.The results proposed in this paper are very general. Indeed, sin
e the general-ized preimage is de�ned for any polytope set, this 
an easily lead to re
ognitionalgorithms in multi-s
ale grids or heterogeneous grids, su
h as for instan
e ir-regular isotheti
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