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Abstract

This paper is devoted to the multiple input multiple output (MIMO) model pre-

dictive control (MPC) of a catalytic reverse flow reactor (RFR). The RFR aims to

reduce, by catalytic reaction, the amount of volatile organic compounds (VOCs) re-

leased in the atmosphere. The peculiarity of this process is that the gas flow inside

the reactor is periodically reversed in order to trap the heat released during the

reaction. The objective of this paper is to propose a solution to avoid the limitation

seen in a previous study for the single input single output (SISO) control case. It

was dealing with the impossibility to avoid degradation of the catalytic elements
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due to the excessive heating induced by the exothermic reaction. In order to over-

come this issue, a ratio of the inlet (cold) gas flow is now bypassed into the central

zone. This allows introducing a second manipulated variable: the dilution rate. The

phenomenological model considered here for the MIMO MPC of the RFR is ob-

tained from a rigorous first principles modeling. The resulting accurate nonlinear

partial differential equation (PDE) model can be a drawback for the model based

controller implementation. To overcome this issue, we use a MPC strategy previ-

ously developed: it combines a two phase approximation of the PDE model in an

internal model control (IMC) structure. This strategy allows using a less accurate

model and a less time-consuming control algorithm. Finally, efficiency of the control

approach is shown in simulation.

Key words:

Catalytic reverse flow reactor, nonlinear distributed parameter system, model

predictive control, internal model control.

1 Introduction

Problems of environment pollution due to the industrial production are re-

ceiving increased attention: due to public regulations, VOCs discharge in the

atmosphere is strictly limited. Even if the definition of VOCs is blurred, it

includes noxious products which chemical reactivity is likely to influence at-

mospheric pollution. For this reason, they are the source of a lot of environ-

1 Corresponding author: email dufour@lagep.univ-lyon1.fr, phone (33) 4 72 43 18

78, fax (33) 4 72 43 16 99
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mental problems including: acid rains, woods wasting, greenhouse effect and

health troubles. Therefore, the VOCs emission reduction represents a priority,

especially since the problem is connected with a large field of activities from

large-scale factories to small and medium-sized firms like dry cleaners.

An experimental process was build-up in the LGPC 2 . It is a RFR that

allows high temperatures in catalyst bed whereas the inlet and outlet gas

stream temperatures are close to ambient temperature. This process is useful

for experimental validation of solution for issues like: physical phenomena that

influence purification efficiency, optimal size of each elements, process behav-

ior in industrial use and control.

In a previous work, the SISO control case was treated [9]. The aim was to

control the process such that the outlet gas concentration released in the at-

mosphere was maintained below a maximum level fixed by public regulations.

This control strategy was based on a PDE model, an IMC structure and a

MPC framework. According to various regimes, it was shown that the pro-

posed controller was able to tune correctly the control action, i.e. the heating

power at the core of the reactor. In the meantime, for a particular regime, the

temperature inside the reactor was exceeding a threshold temperature that

reflects the deterioration of the catalytic elements. Therefore, the aim of this

paper is to provide a MIMO control framework to solve this problem. This

requires modifying the PDE model and the control problem to account for the

second manipulated variable: the cooling action.

The paper is structured has follows: in section 2, the RFR, the new PDE

model and the new MIMO problem are presented. Section 3 aims to remind

2 Laboratoire de Génie des Procédés Catalytiques, UMR CNRS 2214, CPE Lyon,

France.
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the control strategy previously developed for the SISO control case [9]. In

section 4, simulation results for the MIMO control strategy of the RFR are

discussed.

2 RFR: modeling and control problem

2.1 Destruction of VOCs with the RFR

The aim of the RFR is to reduce, by catalytic reaction, the amount of VOCs

released in the atmosphere. The peculiarity of this process is that the gas

circulation sense is periodically reversed (Fig. 1). It allows high temperatures

in catalyst bed whereas the inlet and outlet gas stream temperatures are close

to ambient temperature. The operation procedure of this RFR [20] is described

below:

• A semi-cycle begins as follows: the gas flows through the first thermal mono-

lith. It is made up of cordierite and of nbc canals where the gas flows. The

shape of its section is a nest. The increase of gas temperature in the canals

is due to the heat exchange with the cordierite. No reaction takes place and

cooling action is possible;

• The gas then passes through the first catalytic monolith. This one is like

the first thermal monolith but with catalytic elements (platinum and other

noble metals) layers on the canals surface. With these elements, the exother-

mic chemical reaction takes place, inducing increase of temperature in the

cordierite and a concentration of pollutant drop. A cooling action is possible;

• The gas flows now in the empty central zone where two control actions are
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both provided: heating and cooling sources;

• The reaction continues in a second catalytic monolith and finally the gas

reaches a second thermal monolith where no reaction occurs but where the

heat of reaction is exchanged from the gas to the cordierite.

• At the end of this semi-cycle, the switch of the four servo valves reverses

the flow rate inside the monoliths. A second semi-cycle, identical to the first

one, starts but in the reverse circulation sense;

• Since the circulation sense has changed, the polluted gas passes first through

the previous second thermal monolith. In this zone, the gas temperature

increases using the heat previously accumulated in the monolith during the

first semi-cycle: This is the saving mode of the process;

• At the end of this second semi-cycle, the flow rate in the reactor is again

reversed thanks to the servo valves switch and a new complete cycle begins.

According to the operating conditions, various problematic behaviors can take

place:

• Insufficiently polluted gas at the RFR inlet causes, by its low heat release

during the reaction, the extinction of the reactor;

• With a strongly polluted gas at the RFR inlet, the release of heat due to the

reaction can deteriorate the catalysts and produces thermal overheating.

to overcome extinction and overheating, several technical solutions have been

proposed [25] and are used in this work:

• Extinction: fuel addition in the gas or energy addition in the central zone.

• overheating: use of a bypass to redirect some amount of the gas or injection

of cold gas in the central zone.
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2.2 Modeling

VOCs combustion in a RFR has been studied in packed bed or monolith by

various authors (see [20] for a general review). Models are based on standard

heat and mass balances and most often deal with an adiabatic RFR at station-

ary periodic state [25,16,34]. They assume the analogy with a counter current

reactor for the RFR at high frequency, which allows estimating simple RFR

characteristics. In [8], authors study the effects of an external electrical heater

supply for very lean mixture. The dynamic aspects of the RFR have been less

examined. A simple linear dynamic model accounting for heat losses and dilu-

tion has been developed in [30]. Budman et al. [4] have developed a nonlinear

dynamic model.

Quiet similar to Budman et al.’s model, in our approach, one assumes that the

adiabatic RFR has dynamic behavior, that gas velocity is constant and that

there is no pressure loss. For modeling, heat and mass balances are described

along the independent space variable z following the flow sense. Due to high

thermal capacity and short residence time in the reactor, the phenomena in

the canals are assumed instantaneous. In the solid parts, it is also assumed

that the dynamic of the concentration of pollutant is negligible with respect to

the dynamic of the temperature. The following physical quantities are consid-

ered in each of the five zones (Fig. 2) of the reverse flow reactor (two thermal

monoliths, two catalytic monoliths and the central part):

• the concentration of pollutant Cg(z, t) and the temperature Tg(z, t) of the

gas inside the canals;

• the concentration of pollutant Cs(z, t) and the temperature Ts(z, t) of the

cordierite along the solid parts.
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Limitation of the SISO control strategy was dealing with the impossibility to

avoid that the temperature inside the reactor exceeds a maximum limit [9].

It deals with limitation for the use of the reactor due to the degradation of

the catalytic elements at high temperature. In order to overcome this issue, a

ratio of the inlet (cold) gas flow is now bypassed into the central zone. This

allows introducing a new manipulated variable: the dilution rate α defined by

α = 1 −
ug.bypassed

ug

(1)

where ug is the inlet gas velocity and ug.bypassed is the velocity of the inlet gas

directly bypassed into the central zone. The dilution rate α therefore ranges

between 0 (maximum cooling and minimum amount of gas cleaned up) and

1 (no cooling and maximum amount of gas treated). Therefore, the control

problem is now stated here as a MIMO control problem. From the modeling

point of view, the evolutions of the previous model [9] are therefore concerned

with a change of gas flow rate expression for z ∈ [0, zZC [ and with a new

term in the central zone. This leads to the following model:

Remark 2.1 To account for the periodic sense inversion, the model is written

in four steps over a complete cycle T =]τ, τ + Tcycle] where τ = nTcycle, (n is

an integer).

Description and value of the model parameters may be found in [9].

1/ during the first semi-cycle (t ∈]τ, τ +
Tcycle

2
[):

• at the inlet (z = 0):
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• in the first thermal zone (for z ∈ ΩMT1), where the cooling manipulated
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Cs = 0

(3)

• at the boundary between the first thermal zone and the first catalytic zone

(z = zMT1):
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|z− = ∂Ts

∂z
|z+

Cs = 0

(4)

• in the first catalytic zone (z ∈ ΩMC1), where the cooling MV α is
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accounted for:
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(Tg − Ts) + (−∆Hr) k∞ac

(1−ε) ρsc cps
e

−Ea
RTs Cs

Cs = 1

1+ k∞

kd
e
−Ea
RTs

Cg

(5)

• at the outlet of the first catalytic zone (z = zMC1), where the cooling MV

α is accounted for:
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(6)

• in the central zone (for z ∈ ΩZC), the heating MV Pres and the cooling

MV α are accounted for:
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(7)

• at the central zone outlet (z = zZC):
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• in the second catalytic zone (for z ∈ ΩMC2):
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• at the boundary between the second catalytic zone and the second thermal

zone (z = zMC2):



















































































Tg|z− = Tg|z+

Cg = Cg(zMC2−, t)

∂Ts

∂z
|z− = ∂Ts

∂z
|z+

Cs = 1

1+ k∞

kd
e
−Ea
RTs

Cg

(10)

• in the second thermal zone (for z ∈ ΩMT2):
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• at the process outlet (z = zMT2):
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2/ At the end of the semi-cycle (t = τ +
Tcycle

2
), the change of the circulation

sense leads to a state permutation (Ltot is the total length of the reactor):
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(13)

3/ During the second semi-cycle (t ∈]τ +
Tcycle

2
, τ + Tcycle[ ), equations (2) to

(12) are again valid.
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4/ At the end of the cycle (t = τ + Tcycle), another state permutation takes

place and a new complete cycle begins:
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(14)

The model clearly exhibits a strong nonlinear behavior due to the catalytic

reaction, due to the MVs Pres and α and due to the periodic discontinuity.

For more details about the modeling, reader is referred to [30].

Therefore, we consider the class of MIMO one dimensional nonlinear parabolic

PDE system (SNL) with scalar control:
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=Fd(x(z, t), u(t), t) ∀ z ∈ Ω, t > 0

Fb(x(z, t), u(t), t)=0 ∀ z ∈ ∂Ω, t > 0

x(z, 0)=xi ∀ z ∈ Ω ∪ ∂Ω

y
m

(t)=C(t)x(z, t) ∀ z ∈ ∂Ω, t > 0

(15)

where z is the independent space variable, Ω is the spatial domain and ∂Ω its

boundary, t is the independent time variable. For all t ≥ 0, x(z, t) is the state

vector in a Hilbert Space, u(t) is the control or MV vector in IR2, y
m

(t) is the

model output vector in IRp. Fd and Fb are nonlinear operator and C is a linear

operator.
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Assumption 1 There exists u(t) = u0(t) leading to the particular representa-

tion (S0) of (SNL) described by the triplet {u(t) = u0(t), x(z, t) = x0(z, t), ym
(t) =

y
0
(t)}, for all t ≥ 0.

Variations around (S0) are given by:
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
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








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u(t) = u0(t) + ∆u(t)

x(t) = x0(t) + ∆x(t)

y
m

(t) = y
0
(t) + ∆y

m
(t)

(16)

where sufficiently small variations about (S0) are described by the time-varying

linearized PDE model (STV L):
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






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∂∆x(z,t)
∂t

=Ax
d(t)∆x(z, t)+Au

d(t)∆u(t) ∀z ∈ Ω, t > 0

Ax
b (t)∆x(z, t) + Au

b (t)∆u(t)=0 ∀ z ∈ ∂Ω, t > 0

∆x(z, 0)=0 ∀ z ∈ Ω ∪ ∂Ω

∆y
m

(t)=C(t)∆x(z, t) ∀ z ∈ Ω ∪ ∂Ω, t > 0

(17)

where the time-varying linear operators Ax
d(t), Au

d(t), Ax
b (t) and Au

b (t) are

obtained from the linearization of (SNL) about the behavior described by (S0)

[14].

13



2.3 MIM0 Control Problem

The control problem for the RFR tackled in this paper relates first to the

statutory maximum amount of VOC that can be released into the atmosphere

at the process outlet. This is stated as an output constraint: one has to en-

sure that the concentration of pollutant at the process outlet is lower than a

maximum level fixed by public regulations:

Cg(zMT2, t) ≤ Cg.max ∀ t > 0 (18)

From a practical point of view, it is replaced by a constraint on the mean

output concentration of pollutant calculated over a past time window T :































Cg.outlet(t) = 1
T

∫ t
t−T Cg(zMT2, τ)dτ

Cg.outlet(t) ≤ Cg.max

(19)

Secondly, in order to avoid deterioration of the catalytic elements, temperature

inside the process has to be maintained under a maximum value, which was

not possible in the previous SISO control study [9]. On the other side, most

of the reaction takes place at the inlet of the first catalytic monolith and is

instantaneous [24,25,30]. The second output constraint is therefore:

Ts(zMT1, t) ≤ Ts.max ∀ t > 0 (20)

Moreover, manipulated variables (electrical power Pres and dilution rate α)

have to be tuned such that:

• Over consumption of electrical power fed into the central zone is minimized,

• A maximum amount of gas is cleaned up.
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3 Controller design

The RFR control problem presented here deals with the control of a nonlinear

parabolic PDE system characterized by complex nonlinearities and periodic

discontinuities in the spatial domain and at the boundary as well. Even with

only one spatial dimension, control of PDE systems are not often treated, es-

pecially in the nonlinear case. Explicitly, transport reaction phenomena with

significant diffusive and convective phenomena are typically characterized by

severe nonlinearities and spatial variations, and are naturally described by par-

tial differential equations. Examples of such processes include tubular reactors,

packed bed reactors, absorption columns, drying or curing processes. The large

number of real applications that results in such PDE models constitutes an-

other motivation for this work. In control theory, due to the complexity of the

problem, relatively few studies are devoted to the control of processes explicitly

characterized by a PDE model. Even if various methods are proposed to con-

trol such distributed parameter systems, there is no general framework yet. In

order to implement, with a computer, a low order model based controller, the

original PDE model is usually simplified into an ordinary differential equation

(ODE) model. Such a finite dimension approximation is based on finite dif-

ferences, finite volume method, orthogonal collocation or Galerkin’s method.

Other works utilized properties of the initial PDE system before finite dimen-

sion controller synthesis: Recently, Christofides developed order reduction by

partitioning the eigen spectrum of the operator of the PDE system [6,12] and

methods based on approximate inertial manifold for spatial discretization of

the PDE [5,2]. Other works for controller synthesis of nonlinear PDE systems

are based on symmetry groups, infinitesimal generators and invariant con-
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ditions [26,15]. Concerning [17,35], finite dimensional controller are obtained

through model reduction based on various methods: singular value decomposi-

tion, Karhunen-Loéve expansion or eigenfunction method. With this method,

a framework is provided with proof of closed-loop stability for the QDMC of

a PDE system [36]. In [3], stability conditions for closed loop control of linear

PDE with finite dimension controller are given in time domain and frequency

domain through semigroup analysis. In [33], based on semigroup theory, proofs

were given for the closed loop stability of PI control for a linear PDE system.

Moreover, the control strategy used here has to be able to be implementable

for on-line control and has to account for natural physical limitations or

specifications (constraints) inherent to many processes. An advanced model

based control strategy, developed for ordinary differential equation systems,

is well dedicated to solve this constrained problem: model predictive control

[1,23,21,31,29]. MPC, or receding horizon control, refers to a class of control

algorithms in which a dynamic process model is used to predict and optimize

process performance. Today, MPC has become an advanced control strategy

widely used in industry. Indeed, MPC is well suited for high performance con-

trol since constraints can be explicitly incorporated into the formulation of

the control problem. MPC was applied for a few PDE systems where accurate

high order dimension models are accounted for [10,27,32,18]. Very recently

[36], singular value decomposition and Karhunen-Loéve expansion was used

in a QDMC framework.

Few papers are devoted to RFR control: [24] deals with this problem with ig-

nition and extinction phenomena, whereas [7] gives some guidelines for the

control of such process accounting for auto thermal and overheating phe-

nomena. Recently, to avoid extinction and overheating, [19] propose a sim-

ple switching control law strategy by on-line tuning of the switching time.
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Unfortunately, temperature may exceed, in large transient peaks, the maxi-

mum temperature allowed and overall results are not optimized. Until now,

the first complete control study has been written by Budman et al. [4] where

a first-principles pseudo-homogeneous one-dimensional model is provided. In

this paper, a parametric study of the reactor allows characterizing the working

mode of the reactor with respect to two manipulated variables: the coolant

flow rate and the cycle time. Moreover, Budman et al. developed two SISO

control approaches where coolant flow rate is the MV when the temperature

and the concentration at the reactor inlet were assumed constant. First, a PID

controller, based on a local linear model is tuned, is given. Even if the use of

PID controller is quiet simple, the main drawback is that there is no guarantee

of constraints satisfaction. Secondly, a feed forward controller is given but it

is not usable during transient conditions and it is not robust with respect to

modeling errors. Concerning our previous work [9], we presented SISO control

results where the aim was to minimize the consumption of electrical power

accounting for the constraint dealing with limitation of pollutant released at

the process outlet. Limitation of this strategy was concerned with the im-

possibility to control overheating, which is addressed here. Compared with

Budman et al.’s work [4], in our approach, the cycle time can not be chosen

as a manipulated variable: indeed, the parametric study [30] showed that the

residence time of the gas inside the reactor has to be small (a few seconds)

in order to trap the heat inside the reactor. Cycle time is therefore constant

and tuned to 20s. Moreover, simulation results cover here more realistic cases

since gas concentration of pollutant at the reactor inlet (i.e the main input

disturbance) is time-varying and unmeasured. This is not the case in Budman

et al.’s work.
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3.1 PDE model based IMC-MPC strategy

In this paper, we use a method [9] that aims to reduce, during the sampling

period, the on-line calculation time due to the optimization task resolution

involved by the PDE model based MPC strategy. Indeed, from a practical

point of view, one of the drawbacks of MPC is the computational time as-

pect, especially when the model becomes more complex and more accurate,

which is the case with the RFR model presented here. Indeed, the model is

intended to predict the future dynamic behavior of the process output over a

finite prediction horizon and has to be solved during the on-line constrained

optimization problem resolution.

The method used to reduce this computational time [9] is reminded here. The

idea is to use on-line two models: the nonlinear parabolic PDE model (S0)

solved off-line combined with a time-varying linearized PDE model (STV L)

solved on-line during the optimization task. The use of the IMC structure

(Fig. 3) allows using less accurate (hence less time consuming) finite dimen-

sion approximation of the time-varying linearized PDE model (STV L) since it

corrects errors due to the open loop model predictions. Indeed, for the model

approximation, two tuning strategies are possible for the number of nodes

used in the finite difference method:

• First possibility, the number of nodes is tuned to a “small” value (“small”

with respect to the large number of nodes to find an accurate approximation

of the nonlinear parabolic PDE system solution). In this case, less time is

required for the model resolution and more time can be spent for the op-

timization task. But since the MPC formulation is an open loop predictive

optimization procedure, large errors due to the PDE model solution ap-
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proximation used in the optimization task may degrade closed loop control

results.

• The second possibility for the tuning is to increase the number of nodes

to find a more accurate approximated solution of the PDE system. This

leads to increase the time needed to solve the model and to decrease the

time dedicated to the optimization task resolution. The drawback is that

the optimizer may not have the time to find a solution during the sampling

time.

Clearly speaking, a trade-off exists for this tuning: even if it leads to a loss

of accuracy in open loop input output behavior, it allows reaching the closed

loop performances specified while providing a less time-consuming resolution

task. This will be shown in simulation results.

A transformation method is used to handle hard input constraints. It allows

translating explicit constraints based on the optimization argument u (and

only on the optimization argument) as new equations for new unconstrained

argument p [28]. Here, we propose to enlarge this method to cover magnitude

constraints and velocity constraints as well (acceleration rate constraints may

also be accounted for) [9]: it guarantees that the actions always respect their

constraints (magnitude, velocity). In order to account for output constraints

as soft constraints (for which violation may be allowed [29]), we adopt the

exterior penalty method [13] used in nonlinear programming where a positive

defined weighted penalty term is added to the initial cost function involved

in the MPC problem. The penalty method transforms the problem into an

unconstrained problem by substituting a penalty function for each constraint.

Therefore, the constrained solution might be approached from the unfeasible

side of the constraints: this relative drawback can be an advantage in the
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case where, sometimes, no solution for the constrained problem exists and

constraint relaxation has therefore to be allowed. According to the stochastic

variations of the inlet gas concentration, such unfeasibility issue may happen

during the control of the RFR.

4 Simulation results

Finally, the control problem is formulated in the MPC framework as:
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

min
Pres(k),α(k)

J(Pres(k), α(k)) = ([ Pres(k)−Pres. min

Pres. max−Pres. min
]2 + [ α(k)−αmax

αmax−αmin
]2)

with constraints on magnitude and velocity of the MVs:

Pres.min ≤ Pres(j) ≤ Pres.max ∀j ∈ J
Np−1
0 = {k, k + Np − 1}

∆Pres.min ≤ Pres(j) − Pres(j − 1) ≤ ∆Pres.max ∀j ∈ J
Np−1
0

αmin < α(j) ≤ αmax ∀j ∈ J
Np−1
0

∆αmin ≤ α(j) − α(j − 1) ≤ ∆αmax ∀j ∈ J
Np−1
0

with constraints on controlled variables:

Cg(zMT2, j) ≤ Cg.max (with j ∈ {k + 1, k + Np.c})

Ts(zMT1, j) ≤ Ts. max (with j ∈ {k + 1, k + Np.t})

(21)

where k is the actual discrete time index, j is the discrete time index. Np.c and

Np.t are respectively the prediction horizon for the output constraint stated

on the concentration of pollutant and the prediction horizon for the output

constraint stated on the temperature in the solid, Np = max(Np.c, Np.t). In
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order to decrease the computational burden, control horizon tuning is one.

Even it is true that is restricts the degree of freedom to solve the optimization

problem, it allows decreasing the computational time, which is an important

issue here.

4.1 Simulation conditions

The runs are realized in the following conditions:

(1) For both the nonlinear system (S0) solved off-line and the time-varying

linearized PDE model (STV L) solved on-line, a finite volume approach is

used to approximate the solution. Since the number of volumes chosen

directly influences the accuracy of the solution and the computational

time, it is also chosen as a tuning parameter. One want to underline

here that a compromise can be found between a relatively inaccurate fi-

nite dimension approximation of the time-varying linearized PDE system

(STV L) (but that can be solved faster) and a relatively good approxima-

tion of the time-varying linearized PDE system (STV L) (that needs more

computation time for its resolution) in order to get efficient closed loop

control results.

(2) After trial error tests, the model linearization is done around the nonlin-

ear behavior (S0) obtained with, ∀t ≥ 0:
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Pres.0(t) = 520 W

α0(t) = 0.95

Cg.inlet.0(t) = 2 × 10−3 mol.m−3

(22)
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(3) Concerning the 3 input disturbances, the inlet flow rate and the inlet gas

temperature are assumed constant and measured, ∀t ≥ 0:
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Qg(t) = 100 m3.h−1

Tg.inlet(t) = 20oC

(23)

whereas the inlet gas concentration of pollutant is stochastic (only its

mean value is known) in three zones, ∀t ≥ 0:
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Low level: 1 × 10−3 mol.m−3 < Cg.inlet(t)< 3 × 10−3 mol.m−3

Medium level: 4 × 10−3 mol.m−3 < Cg.inlet(t)< 6 × 10−3 mol.m−3

High level: 16 × 10−3 mol.m−3 < Cg.inlet(t)< 18 × 10−3 mol.m−3

(24)

The inlet gas concentration is acting as an input disturbance with a strong

influence over closed-loop performances. Therefore, robustness property

of the controller has to be important and is shown here.

(4) Constraints bounds are:
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Pres.max = 3000 W, Pres.min = 0 W

αmax = 1, αmin = 0

∆Pres.max = +1500 W.s−1, ∆αmax = +1 s−1

∆Pres.min = −1500 W.s−1, ∆αmin = −1 s−1

Cg max = 4.7 × 10−4 mol.m−3, Ts.max = 673oC

(25)

(5) For the output constraints given in Eq. (19), the length of the time win-

dow T is 20 min.
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(6) The sample rate Te value is half of the cycle period (round trip) Tcycle

value:































Tcycle = 20s

Te = 0.5 Tcycle

(26)

(7) Simulations are run using a 500 MHz CPU, a FORTRAN code and the

ddaspg subroutine of IMSL library for the time integration (Petzold-Gear

BDF method).

(8) Concerning the tuning of the horizons, even if this is important in any

MPC implementation, this influence is not underline here. Indeed, during

the simulations results detailed below, one want to underline the role of

the finite dimension approximation of the solution of the time-varying

linearized PDE system (STV L) involved in the on-line MPC formulation.

Therefore, prediction horizons have be tuned such that the process dy-

namics that directly influence the optimization results are sufficiently

accounted for.

Remark 4.1 To see a smooth trend of the electrical power fed into the central

zone, the mean value, calculated since the beginning of each run (including the

warm-up period) at t = 0s, is depicted instead of the value found at each time.

Remark 4.2 For the evolution of the concentration of pollutant at the process

outlet depicted, the discontinuity that occurs at 1200s is due to the initial

memorization needed to evaluate system (19).
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4.2 Open loop control results

Concerning the resolution of nonlinear PDE system (SNL) used to simulate

the process, it is obtained with a finite volume approach using 803 volumes.

The open loop process behavior obtained is depicted Fig. 4 (snapshots of the

temperature profile in the solid). The profile at t = 0s is the profile obtained

at the end of a preheating period, where no polluted gas is fed into the re-

actor: The aim of this period is to allow the catalytic elements to warm-up

such that they are sufficiently warm to be able to react with the polluted

gas. According to the snapshots, one can first see the distributed aspect of

the process: Between the inlet (z = 0) and the outlet of the first catalytic

monolith (z = zMC2), i.e. over a length of 45 cm, the temperature increases

by 500 oC (Fig. 4). Moreover, one can see the interest of the cooling since the

temperature decreases in the center of the reactor.

Concerning computational aspect for this open loop control simulation, one

has first to remind that, for this process, the sampling time Te is 10s. It is

therefore small with respect to the time needed to solve the finite dimensional

approximation of the nonlinear PDE system (SNL): indeed, with a 500 MHz

PC, 18 seconds of the open loop process evolution, in average, might be simu-

lated during 1 second used by the CPU. That clearly penalizes the direct use

of the nonlinear PDE system (SNL) during a predictive control framework,

since prediction horizons have to be tuned sufficiently large to cover the dy-

namic evolution of the process and that some iterations are required to find a

solution to the penalized optimization problem.

Given these open loop control results, for this process, this gives motivation

for the use of the proposed time-varying linearized PDE model based MPC
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strategy.

4.3 Closed loop control results

The use of the reactor in 3 different levels of inlet gas concentration (detailed

in (24) ) allows, with simulation, to see 3 various use of the reactor. The inlet

gas concentration is strongly stochastic and has as clearly a very strong impact

over closed loop performances since it acts as an input disturbance. Following

runs will also show how the proposed controller is robust with respect to this

disturbance. It also allows to see the influence of the finite dimension approx-

imation of the time-varying linearized PDE system (STV L) solved during the

on-line optimization task.

• Run #1 deals with the low level of pollution at the RFR inlet. In order to

achieve the cleaning up objective described by the output constraint (19)

depicted Fig. 5, an external source of energy is necessary and electrical power

is fed into the reactor (Fig. 6): about 12% of the full capacity of electrical

supply tends asymptotically to be reached. Due to the stochastic variations

of the inlet gas concentration and its evident large influence over the control

performance, the constraints is noisy but is fulfilled and not satured. In

the case of constant and known input disturbances, runs show that this

constraint is asymptotically satured from the constrained side. Due to the

low content of pollutant and hence the low thermal energy released during

the reaction, there is no overheating issue. Therefore, the dilution rate is

always equal to its maximum value: the maximum amount of gas is treated.

According to the results depicted Fig. 5, one can see that output constraint

is fulfilled, whatever the model approximation is. But, the drawback of using
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a small number of volumes (67) is that it leads to an over consumption of

electrical power (Fig. 6). On the contrary, from a correct minimum value

(243), increasing the number of volumes does not change global closed loop

performance: the same solution is found for the electrical power (Fig. 6) and

for the constrained output as well (Fig. 5) even if approximation errors exist

(e.g.: instantaneous concentration of pollutant at the outlet depicted Fig.

7). Moreover, the control algorithm can be implemented for on-line control

since the resolution of the optimization procedure is always less than the

sample time (this is also the case for the next runs).

• Run #2 deals with the medium level of pollution at the RFR inlet. About 1%

of the full capacity of electrical supply tends asymptotically to be reached

(Fig. 8). Indeed, the amount of pollutant becomes sufficiently high such that

the heat generated during the reaction (and trapped inside the reactor) al-

lows reaching a particular regime: the autothermic regime where no external

source of energy is needed to satisfy the output constraint (19) (Fig. 9). The

dilution rate is maximal since there is no overheating issue. Concerning the

influence of the number of volumes, it is again clearly underlined. Fig. 8

shows that a small number of volumes (67) leads to a large over consump-

tion of energy. This is avoided, increasing the number of volumes to 243: up

to 5 times less electrical power is required, whereas the output constraint

(19) is still fulfilled and is closer to the threshold prescribed than with 67

volumes. Increasing the number of volumes does not change again global

closed loop performance.

• Run #3 deals with the high level of pollution at the RFR inlet. As expected,

the autothermic regime is reached: no external source of energy is needed

and the output constraint (19) is always checked: almost no pollutant is

present at the process outlet. In the meantime, due to the large amount
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of pollutant at the process inlet, thermal energy trapped inside the reactor

produces a large increase of temperature in the monoliths (Fig. 10). Over-

heating of the reactor is avoided by the tuning of the dilution rate (Fig. 11).

This penalizes the gas velocity inside the reactor, since it is asymptotically

decreased to 90% of its maximum value: hence less gas is treated. One can

see the influence of the number of volumes: if it is important, the optimizer

has not enough time to find a solution that fulfilled the constraint (20) (see

Fig. 10 and 11 with 403 volumes). By decreasing the number of volumes,

a solution can be computed during the sampling time and the constraint

bound is always reached, even if the constraint might not be strictly ful-

filled. This is due to the stochastic behavior of the inlet gas concentration,

that has a large impact over control results and that is not accounted for in

the control algorithm. In the case of constant input disturbance, runs show

that this constraint bound is asymptotically reached without any overshoot.

5 Conclusion

This paper was dealing with the MIMO MPC of a catalytic reverse flow reac-

tor. This process is used to decrease noxious VOC amount in gas released in the

atmosphere. The complexity of this process included distributed aspect, non-

linear dynamic behavior and periodic reversing of the circulation of gas. The

MPC was based on a two-phase approximation of the first-principle nonlinear

parabolic PDE model in an IMC framework. Runs showed that the use of the

proposed controller leads to interesting closed loop performances, even with a

large input disturbance. Regarding implementation issue for such controller,

even if a relatively large-scale model needs to be solved in the MPC strategy
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with a small sample time of 10s, the on-line implementation was shown to

be possible. Two advances are currently under study: first, the development

of the control framework based on a new countercurrent pseudo-homogeneous

model [11] which is faster to compute. Secondly, in order to improve the closed-

loop performances, the use of the on-line estimation of the stochastic inlet gas

concentration acting as a strong input disturbance [11].

28



Servovalve

Thermal monolith Thermal monolith

Cleaned gas outlet

Heat supply

Possible flowing out senses

Catalytic monoliths

Polluant gas inlet

Bypassed gas flow

Fig. 1. Principle scheme for the catalytic reverse flow reactor.

ΩMT1

ΩMC1 ΩMC2

ΩZC ΩMT2

MT1 MC1 MC2 MT2ZC

LMT1 LMC1 LMC2

0 zZCzMC1zMT1 z

LZC LMT2

zMC2 zMT2

Polluant gas Cleaned gas

inlet outlet

Fig. 2. Spatial discretization in the reactor.

29



Optimization
algorithm

+
+

+

+

Time Varying Linearized
Model

−
+

Process

Nonlinear
Model

(STV L)

e(k)

∆ym(k)

ym(k)

(S0)

u0(k)

u(k) yp(k)∆u(k)

y0(k)

yref (k)

Fig. 3. General Linearized IMC-MPC structure.

200

300

400

500

600

700

800

900

1000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T
em

p
er

a
tu

re
(K

)

t=6000s

t=2000s t=4000s

t=0s

t=8000s

z (m)

Fig. 4. Open loop temperature profile snapshots in the solid in (SNL).

30



0

0.5

1

1.5

2

2.5

5

0 2 4 6 8 10 12 14 16

Threshold

Time (103s)

3.5

4

4.5

C
o
n
ce

n
tr

a
ti
o
n

(1
0
−

4
m

o
l.
m

−
3
)

243 volumes

403 volumes
603 volumes

67 volumes

3

Fig. 5. Run #1: Mean concentration of pollutant at the process outlet for various

finite dimension approximations of (STV L).

67 volumes

603 volumes

403 volumes

203 volumes

0

50

100

150

200

250

300

350

400

450

500

0 2 4 6 8 10 12 14 16

Time (103s)

P
ow

er
(W

)

Fig. 6. Run #1: Mean electrical power for various finite dimension approximations

of (STV L).

31



1
2
3
4
5
6
7
8
9

10
11
12

0 2 4 6 8 10 12 14 16

0

1

2

3

4

5

6

7

8

9

0 2 4 6 8 10 12 14 16
Time (103s)

Time (103s)

C
o
n
ce

n
tr

a
ti
o
n

(1
0
−

4
m

o
l.
m

−
3
)

C
o
n
ce

n
tr

a
ti
o
n

(1
0
−

4
m

o
l.
m

−
3
)
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