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Pure elastic damage models or pure elastic plastic constitutive laws are not totally satisfactory to describe the behaviour of concrete.
They indeed fail to reproduce the unloading slopes during cyclic loading which define experimentally the value of the damage in the mate-
rial. When coupled effects are considered, in particular in hydro-mechanical problems, the capability of numerical models to reproduce
the unloading behaviour is essential, because an accurate value of the damage, which controls the material permeability, is needed. In the
context of very large size calculations that are needed for 3D massive structures heavily reinforced and pre-stressed (such as containment
vessels), constitutive relations ought also to be as simple as possible. Here an elastic plastic damage formulation is proposed to circum-
vent the disadvantages of pure plastic and pure damage approaches. It is based on an isotropic damage model combined with a hard-
ening yield plastic surface in order to reach a compromise as far as simplicity is concerned. Three elementary tests are first considered for
validation. A tension test, a cyclic compression test and triaxial tests illustrate the improvements achieved by the coupled law compared
to a simple damage model (plastic strains, change of volumetric behaviour, decrease in the elastic slope under hydrostatic pressures).
Finally, one structural application is also considered: a concrete column wrapped in a steel tube.

Keywords: Concrete; Damage; Plasticity
1. Introduction

The evaluation of the integrity of a concrete structure first supposes the knowledge of its mechanical properties. When
continuum mechanics is considered, elastic damage models or elastic plastic constitutive laws are generally the standard
approach to describe the behaviour of concrete. In the first case, the mechanical effect of the progressive microcracking
and strain softening are represented by a set of internal state variables which act on the elastic behaviour (decrease of
the stiffness) at the macroscopic level (see e.g. [42,43,29]). In plasticity models, softening is directly included in the expres-
sion of a plastic yield surface by means of a hardening–softening function generally [14,5,30].

For some concrete structures in sensitive environments, such as confinement buildings of nuclear power plants, dura-
bility is not only related to mechanical load bearing capacities but also, for instance, to some transfer properties. In con-
tainment vessels which is the background of this contribution, the leakage rate upon a growth of internal pressure is a key
safety factor. Therefore, the interaction between the mechanical properties and the permeability of concrete must be
1



1

10

0 0.05 0.1 0.15 0.2

Damage value d, d = (Eo-E(d))/Eo

 k
V
(d

)/
k

V
o

OC

HPC

HPFC

Fitted global curve

Fig. 1. Experimental relation between damage and permeability. kv0 and kv are the intrinsic permeabilities of the initial and damaged material,
respectively, [36]. OC = ordinary concrete, HPC = high performance concrete, HPFC = high performance fiber reinforced concrete.
captured as accurately as possible. Recent experimental results [36] have shown that the permeability of concrete to gas was
mainly controlled by the degradation of the unloading stiffness of the material (Fig. 1). This observation was made in the
regime of diffuse damage, prior to localisation and failure. In the localised cracking regime, it is not the amount of damage
that is the controlling parameter on the leakage rate, but rather the cracks opening and roughness. For the industrial appli-
cations aimed at in this paper, it is the diffuse microcracking regime which is of practical interest since nuclear containment
vessels are not expected to contain major through cracks for obvious safety reasons. Design and commissioning standards
restrict the stresses applied on the material to the pre-peak regime, with in fact as little as possible incursions in the non-
linear regime. A theoretical background to the correlation between damage and permeability in the diffuse regime has been
proposed by Chatzigeorgiou et al. [4]. It is shown that the variation of the permeability of a damaged sample (unloaded) is
related to the variation of its elastic stiffness.

In this type of problem, it is therefore very important to capture the variations of the elastic (unloading) stiffness of the
material upon mechanical loading. Continuum damage is the right theoretical framework for that. But continuum damage
models cannot, alone, be implemented. The material undergoes also some irreversible deformations during loading. As
sketched in Fig. 2, even if damage or plasticity models taken separately are capable of capturing the same material response
upon monotonic loading, both theories do not capture the evolution of unloading stiffness accurately. At a given point on
the stress–strain response, neglecting plastic strains according to a pure damage approach would result in an artificial
increase of damage (secant unloading slope). Neglecting damage effects in a pure plastic model would result in a perme-
ability that does not evolve, or is not described objectively when it is a function of the applied strains or stresses [4]. By
objective, we mean that for the same value of strain (or stress) invariant combinations, different values of permeability
are to be expected. Hence, coupled damage-plasticity models are a requisite in hydro-mechanical problems dealing with
concrete structures.

There are several possibilities for coupling plasticity and damage effects in a single constitutive relation. Historically,
damage has first been coupled to plasticity (see e.g. [25]) in the so-called ductile failure approaches for metal alloys.
The underlying assumption was that void nucleation is triggered by plastic strains. Applications to concrete were proposed
among others, by Oller et al. [33], Meschke and Lackner [31], Kratzig and Polling [21]. In these models, damage growth is a
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Fig. 2. Unloading response of elastic damage (a), elastic plastic (b) and elastic plastic damage (c) models.
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function of the plastic strains. There is a difficulty, however. In uniaxial tension there is little plasticity and quite a lot of
damage while in uniaxial compression, the picture is reversed with little damage and important plastic strains. Further-
more, it can be hardly explained how plastic strain may develop in concrete prior to microcracking. A common assumption
is that irreversible strains are due to microcrack sliding and internal friction. Such a process requires the formation of inter-
nal surfaces (microcracks) prior to occur and develop.

The second approach, that is more suited to both tension and compression responses, uses the effective stress. The plastic
yield function is no longer written in term of the applied stress. Rather, it is a function of the effective stress, that is the
stress in the undamaged material in between the microcracks (see e.g. [42] and the discussion by Ju [20]). Among others
Simo and Ju [43], Hansen and Schreyer [15], Yazdani and Schreyer [47], Fichant et al. [9], Mazars and Pijaudier-Cabot
[29], Salari et al. [39], Lee and Fenves [24], Faria et al. [8], and Jefferson [19] applied this approach to isotropic and aniso-
tropic damage coupled to elasto-plasticity. It has been extended to other sources of damage, for instance to thermal dam-
age by Nechnech et al. [32].

A last possibility is what could be called the strong coupled approach. As opposed to the above where the plastic yield
function is written in term of the effective stress, the applied stress appears in the plastic process, which becomes coupled to
damage. Luccioni et al. [27] and Armero and Oller [2] provided the thermodynamic consistent grounds and discussed the
algorithmic aspects of such a model. It has been also used by Gatuingt and Pijaudier-Cabot [10] for modelling the transient
response of concrete.

We are aiming at a constitutive model that will be used for the computations of nuclear vessels. These are massive, heav-
ily reinforced 3D pre-stressed concrete structures on which coupled hydro-mechanical computations should be performed
in the future [11]. Here, we will deal only with the mechanical material response, but in the development of the constitutive
equations, this final aim ought to be kept in mind. Hence, we look for a sufficiently simple constitutive model and we will
choose the isotropic damage approach.

The major criteria that the model should satisfy are:

• a good description of the tensile material response from which cracking is expected. Such a load may occur when the
vessel is pressurised,

• a good description of the material response for unconfined and confined compression as these are the major service loads,
• a good description of the compactant–dilatant volumetric response of concrete, e.g. in uniaxial compression.

This last issue is important because the dilatant material response induces transverse positive strains that may control
damage growth (according to a strain driven process). Surprisingly, it is not very often investigated in studies on elasto-
plastic damage or damage models. In fact very few of the above mentioned papers display the stress–volumetric strain
curves and as we will see, the isotropic damage approach does not, alone, capture the volumetric material response
correctly.

We have chosen here the effective stress approach because it provides a simple way to separate the damage and plastic
processes. Plastic effects, driven by the effective stresses, can be described independently from damage ones and vice versa.
One of the main interest is to ease the numerical implementation which is implicit/explicit. The plastic part is implicit, as
usually, and the damage part is explicit, same as in classical continuum damage computations. As a consequence, existing
robust algorithms for integrating the constitutive relations can be implemented. The calibration of the material parameters
is also easier to handle as a consequence of the separation of damage and plasticity processes.

In this contribution, the damage process is (elastic) strain controlled. We will use here the classical isotropic model due
to Mazars [28] which incorporates strain-softening. The plastic process shall be described with the help of a yield function
inspired from Etse and Willam [7] and modified by Crouch and Tahar [5]. It is a hardening process in the present model.
Softening is controlled by damage, while plasticity controls hardening, in compression especially. The model is discussed in
Section 2. Section 3 deals with its algorithmic aspects. Elements of validation and comparisons between the damage and
damage plasticity approaches are presented in Section 4. The constitutive law is applied to three elementary loading cases:
simple tension, cyclic compression and triaxial compression. The axial capacity of a circular concrete-filled tube column,
generally designed for seismic purposes, is also investigated. Applications to structures that are representative of a nuclear
vessel have been presented in [18]. They are left, with the hydro-mechanical computations, for a future contribution.

2. Model formulation

In the following, we will restrict considerations to infinitesimal strains. The total strain tensor is denoted as e, the effec-
tive stress is r 0 and a standard, additive, elastic plastic strain decomposition (ee and ep respectively) is used. The isotropic
damage variable is denoted as D and the applied stress tensor is r. The effective stress is classically defined as

r ¼ ð1�DÞ � r0. ð1Þ
3



2.1. Plasticity

Plasticity is governed by the following classical set of equations in which the effective stress has been substituted to the
applied stress:

_e ¼ _ee þ _ep;

r0 ¼ Eee;

_ep ¼ _kmðr0; kÞ;
_k ¼ _khðr0; kÞ;

ð2Þ

where E is the elastic stiffness tensor, m is the flow vector, k is the set of internal variables and h is the plastic modulus. The
dot denotes time derivatives. The plastic multiplier _k is given by the loading–unloading criterion (Kuhn–Tucker form)

F ðr0; jÞ 6 0; _k P 0; F ðr0; jÞ _k ¼ 0; ð3Þ

where F is the plastic yield function defined in the effective stress space. Note that we will use standard associated plasticity.
It means in particular that

m ¼ oF
or0

. ð4Þ

The yield function has been chosen according to two main objectives: (1) a correct volumetric behaviour is expected in
uniaxial compression with a change from a contractant to a dilatant response; (2) an appropriate response in triaxial tests
with confinement has to be obtained, with the apparition of plasticity for high levels of hydrostatic pressures especially.
This supposes a closed function along the first invariant and eliminates Drucker–Prager equations [6]. The plastic yield
surface depends on the three normalised effective stress invariant ð�q; �n; hÞ and one internal variable kh

�n ¼ trðr0Þffiffiffi
3
p

rc

; �q ¼
ffiffiffiffiffiffiffiffiffiffi
s0 : s0
p

rc

; h ¼ 1

3
arcsin �

ffiffiffi
3
p

2

s0 � s0 � s0

ðs0 : s0Þ3=2

 !
; ð5Þ

where s 0 is the deviatoric effective stress tensor, and rc is a parameter of the model. It is defined by means of three functions
k̂, �qc and r

F ¼ �q2 � k̂ð�n; khÞ�q2
cð�nÞ

r2ð�n; hÞ
. ð6Þ

The hardening function k̂, quantifies the growth of the loading surface with respect to the inelastic deformation. It is given
by

k̂ ¼ k2p 1�
�n

2

n2
h

 !
; nh ¼

A
1� k

; k ¼ k0 þ ð1� k0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
khð2� khÞ

p
ð7Þ

with p, A and k0 three parameters of the model. The deviatoric invariant �qc is defined as

�qc ¼
1

6

� �c
ffiffiffi
2

3

r
�nþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 12

ffiffiffi
3
p

n�nþ 36

q� �c

; ð8Þ

where

n ¼
3 1� �f

2
c
t

� �
�f t þ 2�f

1
c
t

; �f t ¼
rt

rc

ð9Þ

and c, rt and rc are three constants. Finally, r is the deviatoric shape function given by [3], and it corresponds to a specific
form of the elliptic surface developed in [46]

r ¼ 2d0

d1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

1 � 4d0d2

q ð10Þ
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with

d0 ¼ c1cos2h� c2sin2hþ c3 sin h cos h; c0 ¼
ð2�

ffiffiffi
3
p

B1Þð2B0 �
ffiffiffi
3
p

B1Þ
ðB1ð1þ B0Þ �

ffiffiffi
3
p

B0Þ2
;

d1 ¼ 2ðc4

ffiffiffi
3
p

cos h� c5 sin hÞ; c1 ¼ 3� c0ð1þ B0Þ2;

d2 ¼ B0ð4� 3B0c0Þ; c2 ¼ 1þ 3c0ð1� B0Þ2;

B0 ¼
�qe

�qc

; c3 ¼ 2c0

ffiffiffi
3
p
ð1� B2

0Þ;

B1 ¼
ffiffiffi
3
p
ð1� aÞB0

1þ B0

þ 2aB0ffiffiffi
3
p ; c4 ¼ ð1þ B0Þð1� B0c0Þ;

�qe ¼
1

3

� �c
ffiffiffi
2

3

r
�nþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 3

ffiffiffi
3
p

n�nþ 9

q� �c

; c5 ¼ ð1� B0Þð1� 3B0c0Þ;

ð11Þ

where a is a model parameter. Following the definition by Etse and Willam [7], the internal variable is a function of con-
finement too:

_kh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3

_ep : _ep
q

fðr0Þ if kh 6 1;

_kh ¼ 0 if kh ¼ 1;

ð12Þ

where f depends on the first normalised invariant

f ¼ �Ah þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

h � Bh
�nþ Ch

q
if �n 6 0;

f ¼ �Ah þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

h þ Ch

q
if �n > 0

ð13Þ

and Ah, Bh and Ch are three model parameters.
Note that Eq. (12) assumes that kh ranges between 0 and 1. When kh = 1, the yield surface becomes a limit surface with

no hardening in a pure elasto-plastic model. Overall, the plastic part of the constitutive relation relies on 10 model para-
meters. This is quite reasonable compared to some cap models which contain more than parameters (e.g. 15 in the MRS
model [35]).

Combining Eqs. (12) and (2) yields the following expression for the plastic modulus h:

h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3

oF
or0

:
oF
or0

r
fðr0Þ if kh 6 1;

h ¼ 0 if kh ¼ 1.

ð14Þ

Fig. 3(a) illustrates the evolution of the yield surface with the internal variable. Fig. 3(b) shows the plastic surface as a
function of the third normalised invariant, the lode angle h ranging from � p

6
(uniaxial tension) to p

6
(uniaxial compression)

for kh = 0. The plastic behaviour is not symmetric: depending on the value of h, the plastic threshold is not the same.
Finally, Fig. 3(c) represents the failure surfaces for two lode angles, once the internal variable has reached the limited value
of 1 and hardening is not allowed any more.

2.2. Damage model

The evolution of damage is defined according to the isotropic model developed by Mazars initially in (1984). It is slightly
modified here in order to account for plastic strains. These strains do not appear in the damage growth relationships. An
equivalent strain eeq is computed from the elastic strain tensor ee

ee ¼ E�1r0; ð15Þ
where E�1 is the inverse of the elastic tensor. This strain measure (or ‘‘equivalent strain’’),

eeq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3

i¼1

ðhee
i iþÞ

2

vuut ð16Þ
5



Fig. 3. (a) Evolution of the yield surface with the hardening parameter for a constant lode angle ðp
6
Þ, (b) evolution of the yield surface with the lode angle

for a fixed hardening parameter and (c) failure surfaces for two lode angles.
is used to control the damage evolution, and hee
i iþ represents the ith positive principal value of the elastic strain tensor.

The loading surface g is defined as

gðee;DÞ ¼ ~dðeeÞ � D; ð17Þ
where damage D is also the history variable. It takes the maximum value reached by ~d during the history of loading

D ¼Max=tð~d; 0Þ ð18Þ

and ~d is defined by an evolution law which distinguishes the mechanical responses of the material in tension and in com-
pression with the help of two pairs of scalars, one for tension (at,Dt) and one for compression (ac,Dc). Namely,

if eeq P eD0
;

~dðeeÞ ¼ atðeeÞDtðeeqÞ þ acðeeÞDcðeeqÞ;

Dt ¼ 1� eD0
ð1� AtÞ
eeq

� At

exp½Btðeeq � eD0
Þ� ;

at ¼
X3

i¼1

et
ihee

i iþ
e2

eq

!
;

else ~dðeeÞ ¼ 0.

ð19Þ

The parameters Dc and ac are determined by two expressions similar to those of Dt and at; eD0
represents the initial thresh-

old from which damage grows. Dt and Dc are the tensile and compressive parts of the damage. At, Ac, Bt, Bc are four con-
stants. The weights at and ac are computed from the elastic strain tensor. They are defined as functions of the principal
values of the strains et and ec due to positive and negative effective stresses respectively (see [28]). In uniaxial tension,
at = 1 and ac = 0. In uniaxial compression, at = 0 and ac = 1.

2.3. Model calibration

The complete elasto-plastic damage model contains 17 parameters, including the elastic ones. Parametric studies have
been performed in order to check their sensitivity and to devise a calibration procedure. Following Crouch and Tahar [5],
and from the sensitivity analysis, 4 parameters remain at a fixed value: a = 0.5, c = 0.99, Ah = 7 · 10�5 and k0 = 0.1.
6



eD0
, At, Bt and rt are calibrated from a tensile test. eD0

controls the peak stress (see [28]), Bt and At controls the shape of
the softening regime. rt controls the amount of plastic strains and the residual stress for large strains. Cyclic compression
provides Ac, Bc, p, rc and Bh. From the plot of the effective stress versus the plastic longitudinal strain (one point is
extracted for each unloading cycle), the coefficients in the plastic model are obtained (p, rc, Bh). The damage part is
obtained from the plot of the equivalent strain versus damage. Finally, A and Ch are obtained from a confined cyclic com-
pression test. A is computed from the threshold of plastic strain growth, and Ch is calibrated from the kinetics of plastic
strain growth (same as in uniaxial compression).

3. Algorithmic aspects

3.1. Plastic process

As opposed to the damage constitutive equations which are explicit once the elastic strains are given, Eq. (2) in the plas-
tic part of the model are path dependent and require an iterative process to be solved. These relations are integrated with
the backward Euler scheme (between loading steps tn+1 and tn) according to a closest point projection. It yields the non-
linear system of equations [41] in the effective stress space

nþ1r0 þ kEmðnþ1r0; nþ1khÞ ¼ Eðnþ1e� nepÞ;
nþ1kh � khðnþ1r0; nþ1khÞ ¼ nkh;

F ðnþ1r0; nþ1khÞ ¼ 0;

ð20Þ

where nep, nkh and the total strains n+1e are known at steps n and n + 1, respectively. The unknowns of the local problem are
n+1r 0, n+1kh and the incremental multiplier denoted as k in this section. An iterative Newton–Raphson method is used to
solve this non-linear system of equations. The jacobian J of the residual can be written as

J ¼

Idimðr0Þ þ kE
om

or0
kE

om

okh

Em

�k
oh
or0

1� k
oh
okh

�h

mT oF
okh

� �T

0

0
BBBBBBB@

1
CCCCCCCA
; ð21Þ

where superscript T denotes for the transpose operator. The derivatives of the flow vectors are computed according to a
numerical differentiation technique described in [35]. Note that the following initial values are prescribed for the three un-
knowns (elastic predictor):

nþ1
1 r0 ¼ nr0 þ Eðnþ1e� neÞ;
nþ1
1 kh ¼ nkh;

k ¼ 0.

ð22Þ
3.2. Plastic-damage process

The full integration of the constitutive law is done in two main steps as depicted in Fig. 4. The state at step n (ne, nr) and
the total strain nþ1

k e at step (n + 1) and global iteration k are known. An effective stress nþ1
k r0 is then computed as sketched

above. The elastic plastic strain decomposition nþ1
k ee , nþ1

k ep follows and damage is evaluated (see Section 2.2) from the elas-
tic strain explicitly. Finally, the total stress nþ1

k r is computed from the value of damage and of the effective stress, see Eq.
(1).

For the global equilibrium, solved according to a Newton–Raphson algorithm, a consistent tangent operator is com-
puted. It derives from the elasto-plastic operator obtained from Eq. (1)

or

oe
¼ ð1�DÞ or0

oe
� oD

oe
r0; ð23Þ

where the elasto-plastic tangent operator appears in the first term on the right hand side of this equation. Since damage
depends on the elastic strain only, oD

oe
can be written as

oD
oe
¼ oD

oee

oee

oe
. ð24Þ
7



Fig. 4. General algorithm for the elastic plastic damage model.
The derivatives of the elastic strain with respect to the total strain are thus computed using Eq. (2)

oee

oe
¼ E�1 or0

oe
. ð25Þ

For the derivatives of the effective stress with respect to the strains, Eqs. (2) are linearized following [35]. After simplifica-
tions, we have

dr0

dkh

� �
¼ A�1 � A�1 nm

�nh

� � n
oF
or0

� �
n

oF
okh

� �� �
A�1

n
oF
or0

� �
n

oF
okh

� �� �
A�1 nm

�nh

� �
2
6664

3
7775 de

0

� �
ð26Þ

with

A ¼ n

E�1 þ k
om

or0

� �
k

om

okh

� �

�k
oh
or0

� �
1� k

oh
okh

� �
0
BBB@

1
CCCA. ð27Þ

or0

oe
is then computed by extracting the first 6 · 6 block of the matrix in Eq. (26).
In order to calculate the derivatives of the damage with respect to the elastic strains, a radial loading is assumed, same as

in [28]

dat ¼ dac ¼ 0 ð28Þ
then

oD
oee
¼ at

oDtðeeÞ
oeeq

þ ac

oDcðeeÞ
oeeq

� �
.
oeeq

oee
. ð29Þ

From [23], a simplified expression of the derivative of the damage with respect to the elastic strains can be given

oD
oee

kl

¼ � at

eD0
ð1� AtÞ
e2

eq

þ AtBt

expðBtðeeq � eD0
ÞÞ

 !
þ ac

eD0
ð1� AcÞ
e2

eq

þ AcBc

expðBcðeeq � eD0
ÞÞ

 !" #
� e

eþ
kl

eeq

� bkl; ð30Þ

where ee+ is the positive elastic stain (spectral decomposition) and bkl = 2 * (1 � dkl) with dkl the Kronecker symbol.
Combining Eqs. (23)–(26) and (30), we obtain a consistent tangent operator for the elastic plastic damage formulation.
8



4. Model validation and comparison with a damage model

The constitutive law is examined first using three ‘‘elementary’’ test cases: simple tension, cyclic compression and triaxial
loading with confinement. Next, the performance of the model is evaluated in a simple structural problem: a column made
of a steel tube filled with concrete. Note that the model parameters will be adjusted to each formulation of concrete as the
different tests have not been performed on the same material.

4.1. Uniaxial tension test

The numerical response of the elastic plastic damage law is first compared with experiments from [13]. The parameters
chosen for this simulation are shown in Table 1. Fig. 5(a) gives the axial stress–strain curve.

For the sake of comparisons, a damage model is also considered (Fig. 5(b)). In this case, plastic strains are equal to zero;
thus the elastic strain is equal to the total strain (e = ee). The response coincides with the original damage model developed
in [28]. The coefficients used for this problem are reported in Table 2. The two sets of parameters in the damage and plastic
damage models are not the same because one has to take into account the plasticity effect in the second.

When the development of damage is predominant, both models are able to reproduce the monotonic experiment. Nev-
ertheless, with the elastic plastic damage formulation, a constant stress value is obtained for a certain strain (e � 0.00036).
At this loading level, the plastic limit surface has been reached. The effective response is perfectly plastic and no further
damage can evolve due to a constant elastic strain. Even if this constant stress value is not dramatic for this example, it
represents one limit of the proposed formulation. One improvement could be to propose another evolution law for the
hardening variable, without a limit surface (or assuming that the limit surface is reached upon an infinite strain). It would
enable the plastic loading surface to expand indefinitely, and therefore the elastic strain to increase under monotonically
increasing applied strain.

4.2. Cyclic uniaxial compression

Cyclic compression is the second elementary test used to highlight the interest of the model. Experimental results are
taken from [44]. Fig. 6(a) illustrates the numerical response with the pure damage law (without plasticity). The coefficients
chosen for this simulation are reported in Table 3. They are different from those in Section 4.1 because the concrete is dif-
ferent too. With this type of relation, a zero stress corresponds to a zero strain. No irreversible effect is simulated.
Table 1
Damage and plastic parameters for simple tension test with the elastic plastic damage model

E (Pa) m Ac At Bc Bt eD0
rc rt p Bh Ch A

3.125 · 1010 0.2 2.75 1.1 2470 13,000 1.1 · 10�4 120 · 106 11 · 106 0.4 2 · 10�2 3 · 10�6 �1

Fig. 5. Simulation of a uniaxial tension test [13]: (a) elastic plastic damage formulation; (b) elastic damage model.

Table 2
Damage parameters for simple tension test with the elastic damage model

E (Pa) m Ac At Bc Bt eD0

3.125 · 1010 0.2 2.75 0.88 2470 8000 0.6 · 10�4
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Fig. 6. Simulation of a cyclic compression test [44]. Elastic damage response.

Table 3
Damage parameters for cyclic compression test with the elastic damage model

E (Pa) m Ac At Bc Bt eD0

3.2 · 1010 0.2 1.15 1.0 1391 10,000 0.9375 · 10�4
The response of the elastic plastic damage model is given in Fig. 7a, and the coefficients are listed in Table 4. rc, p and Bh

are the most influent constants for this test. They quantify the evolution of the plastic strains, especially at the unloading
points. With this model, damage induces the global softening behaviour while plasticity reproduces quantitatively the evo-
lution of the irreversible strains. Experimental and numerical unloading slopes are now similar, contrary to the standard
damage formulation response. This difference is essential when an accurate value of the damage needs to be estimated. The
elastic damage model overestimates D whereas the full constitutive law provides more realistic results.

Figs. 6(b) and 7(b) illustrate the differences between both the damage and the plastic damage models in terms of volu-
metric responses. Notice that the isotropic damage law induces a contractant response (negative volumetric strains). The
introduction of plasticity generates a change in the volumetric response from contractant to dilatant, a phenomenon which
is experimentally observed (see [40] for example).

Plasticity combined with the evolution of isotropic damage plays thus a key role in the numerical simulation of a cyclic
compression test. The development of irreversible strains during loading is quantitatively reproduced and the softening
behaviour fits well. Moreover, the volumetric response, that was completely misevaluated by the damage model, is cor-
rectly simulated by the full formulation. This misevaluation is also due to the fact that damage is assumed to be isotropic.
It constrains the Poisson ratio to remain constant. A more accurate volumetric response could be achieved with anisotropic
Fig. 7. Simulation of a cyclic compression test [44]. Elastic plastic damage response.

Table 4
Damage and plastic parameters for cyclic compression test with the elastic plastic damage model

E (Pa) m Ac At Bc Bt eD0
rc rt p Bh Ch A

3.125 · 1010 0.2 2.75 1.1 2470 15,000 1 · 10�4 120 · 106 10 · 106 0.4 2 · 10�2 3 · 10�6 �1

10



damage approaches, nevertheless irreversible strains would have to be captured with some sort of plastic based mechanism.
The resulting constitutive relations would be much more complex (coupled anisotropic damage and plasticity).

4.3. Triaxial test with confinement

The experimental results from [40] are used to evaluate the ability of the constitutive law to reproduce triaxial tests after
hydrostatic loading. A vertical displacement is applied on a concrete cylinder (150 · 300 mm specimens) after an initial
confinement. Numerical results are compared with experiments for different levels of hydrostatic pressures (P = 0, 1.5,
4.5, 9, 30 and 60 MPa).

Fig. 8(a) gives the axial response (the confinement phase is not represented) for the first four pressures with the full for-
mulation, using the coefficients of Table 5. Again some parameters are different from those listed in Sections 4.1 or 4.2 or
because the concrete properties are not similar. The peaks are quantitatively well reproduced (except for 1.5 MPa). The
global evolutions are also correct: the maximum axial stress increases with the pressure and softening is less and less sig-
nificant. When the initial confinement takes higher values, damage plays a minor role and plasticity becomes predominant.

Fig. 8(b) presents the axial curves for 30 and 60 MPa for the same model parameters. Experimental results and simu-
lations are in agreement. The decrease of the initial stiffness upon confinement is reproduced by the constitutive law espe-
cially. For 30 MPa for instance, non-linearity has already been initiated in the hydrostatic load regime, before the
application of the vertical displacement begins. The introduction of plasticity and the characteristic shape of the yield sur-
face (closed function along the volumetric invariant) provide a good description of these experiments.

Fig. 9(a) shows a comparison between the elastic plastic damage formulation and the damage model for the high con-
finement pressures. The standard damage law fails to reproduce the decrease of the initial stiffness. Note that as soon as the
pressure takes important values (30 or 60 MPa in the figure), the damage model clearly overestimates the experimental
behaviour. In fact, this is due to the definition of the equivalent strain eeq (16) that characterises the material extension
during loading in the damage model. When the hydrostatic pressure is applied, the sample is not subjected to tensile strains,
the equivalent strain keeps a zero value and the material response is elastic, if no plastic effects are taken into account. This
is acceptable for low confinement pressures; but it is no longer reasonable when higher levels are considered. Fig. 9(b)
shows the two responses, according to the damage and plastic damage models, during the application of the hydrostatic
pressure. As expected, the response is linear with the damage model. Fig. 10 shows the evolution of the computed trans-
verse strains for low confinement pressures with the full plastic damage formulation and a comparison with experiment.
Even though the transverse strains are underestimated at the beginning of the loading, the comparison with experiments
is globally correct.

A better response might be achieved using a non-associated flow rule probably. Nevertheless, this improvement would
require an increasing number of parameters, a more complex numerical implementation and has not been considered to be
necessary: the associated plastic model seems indeed sufficient in our case to reproduce the volumetric behaviour globally
Fig. 8. Triaxial test with increasing confinement. (a) Axial stress–strain curves for low hydrostatic pressures. Straight lines (black markers) correspond to
simulation, dotted lines (white markers) to experiment (1) 0 MPa, (2) 1.5 MPa, (3) 4.5 MPa, (4) 9 MPa. (b) Axial stress–strain curves for high hydrostatic
pressures.

Table 5
Damage and plastic parameters for triaxial confinement test with the elastic plastic damage model

E (Pa) m Ac At Bc Bt eD0
rc rt p Bh Ch A

2.73 · 1010 0.2 2.75 1.1 2600 15,000 1 · 10�4 85 · 106 9 · 106 0.4 3 · 10�3 3 · 10�6 �0.5
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Fig. 9. Comparison between elastic damage and elastic plastic damage constitutive laws: (a) triaxial tests with increasing confinement. Axial stress–strain
curves for high hydrostatic pressures; comparison between the elastic damage model (dam) and the elastic plastic damage formulation (plas); (b)
hydrostatic confinement. Comparison between elastic damage model (pl dam) and elastic damage constitutive law (dam).

Fig. 10. Triaxial test with increasing confinement. Axial stress versus transverse strain for 1.5, 4.5 and 9 MPa.
and especially the change from a contractant to a dilatant evolution (see Section 4.2). It appears that the overall response is
not too dilatant, as opposed to classical results in standard associated plasticity (at least for the experiments investigated in
this paper). This may be due to the combination of damage with plasticity, which seems to avoid excessive dilatancy.

4.4. Circular concrete-filled tube column

Composite structures are widely used in building and other civil engineering structures, in seismic zones especially.
Among them, concrete-filled steel tubes (CFT) present some interesting resisting characteristics such as high ductility
and improved strength. They have additional advantages compared to pure steel or simple concrete members: concrete
increases the stability of the column while the steel tube subjects the core concrete to a triaxial state of stress and induces
passive confinement [26]. Various experimental and numerical studies have been recently carried out on such structures
([12,22] for example).

To highlight the interest of our constitutive law, the behaviour of a circular CFT is going to be simulated. The dimen-
sions of the sample and the mechanical properties experimentally reported in [45] and measured on non-wrapped speci-
mens, are listed in Table 6. The steel–concrete interface is assumed to be perfect. For the considered compressive
strength f 0c , Giakoumelis and Lam [12] demonstrated, with greased and non-greased cylinders, that the steel–concrete inter-
face has little influence on the global behaviour.

A vertical displacement (yielding uniaxial compression) is applied on both steel and concrete cross-sections at the same
time. Two simulations are proposed. One using the standard elastic plastic damage formulation (Table 7) and another one
employing the elastic damage constitutive law (Table 8). The steel tube is modelled with a Von Mises plasticity model with
the yield stress re = 279.9 MPa and the tangent hardening modulus Et = 2500 MPa. One fourth of the cylinder is meshed
with 99 eight node cubic elements.

Fig. 11(a) and (b) provide a comparison between the simulations with the two models and with the experiment (here
localisation of damage is not expected and comparisons with the experiment are more relevant). With the elastic plastic
12



Table 6
Geometry and mechanical properties of the circular CFT as experimentally reported in [45]

D e

L

Geometry (mm) L Steel properties Concrete properties

D e Es (Pa) re (MPa) E (Pa) f 0c (MPa)

150 4 450 21 · 1010 279.9 2.18 · 1010 22

Table 7
Damage and plastic parameters for the CFT

E (Pa) m Ac At Bc Bt eD0
rc rt p Bh Ch A

2.18 · 1010 0.2 2.3 1.1 2700 15,000 0.95 · 10�4 85 · 106 9 · 106 0.3 5 · 10�2 3 · 10�6 �0.5

Table 8
Damage parameters for the CFT

E (Pa) m Ac At Bc Bt eD0

2.18 · 1010 0.2 1.15 0.8 1391 10,000 0.95 · 10�4

Fig. 11. Simulation of a CFT: (a) evolution of the axial force as a function of the axial strain. Comparison between the elastic plastic damage formulation
and the experiment; (b) comparison between the elastic plastic damage and the elastic damage models.
damage relation, numerical and experimental axial forces are in agreement for a given axial strain. The ‘‘confinement’’
effect is highlighted with an increase of the maximal strength. On the contrary, the damage model underestimates the global
response of the column. A softening branch appears, which is not observed during experiments. Note that the overall elas-
tic stiffness does not fit exactly, same as for the simulations performed in [45]. This is probably due to experimental differ-
ences between the elastic mechanical properties measured on wrapped and non-wrapped samples due to incomplete
hydration of concrete for example, see Kwon and Spacone [22] for details.

Experimentally, no confinement effect is noticed at the beginning of the loading. The transverse strain in concrete is
lower than in steel due to differences in the Poisson ratio (0.2 and 0.3, respectively). According to the computation, concrete
is thus under lateral tension because the steel concrete bond is perfect, but this regime seems to have little influence on the
structural response. As the axial load increases, plasticity is responsible for the change of the apparent Poisson ratio. Lat-
eral expansion in concrete becomes gradually higher than in the steel tube. A radial pressure develops at the interface and
passive confinement appears. The evolution of the radial stress at the interface as a function of the axial strain is provided
in Fig. 12(a) using the full formulation. Fig. 12(b) illustrates the evolution of the transverse strains ec and es in concrete and
in steel, respectively. As observed experimentally, concrete is first subjected to lateral extension then to lateral compression.
The change of sign occurs immediately when ec becomes higher than es. On the contrary, with the simple elastic damage
constitutive law, as ec is always lower than es, concrete is only subjected to lateral extension (Fig. 13). No passive confine-
ment is observed and that is why the peak in the axial load is so small and inadequate compared with experiment. The
study of the volumetric behaviour yields the same conclusions (Fig. 14). The change from a contractant to a dilatant
response obtained with the introduction of plasticity is a direct consequence of the increase of the concrete transverse
strains. With the elastic damage relation, the volumetric response is always contractant.
13



Fig. 12. Transverse behaviour using the elastic plastic damage model: (a) evolution of the concrete transverse stress as a function of the axial strain;
(b) evolution of the transverse concrete and steel transverse strains as a function of the axial strain and (c) zoom on the first part of the curve.

Fig. 13. Transverse behaviour using the elastic damage model: (a) evolution of the transverse stress as a function of the axial strain; (b) evolution of the
concrete and steel transverse strains as function of the axial strain.

Fig. 14. Evolution of the volumetric strain as a function of the axial load for both approaches.
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For concrete-filled steel tubes subjected to axial compressive loading, a correct description of the volumetric response is
required in order to capture the change of apparent Poisson ratio of concrete that induces passive confinement. The elastic
plastic damage constitutive law may also be required for pre-stressed structures where the material is subjected to biaxial
confinement for instance.

5. Conclusions

An elastic plastic damage constitutive law has been presented and compared with a damage model on different types of
simple loadings and structural test cases. In this model, isotropic damage is responsible for the softening response and the
decrease in the elastic stiffness, while hardening plasticity accounts for the development of irreversible strains and volumet-
ric compressive behaviour.

In compressive tests, improvements compared with the standard elastic isotropic damage relation have been achieved.
Irreversible strains and the volumetric response of the material in uniaxial compression have been quantitatively well repro-
duced. The contractant–dilatant volumetric response is due to plasticity. With a scalar isotropic damage model, it cannot
be captured. In triaxial tests, the decrease of the initial slope and brittle–ductile transition are also captured with the plastic
damage formulation, as opposed to the damage formulation which fails for moderate to high confinement levels. Finally,
the example of a concrete-filled steel tube has highlighted the importance of the volumetric response of concrete in order to
capture the appropriate structural response with such a passive confinement.

Tension dominant applications have not been considered in this paper. Due to strain and damage localisation it is well
established that simulated responses are expected to be mesh dependent (see for instance [37] or 17]). Qualitative compar-
isons between the damage and plastic damage approaches have been carried out by Jason [16]. They show that the intro-
duction of plasticity does not change the failure mode of the structure compared to usual results with a simple damage
model because in tension dominated situations the damage part of the model is the essential ingredient of the constitutive
response. The plastic damage model has the same modelling capabilities as the damage model in a type of structural ana-
lysis where it is established that the second performs very well. In the case of regular meshes, it is possible to adjust the
softening response of the model to fit experimental data on structural applications (provided the discretisation is such that
mesh alignment is consistent with the crack path). In a more general context, however, regularisation techniques should be
included in the formulation to avoid numerical problems [37,34,38,1].

The next step is the durability analysis of containment vessels and the implementation of this constitutive relation in
representative model structures [11]. This has been performed in Jason et al. [18]. The hydro-mechanical problem, from
which the leakage rate upon damage for such structures can be computed, is currently being investigated.
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