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Abstract

The aim of this paper is to show that the supercover of an m-flat (i.e. a Euclidean
affine subspace of dimension m) in Euclidean n-space is a discrete analytical object. The
supercover of a Euclidean object F is a discrete object consisting of all the voxels that
intersect F . A discrete analytical object is a set of discrete points that is defined by a finite
set of inequalities. A method to determine the inequalities defining the supercover of an
m-flat is provided.

Keywords: discrete geometry, computer graphics, supercover, m-flat, discrete analytical
object, arbitrary dimension.

1 Introduction

Classically, in computer graphics, a discrete primitive (such as a 2D line segment [10], a 3D line
segment [21, 1, 14], a 3D polygon [22], etc.) is defined as the result of a local approximation
algorithm applied to the corresponding Euclidean primitive. Such a generation algorithm typi-
cally defines the discrete primitive without any global analytical characterisation in the discrete
domain. This approach has some drawbacks [11]. While the algorithms are designed to be ef-
ficient, it is difficult to study the properties of the generated discrete object. There is also no
simple way to extend such primitives to higher dimensions and different discrete primitives are
rarely coherent with each other. For instance, Kaufman’s discrete 3D polygon [22] is not a piece
of a discrete 3D plane as defined by other authors [24, 18, 25, 4] and its edges do not correspond
to most notions of discrete 3D line segments [23, 21, 1, 17, 14, 5].
A more recent approach is the so-called discrete analytical geometry approach introduced by J-P.
Reveillès [25]. A discrete primitive is defined, in this approach, as a discrete analytical object,
which is a discrete object defined by a finite set of discrete inequalities. A discrete inequality is
an inequality, with coefficients in R, of which we retain only the integer coordinate solutions (in
Zn). The properties of such a discrete primitive are relatively easy to study because of its global
analytical description. Extension to higher dimensions is often straightforward. The discrete
analytical geometry approach has been used to define and study different classes of discrete
primitives such as discrete 2D lines [25], naive [15, 4] and standard 3D planes [2, 19, 20, 4],
discrete 3D lines [17, 5], discrete hyperplanes [26, 28, 4], discrete circles and hyperspheres [7],
discrete standard hyperplanes, m-flats, m-simplices [8, 9] etc.
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In this paper we examine, within the framework of the discrete analytical geometry approach, an
old discretisation scheme [12], called the supercover, which was studied by Cohen and Kaufman
for volume graphics purposes [13]. The supercover of a Euclidean object F is the set of discrete
points consisting of all the voxels that intersect F . The voxel associated with a discrete point,
in Zn, is a unit hypercube, in Rn, centered on the point with corresponding integer coordinates.
In fact, supercovers have interesting properties under set operations [13]. It has been shown that
the supercovers of a 2D line and a 3D plane [3], a 3D line, a 3D triangle and a 3D tetrahedron
[5, 6] are discrete analytical objects.
The aim of this paper is to show that the supercover of an m-flat in dimension n is a discrete
analytical object. An m-flat in a space of dimension n is a Euclidean affine subspace of dimension
m. We first propose a simple discrete analytical characterisation, through discrete inequalities,
of the supercover of a hyperplane (i.e. supercover of an (n− 1)-flat) and the supercover of a
point supercover (i.e. supercover of a 0-flat). We show that the supercover and the orthogonal
projection commute. A similar result holds for the orthogonal extrusion. Using this result, we
prove that the supercover of an m-flat F , for 0 ≤ m ≤ n − 2, is equal to the intersection of
the supercovers of orthogonal extrusions of F . From this we deduce a method of determining
a set of discrete inequalities that characterise the supercover of an m-flat. This proves that the
supercover of an m-flat is a discrete analytical object.
The paper is organised as follows. In section 2 we present the notations and the main definitions
used in this paper. We also present some straightforward results that will be useful in subsequent
sections. In section 3, we introduce the notion of supercover and some of its general properties.
The main results of this paper can be found in the fourth section. Section 4 is divided into 4
subsections. In subsection 1 we provide a discrete analytical characterisation of the supercover of
a hyperplane (i.e. (n− 1)-flat). In subsection 2 we do the same for the supercover of a point (i.e.
0-flat). In the third subsection, we prove a result that characterises the supercover of an m-flat.
In a fourth part of section 4 we show that the supercover of an m-flat is a discrete analytical
object. We provide a method that gives a discrete analytical characterisation of the supercover
of an m-flat. We conclude in section 5 with some discussion and a conjecture on the discrete
analytical characterisation of a simplex in dimension n.

2 Preliminaries

2.1 Basic notations

Let Zn be the subset of the nD Euclidean space Rn that consists of all the integer coordinate
points. A discrete (resp. Euclidean) point is an element of Zn (resp. Rn). A discrete (resp.
Euclidean) object is a set of discrete (resp. Euclidean) points. A discrete inequality is an
inequality with coefficients in R from which we retain only the integer coordinate solutions. A
discrete analytical object is a discrete object defined by a finite set of discrete inequalities [7]. An
m-flat is a Euclidean affine subspace of dimension m. A Euclidean hyperplane is an (n− 1)-flat.
A Euclidean point is a 0-flat.
We denote by pi the i-th coordinate of a point or vector p. For p a discrete point or vector in
dimension n, we denote by gcd (p) the greatest common divisor of p1, . . . , pn. For 0 ≤ k ≤ n, Two
discrete points p and q in dimension n are k-neighbours, if |pi − qi| ≤ 1 and k ≤ n−

∑n
i=1 |pi − qi|.

A k-path is a sequence of discrete points such that two consecutive points of the sequence are
k-neighbours. We denote by σn the set of all the permutations of the set {1, 2, . . . , n}.
We denote by Jn

m the set of all the strictly growing sequences of m integers all between 1 and n:
Jn

m = {j ∈ Zm |1 ≤ j1 < j2 < . . . < jm ≤ n}. This defines a set of multi-indices.
Let us consider an object F in the n-dimensional Euclidean space Rn, with n > 1.
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The orthogonal projection is defined by:

πi (q) = (q1, . . . , qi−1, qi+1, . . . , qn) , for 1 ≤ i ≤ n and q ∈ Rn;
πj (q) = (πj1 ◦ πj2 ◦ · · · ◦ πjm

) (F ) and πj (F ) = {πj (q) |q ∈ F } for j ∈ Jn
m.

The orthogonal extrusion is defined by:

εj (F ) = π−1
j (πj (F )) , for j ∈ Jn

m.

It is easy to see that, for two Euclidean objects X, Y ⊆ Rn, the following three statements are
equivalent (i) πj (X) ∩ πj (Y ) 6= ∅ (ii) εj (X) ∩ Y 6= ∅ (iii) X ∩ εj (Y ) 6= ∅. For any discrete or
Euclidean object F , we have πi ◦ π−1

i (F ) = F while in general π−1
i ◦ πi (F ) = εi (F ) 6= F.

Let σn denote the set of all permutations of {1, 2, . . . , n}. For each σ ∈ σn, we define the
corresponding axis permutation rσ by:

rσ : Rn → Rn

x 7→
(
xσ(1), xσ(2), . . . , xσ(n)

)
and the corresponding multi-index axis permutation rj by rj = rσj

, for j ∈ Jn
m, where the

permutation σj ∈ σn is defined by:

σj (ji) = i, for 1 ≤ i ≤ m,

σj (ki) = i + m, for all 1 ≤ i ≤ n−m.

where k1 < k2 < · · · < kn−m are the elements of {1, 2, . . . , n} \ {ji |1 ≤ i ≤ m} in ascending
order. Informally, we can say that rj(x) is obtained from x by placing the ith coordinate of x in
the jth

i position, the m + 2nd coordinate of x in the next remaining position, and so on.

Lemma 1 : Let us consider a Euclidean object F in Rn and a multi-index axis permutation rj,
with j ∈ Jn

m. Then:

πj (F ) = π(1,2,...,m)

(
r−1
j (F )

)
εj (F ) = rj

(
ε(1,2,...,m)

(
r−1
j (F )

))
The proof of this lemma is straightforward. In fact we have designed rj to satisfy these two
properties. This lemma will be helpful in section 4.
The voxel V (p) ⊂ Rn of a discrete nD point p is defined by V (p) =

[
p1 − 1

2 , p1 + 1
2

]
× · · · ×[

pn − 1
2 , pn + 1

2

]
. In 1D and 2D a voxel is also called a pixel. For a discrete object F , V (F ) =⋃

p∈F

V (p).

It is easy to see that, for two discrete points p and q and a multi-index j ∈ Jn
m, we have

V (p)× V (q) = V (p× q), V (πj (p)) = πj (V (p)) and V (εj (p)) = εj (V (p)).
It is also easy to see that, for a discrete point p and an integer m that satisfies 1 ≤ m < n, we
have V (p) =

⋂
j∈Jn

m

εj (V (p)).

3 General properties of the Supercover

In this section we will introduce the notion of supercover, recall some of its known properties [13]
and present several original properties that seem not to have been mentioned in the literature.
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Definition 2 : The supercover S (F ) ⊂ Zn of a Euclidean object F is defined by:

S (F ) = {p ∈ Zn |V (p) ∩ F 6= ∅}

There exists an alternative way, proposed by Tajine et al. [27], of defining the supercover with
the distance d∞: S (F ) =

{
p ∈ Zn

∣∣d∞ (p, F ) ≤ 1
2

}
for a Euclidean object F .

The supercover has many basic properties [13]. Let us consider two Euclidean objects F and
G. Then: S (F ) =

⋃
α∈F S (α), S (F ∪G) = S (F ) ∪ S (G), S (F ∩G) ⊆ S (F ) ∩ S (G) and if

F ⊆ G then S (F ) ⊆ S (G). One can say that the operators S and ∪ commute. There are several
other known properties of the supercover such as the (n− 1)-connectivity of a supercover, the
separation property, etc. See [13] for more details.
Let us examine now some original properties of the supercover:

Proposition 3 : For any two Euclidean objects F,G, we have: S (F ×G) = S (F )× S (G).

One can say that the operators S and × commute.

Proof. Let us consider two Euclidean objects F ⊂ Rm and G ⊂ Rn.

a) Is S (F )× S (G) ⊂ S (F ×G) true ?
Let us consider two discrete points p ∈ S (F ) and q ∈ S (G). The discrete point p belongs
to S (F ) if and only if there exists a Euclidean point α belonging to V (p)∩F . The discrete
point q belongs to S (G) if and only if there exists a Euclidean point β belonging to V (q)∩G.
This means that (α, β) ∈ V (p) × V (q) and thus, since V (p× q) = V (p) × V (q), we have
(α, β) ∈ V (p× q). With (α, β) ∈ F × G, we have V (p× q) ∩ (F ×G) 6= ∅ and therefore
(p, q) ∈ S (F ×G). This proves the first part of our proposition.

b) Is S (F ×G) ⊂ S (F )× S (G) true ?
Let us consider a discrete point r ∈ S (F ×G). We can write r in the form (p, q) ∈ Zm+n,
with p ∈ Zm and q ∈ Zn. The discrete point r belongs to S (F ×G) if and only if there exists
a Euclidean point γ = (α, β) , with α ∈ Rm and β ∈ Rn, belonging to V (p× q) ∩ (F ×G).
We have γ = (α, β) ∈ V (p× q) = V (p) × V (q) and (α, β) ∈ F × G. Therefore we have
α ∈ V (p) ∩ F and β ∈ V (q) ∩G. This proves that r = (p, q) ∈ S (F )× S (G).

The following proposition shows that the supercover operator commutes with the operators
π−1, π and ε.

Proposition 4 : For any multi-index j ∈ Jn
m. Then:

(i) For F ⊆ Rn−m,we have π−1
j (S (F )) = S

(
π−1

j (F )
)
.

(ii) For F ⊆ Rn, we have πj (S (F )) = S (πj (F )) and εj (S (F )) = S (εj (F )) .

Proof. We can suppose without loss of generality that j belongs to Jn
1 , i.e. that j is an integer

that satisfies 1 ≤ j ≤ n. If the assertions (i) and (ii) of proposition 4 hold for an arbitrary integer
j then they hold for every multi-index j.

a) π−1
j (S (F )) = S

(
π−1

j (F )
)

is an easy consequence of proposition 3.

b) Let us show that S (πj (F )) = πj (S (F )). We can suppose without loss of generality that
j = n.
S (πn (F )) = S

({
α′ ∈ Rn−1 |α = (α′, αn) ∈ F

})
and thus

S (πn (F )) =
{
p′ ∈ Zn−1 |∀α = (α′, αn) ∈ F and α′ = πn (α) ∈ V (p′)

}
.

On the other hand πn (S (F )) = πn {p = (p′, pn) ∈ Zn |V (p) ∩ F 6= ∅}
and thus πn (S (F )) =

{
p′ ∈ Zn−1 |∀α = (α′, αn) ∈ F and α′ = πn (α) ∈ V (p′)

}
.

This proves that πn (S (F )) = S (πn (F )).
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c) εj (S (F )) = S (εj (F )) is an immediate consequence of a) and b).

The following proposition is important. It shows that the supercover is independent of any
axis permutation. There is no privileged direction. This is not true for most other digitisation
schemes [10, 21, 1, 22, 26, 28, 15, 17].

Proposition 5 : Let F ⊆ Rn and σ ∈ σn. Then:

rσ (S (F )) = S (rσ (F ))

The proof of this proposition is obvious. One can say that the operators S and rσ commute.
The following proposition tells us that the problem of determining the supercover of an extrusion
is essentially a problem of determining a supercover in the corresponding projection space.

Proposition 6 : Let F ⊆ Rn and j ∈ Jn
m. Then:

S (εj (F )) = rj (Zm × S (πj (F )))

Proof. We know from lemma 1 that εj (F ) = rj

(
ε(1,2,...,m)

(
r−1
j (F )

))
for rj a multi-index

axis permutation with j ∈ Jn
m. It is easy to see that ε(1,...,m) (F ) = π−1

(1,...,m)

(
π(1,...,m) (F )

)
=

Rm × π(1,...,m) (F ). Therefore, ε(1,...,m)

(
r−1
j (F )

)
= Rm × π(1,...,m)

(
r−1
j (F )

)
. We know from

lemma 1 that πj (F ) = π(1,...,m)

(
r−1
j (F )

)
. This leads to εj (F ) = rj

(
ε(1,2,...,m)

(
r−1
j (F )

))
=

rj (Rm × πj (F )) and therefore S (εj (F )) = S (rj (Rm × πj (F ))). Since rj is also an axis permu-
tation, we can apply proposition 5 and thus, S (εj (F )) = rj (S (Rm × πj (F ))). Now, because
of proposition 3, we have S (εj (F )) equal to rj (S (Rm)× S (πj (F ))). It is easy to see that
S (Rm) = Zm, which proves the proposition.

4 The supercover of an m-flat

In this section we will study the supercover of an m-flat in dimension n. We will show that
the supercover of an m-flat is a discrete analytical object and give a method that provides the
corresponding discrete inequalities.
This section is organized in four subsections. In the first subsection we show that the supercover
of a hyperplane (i.e. (n− 1)-flat) is described by 2 discrete inequalities. In the second subsection
we show that the supercover of a point (i.e. 0-flat) is described by 2n discrete inequalities. In
subsection 3, we show that the supercover of an m-flat is the intersection of supercovers of its
orthogonal extrusions. Note that of these orthogonal extrusions is an l-flat for some l ≥ m. In
subsection 4, we show that if m < n − 1, the supercover of an m-flat is a discrete analytical
object by providing a method that determines the discrete inequalities describing the supercover
of an m-flat.

4.1 Supercover of a hyperplane

The following theorem characterises the supercover of a Euclidean hyperplane (i.e. a (n− 1)-flat)
as the set of discrete points that satisfy a double inequality.

Theorem 7 : Let H be a Euclidean hyperplane in Rn defined by: H : e +
∑n

i=1 Aixi = 0, with
A ∈ Rn, e ∈ R. Then the supercover of H is:

S (H) =

{
X ∈ Zn

∣∣∣∣∣−
∑n

i=1 |Ai|
2

≤ e +
n∑

i=1

AiXi ≤
∑n

i=1 |Ai|
2

}
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Proof. Let us suppose, without loss of generality, that Ai+1 ≥ Ai ≥ 0 for 1 ≤ i ≤ n − 1. Here
”if” follows from the fact that e +

∑n
i=1 Ai

(
pi − 1

2

)
≤ 0 and e +

∑n
i=1 Ai

(
pi + 1

2

)
≥ 0 would

imply that the segment whose endpoints are p −
(

1
2 , · · · , 1

2

)
and p +

(
1
2 , · · · , 1

2

)
must intersect

H, and hence that V (p) (which is convex and therefore contains that segment) intersects H. A
discrete point p belongs to S (H) if and only if V (p) ∩H 6= ∅. We have V (p) ∩H 6= ∅ for some
discrete point p if and only if e +

∑n
i=1 Ai

(
pi − 1

2

)
≤ 0 and e +

∑n
i=1 Ai

(
pi + 1

2

)
≥ 0. Here ”if”

follows from the fact that e +
∑n

i=1 Ai

(
pi − 1

2

)
≤ 0 and e +

∑n
i=1 Ai

(
pi + 1

2

)
≥ 0 would imply

that the segment whose endpoints are p−
(

1
2 , · · · , 1

2

)
and p +

(
1
2 , · · · , 1

2

)
must intersect H, and

hence that V (p) (which is convex and therefore contains that segment) intersects H. The ”only
if” part follows from the fact that, for 1 ≤ i ≤ n, pi − 1

2 ≤ xi ≤ pi + 1
2 for all x ∈ V (p) : if

e +
∑n

i=1 Ai

(
pi − 1

2

)
> 0 then we would have that e +

∑n
i=1 Aixi > 0 for all x ∈ V (p), so that

V (p)∩H = ∅; symmetrically we would have that V (p)∩H = ∅ if e +
∑n

i=1 Ai

(
pi − 1

2

)
< 0.

Corollary 8 : The supercover of a hyperplane is a discrete analytical object.

When we compare the Supercover of a hyperplane to other discrete hyperplanes, we notice that it
is not, in general, a Reveillès discrete analytical hyperplane [25, 2, 4]. There is a small difference
in the definitions. A Reveillès discrete analytical hyperplane H is a discrete object satisfying a
double inequality [25, 2, 4]:

H =

{
p ∈ Zn

∣∣∣∣∣α ≤ e +
n∑

i=1

Aipi < β

}
; where α, β, e ∈ R and A ∈ Rn

One of the characteristics of a A Reveillès discrete analytical hyperplane is its arithmetical
thickness defined by ω = β − α. There is however an interesting subset of hyperplanes, the
rational hyperplanes, for which the supercover are Reveillès discrete analytical hyperplane [4].
A hyperplane or discrete analytical hyperplane is said to be rational if it has a normal vector
whose components are all integers. See [25] for a study of 2D rational discrete analytical straight
lines, [2, 19, 20] for a discussion on a specific class of 3D discrete analytical planes and [4] for a
study of the rational discrete analytical hyperplanes in arbitrary dimensions. Theorem 7 implies
that the supercover of any rational hyperplane is a discrete analytical hyperplane.

Corollary 9 : Let H : e +
∑n

i=1 Aixi = 0 be a rational hyperplane in Rn with A ∈ Zn, e ∈ R.
Then the supercover of H is equal to:

S (H) =

{
X ∈ Zn

∣∣∣∣∣
⌈
−
∑n

i=1 |Ai|
2

− e

⌉
≤

n∑
i=1

AiXi ≤
⌊∑n

i=1 |Ai|
2

− e

⌋}
The proof of corollary 9 is immediate. Thus rational hyperplanes have a supercover that is
characterised by Diophantine inequalities. One of the reasons why this is of interest is of course
that, in a finite part of space, a discrete hyperplane is always rational.

Corollary 10 : The arithmetical thickness of the supercover of the rational hyperplane H :
e +

∑n
i=1 Aixi = 0 is ω =

∑n
i=1 |Ai| or ω =

∑n
i=1 |Ai|+ 1.

The proof of this result is simple. The arithmetical thickness is equal to
∑n

i=1 |Ai| + 1, when∑n
i=1 |Ai| is even and e is an integer, or, when

∑n
i=1 |Ai| is odd and e − 1

2 is an integer. In all
other cases the arithmetical thickness is equal to

∑n
i=1 |Ai|. Discrete analytical hyperplanes that

have an arithmetical thickness equal to
∑n

i=1 |Ai| are called standard hyperplanes [19]. This is
an important class of discrete analytical hyperplanes. See [4, 19, 20, 8, 9] for details on standard
hyperplanes.
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4.2 Supercover of a point

The supercover of a Euclidean point in dimension n is given by:

Proposition 11 : The supercover of a Euclidean point y ∈ Zn is equal to:

S (y) = Zn ∩
[⌈

y1 −
1
2

⌉
,

⌊
y1 +

1
2

⌋]
× · · · ×

[⌈
yn −

1
2

⌉
,

⌊
yn +

1
2

⌋]
Proof. We first consider the case in which y ∈ Z1. The point y is a 0-flat ∈ Z1. A normal
vector of the 0-flat is A = 1 and therefore y is a rational 0-flat. We can apply corollary 9
(with n = 1, A1 = 1 and e = −y) to deduce that the supercover of y is equal to S (y) ={
x ∈ Z

∣∣⌈y − 1
2

⌉
≤ x ≤

⌊
y + 1

2

⌋}
. This and Proposition 3 imply Proposition 11.

The supercover of a Euclidean point can be equal to more than one single discrete point. This
is what we call a “bubble” [6, 8, 9]. This is one of the reasons why, despite its properties, the
supercover is not often used as a discretization scheme. Classically, in computer graphics [10],
one of the discrete points is, arbitrarily, chosen as the discretisation of the Euclidean point. This
leads to asymmetries and the loss of many of the properties of the supercover [13]. The way to
obtain a model without bubbles is given by the standard analytical discretization model [8, 9].

Another way of considering proposition 11 is to see it as a special case of Theorem 13 (that is
presented in the next section) since proposition 4 tell us that p ∈ S(F ) iff for all j ∈ Jn

n−(m+1),
πj (p) ∈ S (πj (F )).

Corollary 12 : The supercover of a point is a discrete analytical object.

This is a straightforward corollary of proposition 11.

4.3 Supercover of an m-flat for m ≤ n− 2

The m-flat supercover, for 0 ≤ m ≤ n− 2, is given by:

Theorem 13 : Let F be an m-flat in Rn, where 0 ≤ m ≤ n− 2. Then:

S (F ) =
⋂

j∈Jn
n−(m+1)

S (εj (F ))

We have that S (F ∪G) is equal to S (F )∪ S (G) but in general S (F ∩G) is not equal to S (F )∩
S (G). Theorem 13 provides an example of a collection of sets for which the supercover of the
intersection is the intersection of the sets’ supercovers. Indeed, since F ⊆ εj (F ) it is evident that

S (F ) ⊆ S

( ⋂
j∈Jn

n−(m+1)

εj (F )

)
⊆

⋂
j∈Jn

n−(m+1)

S (εj (F )) and, in view of Theorem 13, this implies

that S (F ) = S

( ⋂
j∈Jn

n−(m+1)

εj (F )

)
=

⋂
j∈Jn

n−(m+1)

S (εj (F )) holds.

Proof. Since F ⊆ εj (F ) for any j, we see that S (F ) ⊂ S (εj (F )) and therefore S (F ) ⊂⋂
j∈Jn

n−(m+1)

S (εj (F )).
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To prove the reverse inclusion, let p be any point in
⋂

j∈Jn
n−(m+1)

S (εj (F )). We need to show that

p ∈ S (F ). Since p ∈
⋂

j∈Jn
n−(m+1)

S (εj (F )), we have that V (p)∩εj (F ) 6= ∅ for every j ∈ Jn
n−(m+1).

Equivalently, we have that

for all j ∈ Jn
n−(m+1), εj (V (p)) ∩ F 6= ∅ (1)

Now, if j and k are any subsequences of {1, 2, . . . , n} , then εj (V (p)) ∩ εk (V (p)) = εj∩k (V (p)).
Moreover, the intersection of any m + 1 distinct members of Jn

n−1 is a member of Jn
n−(m+1).

It follows from these two observations that the intersection of any m+1 distinct members of the
collections of sets

{
εj (V (p)) ∩ F

∣∣j ∈ Jn
n−1

}
is a member of the collection of sets{

εj (V (p)) ∩ F
∣∣∣j ∈ Jn

n−(m+1)

}
and therefore is non-empty, by (1).

Since
{
εj (V (p)) ∩ F

∣∣j ∈ Jn
n−1

}
is a collection of convex sets in the m-dimensional affine set F ,

and we have just seen that every subcollection of m+1 of these sets has a nonempty intersection,
it follows from Helly’s theorem [16] that the entire collection of sets has a nonempty intersection.
As the intersection is F∩

⋂
j∈Jn

n−1

εj (V (p)) = F ∩V (p), we have that F ∩V (p) 6= ∅. This proves

that p ∈ S (F ) .

Corollary 14 : Let F be an m-flat in Rn, where m ≤ n − 2, and let l be an integer such that
m < l < n. Then:

S (F ) =
⋂

j∈Jn
l−m

S (εj (F ))

Proof. The non-trivial ”⊇” part of corollary 14 follows immediately from theorem 13; indeed,
if p lies in the intersection of corollary 14 then p lies in the intersection of theorem 13 since, if
j is any subsequence of {1, 2, . . . , n} of length n − 1 − m then there is a subsequence j′ of j of
length l −m and we have that p ∈ S (εj′ (F )) ⊆ S (εj (F )).

4.4 Discrete analytical characterization of the supercover of an m-flat

Let us show that the supercover of an m-flat, for 0 ≤ m ≤ n − 1, is a discrete analytical
object. For that we will present a method that determines explicitely all the discrete inequalities
characterising the supercover of an m-flat.

Recursive method : Let F be an m-flat in Rn specified in a parametric form.

a) If F is a 0-flat in Rn, we directly apply Proposition 11 which gives us 2n discrete inequalities
that characterise S (F ).

b) If F is an (n− 1)-flat in Rn, we transform the parametric form of F into an analytical form.
Then apply Theorem 7, which gives us 2 discrete inequalities that characterise S (F ).

c) If F is an m-flat in Rn, with 0 < m < n − 1, use Theorem 13 as follows. For each j ∈
Jn

n−1−m, we recursively apply the method with Rm+1 in place of Rn and with a parametric
specification of πj (F ) in place of the parametric specification of F , to produce a discrete
analytical characterisation of S (πj (F )). From the discrete analytical characterisation of
S (πj (F )) in Rm+1, we use Proposition 6 to derive a discrete analytical characterisation
of S (εj (F )) for all j ∈ Jn

n−1−m; it is a trivial matter to compute rj . From the discrete
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analytical characterisation of S (εj (F )) for all j ∈ Jn
n−1−m, we use Theorem 13 to derive a

discrete analytical characterisation of S (F ).

Theorem 15 : The supercover of an m-flat is a discrete analytical object.

Proof. Let us consider an m-flat F and let us apply the recursive method described above. Let
us prove that the method terminates always with a discrete analytical description of S (F ). This
will prove that the supercover of an m-flat is a discrete analytical object.
In case a) and case b) we obtain an explicit discrete analytical description of S (F ) in Rn. This is
also true in case c), assuming that the recursive calls which are made in that case all terminate.
Note that the dimension n of the ambient space must be greater than 2 in case c), the only case
which makes recursive calls. Moreover, when case c) makes a recursive call it sets the dimension
of the mabient space in the recursive call to m = 1, which is strictly less than the dimension n
of the ambient space in the caller. It follows that the depth of recursion is bounded by N − 2,
where N is the dimension of the ambient space in the outermost call. So the recursive call must
indeed terminate.

5 Conclusion

In this paper we propose to take a new look at an old discretisation method called the supercover.
The supercover of a Euclidean object F is the set of discrete points consisting of all the voxels
that intersect F . The supercover has the advantage, over many other discretisation schemes used
in computer graphics, of being defined in an arbitrary dimension and for arbitrary objects. The
principal aim of this paper is to prove that the supercover of an m-flat is a discrete analytical
object. A method is proposed to determine a set of discrete inequalities that define the supercover
of an m-flat.
The next step will consist in looking at the supercovers of finite objects, such as simplices of
dimension k in a space of dimension n. Finite discrete objects are, in practice, more useful in
computer graphics than infinite discrete objects. They can be generated and an important part
of the planned work on the supercovers of simplices will consist in designing efficient generation
algorithms. In order to devise such generation algorithms, it would be helpful to have a discrete
analytical characterisation of the supercover of a simplex.
We will propose now in conclusion, as a conjecture, such a discrete analytical characterisation.
Let us consider a simplex A of dimension k in a space of dimension n defined by k + 1 lin-
early independant Euclidean points: A = simp

(
P 0, . . . , P k

)
with P i ∈ Rn for 0 ≤ i ≤ k.

Let us denote by A the k-flat defined by P 0, . . . , P k. If n = k then, by definition, A =
Rk. Let us denote by E

(
A,P i

)
the half-space whose border is the (n− 1)-flat defined by{

P 0, . . . , P i−1, P i+1, . . . , Pn
}
, and which contains the point P i.

Conjecture 16 : For any symplex A = simp
(
P 0, . . . , P k

)
⊂ Rn,

• If k = n then S (A) =
(⋂n

i=0 S
(
E
(
A,P i

)))
∩
(⋂n

j=1 S (εj (A))
)

;

• If k = n− 1 then S (A) = S
(
A
)
∩
(⋂n

j=1 S (εj (A))
)

;

• If k ≤ n− 2 then S (A) =
⋂

j∈Jn
n−k−1

S (εj (A)) .
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There is some information about this conjecture in dimensions 2 and 3 in [3, 5, 6].

Acknowledgment: We would like to thank Gaelle Largeteau-Skapin, Jean Françon and the
reviewers for their numerous past and present comments.
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