Accéder directement au contenu Accéder directement à la navigation
Nouvelle interface
Article dans une revue

On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations

Abstract : Local and global Carleman estimates play a central role in the study of some partial differential equations regarding questions such as unique continuation and controllability. We survey and prove such estimates in the case of elliptic and parabolic operators by means of semi-classical microlocal techniques. Optimality results for these estimates and some of their consequences are presented. We point out the connexion of these optimality results to the local phase-space geometry after conjugation with the weight function. Firstly, we introduce local Carleman estimates for elliptic operators and deduce unique continuation properties as well as interpolation inequalities. These latter inequalities yield a remarkable spectral inequality and the null controllability of the heat equation. Secondly, we prove Carleman estimates for parabolic operators. We state them locally in space at first, and patch them together to obtain a global estimate. This second approach also yields the null controllability of the heat equation.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00351736
Contributeur : Jérôme Le Rousseau Connectez-vous pour contacter le contributeur
Soumis le : mardi 25 janvier 2011 - 19:27:33
Dernière modification le : jeudi 4 août 2022 - 17:05:35
Archivage à long terme le : : vendredi 2 décembre 2016 - 18:10:27

Fichier

carleman-notes.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Jérôme Le Rousseau, Gilles Lebeau. On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations. ESAIM: Control, Optimisation and Calculus of Variations, 2012, 18, pp.712-747. ⟨10.1051/cocv/2011168⟩. ⟨hal-00351736v4⟩

Partager

Métriques

Consultations de la notice

1405

Téléchargements de fichiers

4852