
HAL Id: hal-00351697
https://hal.science/hal-00351697

Submitted on 10 Jan 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Mec 5 model-checker
Alain Griffault, Aymeric Vincent

To cite this version:
Alain Griffault, Aymeric Vincent. The Mec 5 model-checker. Computer Aided Verification, Jul 2004,
Boston, United States. pp.488-491. �hal-00351697�

https://hal.science/hal-00351697
https://hal.archives-ouvertes.fr

The Mec 5 model-checker

Alain Griffault and Aymeric Vincent⋆

LaBRI, Bordeaux University, 351 cours de la Libération, 33405 Talence, France
<Firstname.Surname@labri.fr>

Abstract. We present in this article the features of the model-checker
we have developed: Mec 5. This tool makes it possible to handle mod-
els written in the AltaRica language and is characterized by the great
expressiveness of its specification logic: µ-calculus on relations with first
order quantifiers and equality.

Keywords: AltaRica, BDDs, model-checking, µ-calculus

1 Introduction

Mec 5 [10] is a model-checker for finite AltaRica [9, 2] models. The way to specify
properties in Mec 5 consists in defining relations in a specification language we
describe in section 2. In this setting, one can verify that a system satisfies a
given property by testing that the set of states which violate the property is
empty. This specification language is very expressive and allows the definition
of complex relations between different models, e.g. bisimulation. Mec 5 is also
open to more general problems like controller synthesis because it can compute
winning strategies in parity games.

AltaRica is a rich formalism developed at the LaBRI jointly with industrial
partners. Its goal is to provide a formalism with clear semantics, supported by
a language offering powerful modeling facilities, itself supported by many tools
in order to perform safety analysis of a given AltaRica model using several dif-
ferent techniques. Compilers exist to produce fault trees, Markov chains, Lustre
programs, transitions systems.

The need for an AltaRica model-checker was real because the availability
of commercial tools to model in AltaRica brings libraries of components whose
correctness must be verified.

2 Specification language

The specification language used by Mec 5 coincides exactly with Park’s µ-
calculus [8] which is first order logic extended with fixpoints over relations.

First-order logic

The propositions are built using the traditional boolean connectives (~ for
negation, & for conjunction, | for disjunction). Variables range over finite do-
mains like booleans (bool), finite intervals of integers ([0, 10]) or enumerations
of constants ({on, off}).

⋆ currently a post-doc at the University of Warsaw in the European RTN “GAMES”

A relation can be used in this context as a predicate, i.e. like the characteristic
function of the relation it represents, returning a boolean value (R(x, 2)).

The introduction of first-order quantifiers in our language allows us to dispose
of the existential and universal modalities “for all successors. . .” and “there
exists a successor such that. . .” whose semantics are usually given explicitly and
which are usually the only link between the specification language and the model
under study. We use a concrete syntax which reminds those modalities: ∃x.p is
written <x>p and ∀x.p is written [x]p.

Fixpoints over relations

Given a monotonic function over relations, it is possible to compute the
least (+=) or the greatest (-=) relation which is a fixpoint of this function. For
example, computing the transitive closure T of a relation R can be written ver-
batim like this in Mec 5 using a least fixpoint:
T(x, y) += R(x, y) | <z>(R(x, z) & T(z, y));

Properties depending on several models are easy to express. Assuming an
equivalence relation eq(a,b) on labels, bisimulation can be written like this:
bisim(s,s’) -=

([e][t](R(s,e,t)=><e’><t’>(R’(s’,e’,t’)&eq(e,e’)&bisim(t,t’))))&

([e’][t’](R’(s’,e’,t’)=><e><t>(R(s,e,t)&eq(e,e’)&bisim(t,t’))));

It is also possible to use several interdependant fixpoint definitions by means
of systems of equations [6], which gives Mec 5 the full power of µ-calculus.

Implementation

Mec 5 uses Binary Decision Diagrams [3] to represent relations. This choice
fits exactly our specification language, because boolean as well as first order op-
erations are efficient on BDDs. The test for equality can be done in constant
time, which is valuable when computing fixpoints. Expressions which range over
finite domains are handled with vectors of BDDs. As a side note, our imple-
mentation benefits currently from a few performance improvements: BDDs use
negative edges so that negation can be computed in constant time, and the
boolean variables used to encode a relation are interleaved and we are working
on wiser heuristics to reduce the memory footprint.

3 Integration with AltaRica

The AltaRica formalism is based on constraint automata and provides facilities
to allow the modeling of complex systems. An AltaRica node can be defined
hierarchically, by first modeling small parts of the system (themselves nodes)
and then gathering them as sub-nodes. The default semantics for sub-nodes is
to run asynchronously, unless some events are explicitly synchronized. Indeed,
two means of communication are provided:

Memory sharing The assertion of a node can relate local variables to variables
of its sub-nodes and can be seen as an invariant of the node. By forcing two
variables to be equal, it is easy to share information between nodes; more
complex constraints can be used. (A.f1 = B.f) & (A.f2 < C.f)

Events synchronization Synchronization vectors <A.a, B.b> specify which
events should be bundled together, preventing them from occurring indepen-
dently, and allowing a transition to fire all the specified events in parallel.

Other mechanisms provided in AltaRica include the ability to specify priority
constraints on events a<b as a partial order. Broadcast vectors <a,b?> extend
synchronization vectors by allowing certain events (those with a ? mark) not to
occur while maximizing the number of fired events: <a,b?>≡ {<a>} < {<a,b>}.

The tight coupling between the AltaRica description language and Mec’s
specification language was one of our primary goals due to our need for an
efficient model-checker in the AltaRica community. This was done by using the
same basic types in the two languages (booleans, intervals and enumerations),
and using the same concrete syntax wherever possible for the definition of new
domains, for expressions and for type expressions. It makes Mec 5 a coherent
tool.

Every AltaRica model A loaded in Mec 5 defines two types and two relations :
the type of its configurations A!c, the type of its event vectors A!ev, its transition
relation A!t⊆A!c×A!ev×A!c and its set of initial configurations A!init⊆A!c

which is the set of all configurations by default. Given these new objects, any
property on A can be expressed in Mec 5’s specification language.

4 Example

We give a very simple AltaRica model which is a loop from which it is possible to
escape non-deterministically; we define the product of two such loops and then
compute the set of states from which it is unavoidable to go to a dead state:

NotEpsilon(e : main!ev) := ~(e.S1. = "" & e.S2. = "");

UnavDead(c) +=

[e][c’]((main!t(c, e, c’) & NotEpsilon(e)) => UnavDead(c’));

node LoopExit

state s : [0, 2];

event a, b;

trans s = 0 |- a -> s := 1;

s = 1 |- b -> s := 0;

s = 1 |- b -> s := 2;

edon

node main

sub S1, S2 : LoopExit;

sync <S1.b, S2.b>;

edon

AltaRica description

01 20 21

00 11 22

10 02 12
a,ε

ε,a

ε,a

a,ε

b,b

b,b

b,b

b,b

ε,a

a,ε

Semantics of main without ε loops

({S1.s = 2, S2.s = 2})

({S1.s = 1, S2.s = 2})

({S1.s = 0, S2.s = 2})

({S1.s = 2, S2.s = 1})

({S1.s = 2, S2.s = 0})

Result

5 Conclusion

Mec 5 currently uses common techniques like Binary Decision Diagrams, and
in that sense is very similar to tools like SMV [7] or NuSMV [4]. However, it
departs from these model-checkers because it provides a more powerful logic that
is not specifically designed for model-checking. In this respect, Mec 5 is closely
related to Toupie [5] which implements Park’s µ-calculus with decision diagrams
but does not provide the means to load a model.

The experiments we made show that the specification language, although
unusual at first glance, is extremely versatile and expressing properties with it
is quite easy. Mec 5 and examples of AltaRica models are available from the
following URL: http://altarica.labri.fr/

The ongoing evolution of Mec 5 follows two lines: performance improvement
and implementation of satellite facilities to help in the verification process (either
in the core of the tool, e.g. manipulating traces of executions, or in a graphical
interface, e.g. a simulator). We expect to improve performance by using the
knowledge we can extract from an AltaRica model to choose a good variable
ordering for the BDDs, and we are investigating more symbolic methods which
would delay the computation of BDDs, in the spirit of what was done with
Boolean Expression Diagrams [1].

References

1. Henrik Andersen and Henrik Hulgaard. Boolean expression diagrams. Information

and Computation, 179(2):194–212, December 2002.
2. André Arnold, Alain Griffault, Gérald Point, and Antoine Rauzy. The altarica

formalism for describing concurrent systems. Fundamenta Informaticae, 40(2–
3):109–124, 1999.

3. Randal E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, C-35(8):677–691, August 1986.

4. Alessandro Cimatti, Edmund M. Clarke, Enrico Giunchiglia, Fausto Giunchiglia,
Marco Pistore, Marco Roveri, Roberto Sebastiani, and Armando Tacchella.
NuSMV version 2: An opensource tool for symbolic model checking. In CAV:

International Conference on Computer Aided Verification, volume 2404 of Lecture

Notes in Computer Science, pages 359–364. Springer, July 2002.
5. Marc-Michel Corsini and Antoine Rauzy. Toupie user’s manual. Research Report

586-93, LaBRI, 1993.
6. Angelika Mader. Verification of modal properties using boolean equation systems.

PhD thesis, Fakultät Informatik, Technische Universität München, 1997.
7. Kenneth L. McMillan. Symbolic Model Checking: an approach to the state explosion

problem. PhD thesis, Carnegie Mellon University, May 1992.
8. David Park. Finiteness is µ-ineffable. Theoretical Computer Science, 3:173–181,

1976.
9. Gérald Point. Altarica : Contribution à l’unification des méthodes formelles et de

la sûreté de fonctionnement. PhD thesis, LaBRI, Université Bordeaux 1, January
2000.

10. Aymeric Vincent. Conception et réalisation d’un vérificateur de modèles AltaRica.
PhD thesis, LaBRI, Université Bordeaux 1, December 2003.

