Treewidth of planar graphs: connections with duality
Vincent Bouchitté, Frédéric Mazoit, Ioan Todinca

To cite this version:
Vincent Bouchitté, Frédéric Mazoit, Ioan Todinca. Treewidth of planar graphs: connections with duality. Euroconference on Combinatorics, Graph Theory and Applications, Sep 2001, Barcelona, France. 10, pp.34-38, 2001, <10.1016/S1571-0653(04)00353-1>. <hal-00351167>
Treewidth of planar graphs: connection with duality

Vincent Bouchitté, Frédéric Mazoit, and Ioan Todinca

1 LIP-École Normale Supérieure de Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France, {Vincent.Bouchitte, Frederic.Mazoit}@ens-lyon.fr
2 LIFO - Université d’Orléans, BP 6759, 45067 Orléans Cedex 2, France
Ioan.Todinca@lifo.univ-orleans.fr

1 Preliminaries

A graph is said to be chordal if each cycle with at least four vertices has a chord, that is an edge between two non-consecutive vertices of the cycle. Given an arbitrary graph $G = (V,E)$, a triangulation of G is a chordal graph $H(= V,F)$ such that $E \subseteq F$. We say that H is a minimal triangulation of G if no proper subgraph of H is a triangulation of G. The treewidth $tw(H)$ of a chordal graph is its maximum cliquesize minus one. The treewidth of an arbitrary graph G is the minimum, over all triangulations H of G, of $tw(H)$. When computing the treewidth of G, we can clearly restrict to minimal triangulations. Treewidth was introduced by Robertson and Seymour in connection with graph minors [5], but it has wide algorithmic applications since many NP-hard problems become polynomial when restricted to graphs of bounded treewidth.

Robertson and Seymour conjectures in [5] that the treewidth of a planar graph G and its dual G^* differ by at most one. This conjecture was recently proved by Lapoire [3], who gives a more general result, on hypergraphs of bounded genus. Nevertheless, the proof of Lapoire is rather long and technical. Here, we show that any minimal triangulation H of a planar graph G can be easily transformed into a triangulation H^* of G^* such that $tw(H^*) \leq tw(H) + 1$.

The minimal separators play a crucial role in the characterisation of the minimal triangulations of a graph. A subset $S \subseteq V$ separates two non-adjacent vertices $a, b \in V$ if a and b are in different connected components of $G \setminus S$. S is a minimal a,b-separator if it separates a and b and no proper subset of S separates a and b. We say that S is a minimal separator of G if there are two vertices a and b such that S is a minimal a,b-separator. Notice that a minimal separator can be strictly included into another. We denote by Δ_G the set of all minimal separators of G. Two minimal separators S and T cross if T intersects at least two components of $G \setminus S$. Otherwise, S and T are parallel. Both relations are symmetric.

Let $S \in \Delta_G$ be a minimal separator. We denote by G_S the graph obtained from G by completing S, i.e. by adding an edge between every pair of non-adjacent vertices of S. If $\Gamma \subseteq \Delta_G$ is a set of separators of G, G_Γ is the graph obtained by completing all the separators of Γ. The result of [2], concluded in [4], establish a
strong relation between the minimal triangulations of a graph and its minimal separators.

Theorem 1. H is a minimal triangulation of G if and only if there is a maximal set of pairwise parallel separators $\Gamma \subseteq \Delta_G$ such that $H = G_\Gamma$.

Since it is easy to extend our results to simply connected or disconnected graphs, we will restrict to 2-connected graphs.

2 Minimal separators in planar graphs

Consider a 2-connected planar graph $G = (V, E)$. We fix an embedding of G in the plane \mathbb{R}^2. Let F be the set of faces of this embedding. Let F be the set of faces of this embedding. The intermediate graph G_I has vertex set $V \cup F$. We place an edge in G_I between an original vertex $v \in V$ and a face $f \in F$ whenever the corresponding vertex and face are incident in G. Notice that $(G^*_I)_I = G_I$.

Let ν be a cycle of G_I (by “cycle” we will always mean a cycle which does not get through a same vertex twice). The drawing of ν forms a Jordan curve in the plane \mathbb{R}^2, denoted $\tilde{\nu}$. It is easy to see that if $\tilde{\nu}$ separates two original vertices x and y in the plane (i.e. x and y are in different regions of $\mathbb{R}^2 \setminus \nu$), then $\nu \cap V$ separates x and y in G. Therefore, the original vertices of ν form a separator in G. Conversely, to each minimal separator S of G, we can associate a cycle ν of G_I (see [1]).

Proposition 1. Let S be a minimal separator of the planar graph G. Consider two connected components C and D of $G \setminus S$. There is a cycle ν_S of G_I such that $\tilde{\nu}$ separates C and D in the plane.

This cycle is usually not unique. In the case of 3-connected planar graphs, notice that if S is a minimal separator, then $G \setminus S$ has exactly two connected components C and D. For each couple of original vertices x and y incident to a same face, fix a unique face $f(x, y)$ containing both x and y. We say that a cycle ν of G_I is well-formed if, for any two consecutive original vertices $x, y \in \nu$, the face-vertex between them if $f(x, y)$. If G is a 3-connected planar graph, for any minimal separator S, there is a unique well-formed cycle of G_I separating C and D in the plane.

In what follows, G denotes a 3-connected planar graph. However, our main results can be easily extended to arbitrary planar graphs.

We say that two Jordan curves $\tilde{\nu}_1$ and $\tilde{\nu}_2$ cross if $\tilde{\nu}_1$ intersects the two regions defined by $\tilde{\nu}_2$. Otherwise, they are parallel. Two cycles ν_1 and ν_2 of G_I cross if and only if $\tilde{\nu}_1$ and $\tilde{\nu}_2$ cross. Notice that the parallel and crossing relations between curves and cycles are symmetric.

Proposition 2. Two minimal separators S and T of G are parallel if and only if the corresponding cycles ν_S and ν_T of G_I are parallel.
Let $\tilde{\nu}$ be a Jordan curve in the plane. Let R be one of the regions of $\mathbb{R}^2 \setminus \tilde{\nu}$. We say that $(\tilde{\nu}, R) = \tilde{\nu} \cup R$ is a one-block region of the plane, bordered by $\tilde{\nu}$. Let \tilde{C} be a set of curves such that for each $\tilde{\nu} \in \tilde{C}$, there is a one-block region $(\tilde{\nu}, R(\tilde{\nu}))$ containing all the curves of \tilde{C}. We define the region between the elements of \tilde{C} as $RB(\tilde{C}) = \bigcap_{\nu \in \tilde{C}}(\tilde{\nu}, R(\tilde{\nu}))$. A subset $Br \subseteq \mathbb{R}^2$ of the plane is a block region if BR is a one-block region $(\tilde{\nu}, R)$ or BR is the region between some set of curves \tilde{C}.

3 Minimal triangulations of G and G^*

Let G be a 3-connected planar graph and let H be a minimal triangulation of G. According to Theorem 1, there is a maximal set of pairwise parallel separators $I \subseteq \Delta_G$ such that $H = G_I$. Let $\hat{C}(I) = \{S \mid S \subseteq I\}$ be the cycles of G_I associated to the minimal separators of I and let $\check{C}(I) = \{\hat{\nu}_S \mid S \subseteq I\}$ be the curves associated to these cycles. According to Proposition 2, the cycles of $\check{C}(I)$ are pairwise parallel. Thus, the curves of $\check{C}(I)$ split the plane into block regions. Consider the set of all the block regions bordered by some elements of \hat{C}. We show that any maximal clique Ω of H corresponds to the original vertices contained in a minimal block regions defined by $\check{C}(I)$.

Theorem 2. Let G be a 3-connected planar graph and let $H = G_I$ be a minimal triangulation of G. $\Omega \subseteq V$ is a maximal clique of H if and only if there is a minimal block region BR defined by $\check{C}(I)$, such that $\Omega = BR \cap V$.

Let now \tilde{C} be an arbitrary set of pairwise parallel cycles of G_I. This family \tilde{C} of curves associated to these cycles splits the plane into block regions. Let G^* be the dual of G. The graph $H^*(\tilde{C}) = (F, E_H)$ has vertex set F. We place an edge between two face-vertices f and f' of H if and only if f and f' are in a same minimal block region defined by \check{C}. Equivalently, f and f' are non-adjacent in $H^*(\tilde{C})$ if and only if there is a $\tilde{\nu} \in \tilde{C}$ separating f and f' in the plane.

Theorem 3. $H^*(\tilde{C})$ is a triangulation of G^*. Moreover, any clique Ω^* of H^* is contained in some minimal block region BR defined by \check{C}.

Let $H = G_I$ be a minimal triangulation of G. Consider the cycles $G(I)$ associated to the minimal separators of I and the corresponding curves $\check{C}(I)$. We could try to considerate the triangulation $H^*(\check{C}(I))$ of G^*, but unfortunately it does not satisfy $tw(H^*) \leq tw(H) + 1$.

Thus, we consider a maximal set of pairwise parallel cycles C' of G_I such that $\hat{C}(I) \subseteq C'$. Clearly, each minimal block region defined by C' is contained in a minimal block region defined by $\check{C}(I)$.

Theorem 4. Let C' be a maximal set of pairwise parallel cycles of G_I. Let BR be a minimal block region of C'. Then $Br \cap G_I$ is either formed by a cycle $\tilde{\nu}$ and a path $\tilde{\mu}$ joining two vertices of $\tilde{\nu}$ or BR is a one-block region $(\tilde{\nu}, R)$ and $BR \cap G_I = \nu$ where ν is the cycle of G_I associated to $\tilde{\nu}$. In particular, $|BR \cap V^*| \leq |BR \cap V| + 1$.
According to theorem 3, each maximal clique Ω^* of H^* is contained in some minimal block region BR, and by the previous theorem it has at most one more vertex than $\Omega = BR \cap V$. By theorem 2, Ω is a clique of H. Hence, $|\Omega^*| \leq |\Omega| + 1$ and thus $tw(H^*) \leq tw(H) + 1$. By considering an optimal triangulation H of G, we obtain a triangulation H^* of G^* of width at most $tw(G) + 1$. We conclude that $tw(G^*) \leq tw(G) + 1$.

So we can state:

Theorem 5 (Main theorem). Let $G = (V,E)$ be a planar graph.

$$|tw(G) - tw(G^*)| \leq 1.$$

References