
HAL Id: hal-00350233
https://hal.science/hal-00350233

Submitted on 6 Jan 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A DSL approach to improve productivity and safety in
device drivers development

Laurent Réveillère, Fabrice Mérillon, Charles Consel, Renaud Marlet, Gilles
Muller

To cite this version:
Laurent Réveillère, Fabrice Mérillon, Charles Consel, Renaud Marlet, Gilles Muller. A DSL approach
to improve productivity and safety in device drivers development. 15th IEEE International Conference
on Automated Software Engineering, 2000, France. pp.101-109. �hal-00350233�

https://hal.science/hal-00350233
https://hal.archives-ouvertes.fr

A DSL Approachto Impr oveProductivity and Safetyin DeviceDri vers
Development

�

LaurentRéveillère
�

FabriceMérillon
CharlesConsel

�
RenaudMarlet

�
Gilles Muller

ComposeGroup,IRISA / INRIA, Universityof RennesI
CampusUniversitairedeBeaulieu,F-35042RennesCedex, France

E-mail:{lreveill,merillon,consel,marlet,muller}@irisa.fr

Abstract

Althoughperipheral devicescomeout at a frantic pace
andrequire fastreleasesof drivers, little progresshasbeen
madeto improve the developmentof drivers. Too often,
thisdevelopmentconsistsof decodinghardwareintricacies,
basedon inaccuratedocumentation.Then,assembly-level
operationsneedto beusedto interactwith thedevice. These
low-leveloperationsreducethereadabilityof thedriver and
preventsafetypropertiesfrombeingchecked.

This paper presentsan approach basedon domain-
specificlanguagesto overcometheseproblems.We define
a language, namedDevil, dedicatedto definingthe basic
communicationwith a device. Unlike a general-purpose
language, Devil allowsa descriptionto becheckedfor con-
sistency. Thisnotonly improvesthesafetyof theinteraction
with thedevicebut alsouncoversbugsearly in thedevelop-
mentprocess.

To assessour approach,wehaveshownthatDevil is ex-
pressiveenoughto specifya large numberof devices. To
evaluateproductivity and safetyimprovementover tradi-
tional developmentin C, wereporta first experimentbased
onmutationtesting.

1. Intr oduction

Many appliancesarenow equippedwith processors(e.g.,
cellularphones,smartcards,cars,etc.) andmany new pe-
ripheraldevicesarebeingdeveloped. PC devicesarealso
a rapidly evolving area.Typical examplesarevideoadap-
tors,which comeout at a frantic pace(every 6 months)to

�
This work hasbeenpartly supportedby ThomsonMultimedia under

thecontract199C031andtheFrenchMinistry of EducationandResearch.�
Author’s current address: LaBRI / ENSERB, 351 cours de la

Libération,F-33405TalenceCedex, France.�
Author’s currentaddress:TrustedLogic, 5 ruedu Bailliage,F-78000

Versailles,France.E-mail: Renaud.Marlet@trusted-logic.fr.

matchthe needsof ever demandingcomputergames. In
sucha competitivecontext, time-to-market is essential:de-
vice driversneedto beavailableassoonasa new device is
ready.

A device driver is situatedbetweenthe device and the
operatingsystemkernel (or directly in the applicationfor
smallsystems).It is a critical pieceof code:miscommuni-
cationwith eitherendmaycreatemajorproblems.On the
onehand,thedrivercanincorrectlyusethedeviceandthus
disableit. On theotherhand,thedevicedrivermaymisuse
theresourcesmadeavailableby theOS(or application)and
crashthesystem.

The precedingobservationsshow that thereis an acute
needfor bothproductivity andsafetyin devicedriverdevel-
opment.However, thisneedis difficult to satisfyfor several
reasonsoriginating in the natureof the devices and their
documentation,in the lack of adequateprogramminglan-
guagesupport,andin thecommonprogrammingpractices.

An approachbasedon domain-specificlanguages

Yet, a goodproductivity shouldbe possibleto achieve as
device drivers sharea lot of commonalitiesand cover a
very specificdomain;this calls for someform of codere-
useas well as expertisere-use. To that end, we propose
a novel approachnot only to achieve both kinds of re-
usebut also to systematizethem. Our approachis based
on domain-specificlanguages(DSLs) [7], as opposedto
general-purposelanguages(GPLs). Besidesproductivity,
this approachalsoimprovessafety, without compromising
efficiency.

A DSL is well adaptedto this taskbecausea DSL cap-
turesandabstractsthedesignandimplementationexpertise
of adomain,theDSLprogrammeronly hasto focusonwhat
to computeor to describe,asopposedto how to do it. In
otherwords,fundamentalconceptsandissuesthatmustbe
addressedby theprogrammeraremadeexplicit in theDSL
while implementationissuesstayhidden;thisimprovespro-

ductivity. Moreover, becausetheexpressivepowerof aDSL
canbe restricted,propertiesthat arecritical to the domain
canbemadedecidableandcheckedautomatically, thusim-
proving safety. Besides,systematicdomain-specificopti-
mizationsthataretediousanddifficult to manuallyimple-
mentwith a GPL canbe automatedandsystematizedin a
DSL compiler.

Becausedevicedriversincludeseveraldomainsof exper-
tise(hardwareandoperatingsystemissues),agoodsepara-
tion of concernsactuallyrequiresa separateDSL for each
conceptuallayer. Thismulti-DSL approachis furthermoti-
vatedby thefactthatthedifferentlayersof adrivercouldbe
describedby differentprogrammers,with a specificback-
groundandspecificconstraints.

This paper

In this paper, we do not addressthecompletedevelopment
of device driversbut focuson oneof the conceptuallay-
ers. We introducea DSL namedDevil (for DEVice Inter-
faceLanguage)thatprovidesthelow-level layerof adevice
driver, i.e., the basicinteractionwith the device. We only
considerlocal devices, i.e., piecesof hardwarethatcandi-
rectly communicatewith the CPU using I/O, addressand
databuses.Wedonotconsiderremotedevicessuchasprint-
ers,thatactuallycommunicateat a higherlevel throughlo-
caldevicessuchasserialor parallelinterfaces.

A Devil specificationrigorously describesthe access
mechanisms,the type and the layout of data that are ex-
changedto operatethe device, aswell assomebehavioral
properties.It doesnot assumeany particularOS,andcan
thereforebe usedfor any target platform. As a matterof
fact, using the languageonly requiressomehardwareex-
pertise;a descriptionin Devil couldtypically bewritten by
thedevicevendor.

Compiling a Devil descriptionprovidesa typed, high-
level interfaceto thedevice which canbeusedto write the
upperlayersof the device driver. For the driver program-
mer, thebenefitof thisapproachis thattheinterfacemodels
an idealizeddevice andabstractsthe hardwareintricacies.
Theupperlayerscaneitherbewritten in a GPL, which di-
rectly utilizes the implementationof the device interface,
or in the future, combinedwith programswritten in other
DSLs for drivers. BecauseDevil is a restrictedlanguage,
varioustyping andconsistency propertiesof a specification
canbeverified. Becausethegeneratedinterfaceis strongly
typed, its usein the upperlayersof the device driver can
alsobecheckedby a standardGPLcompiler.

Our contributionsarethefollowing.

� We have carried out a domain analysis on device
drivers,which pointsout the difficulties of driver de-
velopment. By separatingthe concernsof hardware

vendorsand OS driver programmers,we have ex-
tracted and structuredthe key conceptsas well as
thecommonalitiesandvariationsin thecodeusedfor
communicatingwith a device. We have alsoidentified
importantpropertiesthatprovidesafetyguaranteesfor
suchcommunication.

� Based on this analysis, we have designeda lan-
guage(Devil) to preciselydescribetheinteractionwith
hardware devices and to provide a high-level soft-
ware interfacefor operatingthem. The languageis
strongly typed,andenablesconsistency propertiesto
becheckedonthespecificationaswell asontheuseof
thecorrespondinginterfacein a driver. Suchverifica-
tion wouldbeimpossibleto performondriverswritten
usingaGPL.

� To assessthe usefulnessof the language,we have
shown that it is expressive enough to describe a
wide rangeof standardPCdevicesincludingEthernet,
video, IDE disk, sound,interrupt, DMA and mouse
controllers.

� To evaluatethe productivity andsafetyimprovement
offeredby Devil, wehaveconductedamutationtesting
experiment.Thisevaluationdemonstratesthatadriver
written in C but usingtheDevil-generatedlibrary may
containfrom 60%to 500%timesfewer errorsthanan
equivalentdriver fully written in C.

Thepaperis organizedasfollows.Section2 analyzesthe
difficulty of device driver development.Section3 presents
DSLs andargueswhy they are well suitedfor specifying
device drivers. Section4 describesthe designof theDevil
language.Section5 presentsthe mutationtestingexperi-
ment. Section6 describesrelatedwork. Finally, Section7
concludesandsuggestsfuturework.

2. Writing low-level devicedri vers

We have performeda domainanalysisof device driver
development.Thefollowing pointssummarizevariousrea-
sonswhy developingdevicedriversis difficult.1

Devicesare complex. The designof a device is subject
to numerous,sometimescontradictoryconstraintssuchas
performancerequirementsandbackwardcompatibility. As
aresult,theprogramminginterfaceof adeviceis oftenawk-
ward: contortedaddressingmodes,randompartitioningof
device registers,obscureinitializationsequences,etc.

1Weconcentratehereon thelow-level partof thedrivers,i.e., thecom-
municationwith the device; the higher-level layersraiseother kinds of
issues,suchaspropermanagementof OSresources.

Devices are inaccurately documented. Device drivers
arebasedon thedocumentationmadeavailableto thepro-
grammersby the hardwarevendor. This documentationis
noteasyto readsincelow-level andhigh-level conceptsare
generallyintertwined: electronics,communicationmecha-
nisms,physicalplacementof data(registerlayout),seman-
tics. The terminologyusedalsochangesfrom onedevice
vendorto another. Moreover, any documentationstill is
informal becauseit is written in a naturallanguage.Con-
sequently, a device descriptionis oftenambiguous,incom-
plete,or even inconsistent.In fact, thereis no systematic
way for thehardwarevendorto validatea device specifica-
tion.

Mapping devicedocumentationinto codeis not straight-
forward. Extractingthehardwareinterfacefrom thedoc-
umentationandexpressingit in a programrequiresa sig-
nificant work, that is alsotediousanderror-prone. On the
onehand,the device specificationis expressedin termsof
ports,registers(thatarepossiblyindexedor paged),bit vec-
tors(registerfragmentsandcorrespondingvalues),etc. On
the otherhand,manipulatinga device in a driver requires
the useof assembly-level operations:explicit I/O bus ac-
cessesandbit manipulationoperators(shift, and,or, etc.).

Languageprimiti vesarenot adequate. While program-
ming languageshave put programmersfurther andfurther
away from the functionalunits of a CPU, they only offer
low-level instructionsto operatea device. Theseassembly-
level operationsaccountfor a significantpart of a device
driver; they representbetween10% and20% of the lines
of code.Becauseof their low-level nature,suchoperations
arenot checkedfor type-correctnessandotherconsistency
properties.Moreover, they arefairly unreadable.

Language abstraction mechanisms are inappropriate
and little used. A commonapproachto reducingthe ef-
fectsof low-level operationson programmabilityandread-
ability is to introducemacros,as available in the C lan-
guage. In practice,macrosin existing driversare mostly
usedto give symbolicnamesto specificconstants,suchas
bit masksor I/O portoffsets.Very few of thedriversweex-
aminedusemacrosto encapsulatea wholesetof low-level
operations.Thereasonis that,althoughthepatternsof com-
municationwith the device aresimilar, thereis little shar-
ing from onedevice registerto another. On the onehand,
theabstractionof low-level codefragmentsinto generic,re-
usablemacrosis consideredtootedious.Ontheotherhand,
definingmorespecificmacros,suchas individual register
accessors,is notconsideredusefulasthey wouldoftenonly
beusedonceor twice;eventhoughdoingsowouldmakethe
resultingcodemorereadable.In any case,theuseof macros
dependson theprogrammer’scareandcustoms.Typically,

it is neithersystematicnor uniform: many literal constants
arehardwiredin thecodeanddefinitionsareoftenscattered
into differentsourcefileswithoutapparentreason.

Speedis an overrated concern. Althoughthey offer bet-
ter typing guaranteesthan macrosand can be inlined for
efficiency, functionsarealmostneverusedbecausethey are
reputedtooslow. Thefactis thatspeedis acrucialissuefor
many devicedriversandthatnotall compilerssupportfunc-
tion inlining. Still, insteadof focusingon critical paths,de-
vice driver programmerstendto alwayskeepperformance
in mind andoptimizeeverypieceof code.

Programming practices are poor. The above issues
show thatsomedeficienciesin thesoftwareengineeringof
many device driverstodayalsooriginatein the attitudeof
programmers.In fact,peoplewho write device drivers,es-
pecially for Linux, areproud to have written codethat is
incomprehensible,evento their peers.

Low-level devicedri vers requireprogrammerswith two
domains of expertise. The uniquesituationof a device
driver requiresan expertisein two differentareas.On the
onehand,specifichardwareexpertiseis neededto under-
standthe low-level interfaceof the device and its internal
behavior. On the otherhand,softwareengineeringexper-
tiseis requiredto imposea programmingstyle,to structure
the code(e.g., by definingappropriateabstractionsfor the
low-level parts),to achieveefficiency, yet to make thecode
openenoughto enablefuture extensions. As a matterof
fact, few driver programmerscanbe consideredexpert in
bothdomains.

Example. Consideran excerpt of an actualdriver (log-
itech mouse),displayedin Figure 1. As canbe seen,the
valuesof dx, dy (thehorizontalandverticalmotionof the
mouse),andbuttons areconstructedusinginterleavedbit
operationsand device accesses.This codefragmentis a
compellingexampleof the awkward programsthat canbe
writtenata largescalewhenappropriatesupportfor manip-
ulating low-level device functionalitiesis not availableand
whengoodprogrammingpracticesarenot favored.

Assessingthe softwareengineeringof devicedri vers

Thecomplexity of devices,theinaccuracy of thedocumen-
tation, the complex mappingfrom a device specification
to code,the unsuitabilityof languagesupportandthe pro-
grammers’practiceandexpertiseall have a significantim-
pact on the software engineeringof device drivers. As a
matterof fact, developing drivers is not an efficient pro-
cessand often leadsto codethat is intricate and unread-
able,which impedesmaintenanceandevolution. Not sur-

#define MSE_DATA_PORT 0x23c
#define MSE_CONTROL_PORT 0x23e
...
#define MSE_READ_X_LOW 0x80
#define MSE_READ_X_HIGH 0xa0
#define MSE_READ_Y_LOW 0xc0
#define MSE_READ_Y_HIGH 0xe0 1a.Definition

outb(MSE_READ_X_LOW, MSE_CONTROL_PORT);
dx = (inb(MSE_DATA_PORT) & 0xf);
outb(MSE_READ_X_HIGH, MSE_CONTROL_PORT);
dx |= (inb(MSE_DATA_PORT) & 0xf) << 4;
outb(MSE_READ_Y_LOW, MSE_CONTROL_PORT);
dy = (inb(MSE_DATA_PORT) & 0xf);
outb(MSE_READ_Y_HIGH, MSE_CONTROL_PORT);
buttons = inb(MSE_DATA_PORT);
dy |= (buttons & 0xf) << 4;
buttons = ((buttons >> 5) & 0x07); 1b. Use

Figure 1. Example of communication with the
Logitech bus mouse (Linux 2.2.12)

prisingly, this situationcanhave a disastrousimpacton the
reliability of commercialoperatingsystems.For example,
Microsoft reportsthat 44% of systemfailure in NT4 are
causedby drivers2.

Yet, drivers developmentis a repetitive processand is
built on patternsof codethat are specificto the domain:
bus transactions,bit manipulations,usagepatternsof OS
resources,fixedAPI, etc. This observationcalls for re-use,
to improvebothproductivity andsafety. However, asmen-
tionedabove,general-purposelanguagesoffer little support.
First, codepatternsaretoo fine-grainedto be usefully ab-
stracted.Second,typing rules,thatareabouttheonly vali-
dationmechanismofferedby GPLs,aretoo looseto detect
bugsearlyin thedevelopmentprocess;theprogrammercan
only rely on testingwith sampledata.

Domain-specificlanguagesoffer a solution to all these
problems.Becausethey offer suitablebuilt-in abstractions,
they capturedomainexpertiseandsystematizere-use,re-
gardlessof theprogrammer’spractice.Moreover, they pro-
vide additional safety guaranteesas they allow domain-
specificpropertiesto be automaticallychecked. DSLs are
furtherpresentedin thenext section.

3. Domain-specificlanguages

A domain-specificlanguageis a programmingor speci-
fication languagededicatedto a particulardomainor prob-
lem. A DSL providesappropriatebuilt-in abstractionsand
notations;it is often small, moredeclarative than impera-
tive,andlessexpressive thanageneral-purposelanguage.

Examplesof DSL arenumerous.Somearedistributed

2As from a samplefrom ProductSupportServicesfor NT-Server 4.0,
May–July1999,communicationby Jim Allchin (SeniorVice Presidentin
chargeof Windows 2000),COMDEX, November15th1999.

worldwideandusedonadaily basis,e.g., SQL,Unix shells,
makefiles,etc. DSLs have beenusedin variousdomains
suchasgraphics[12, 15], financialproducts[2], telephone
switchingsystems[13, 17], protocols[5, 23], operatingsys-
tems[20], devicedrivers[25], routersin networks[23] and
robot languages[3]. This profusionshows the recentat-
tentionthatDSLshavereceivedfrom boththeresearchand
industrialcommunities.

Thefollowing pointsexplainwhy DSLsaremoreattrac-
tive thanGPLsfor a varietyof applications.

Easier programming. Becauseof appropriateabstrac-
tions, notationsand declarative formulations,a DSL pro-
gramismoreconciseandreadablethanits GPLcounterpart.
Hence,developmenttime is shortenedandmaintenanceis
improved.As programmingfocuseson whatto computeas
opposedto how to compute,theuserdoesnot have to bea
skilledprogrammer. Specificoptimizationstrategiescanbe
implementedin theDSL compilernot only to offer perfor-
mancebut alsoto systematizeit.

Systematic re-use. Most GPL programming environ-
mentsinclude the ability to abstractcommonoperations
into libraries.However, re-useof librariesis left to thepro-
grammer. In contrast,a DSL offers guidelinesandbuilt-
in functionalitieswhich enforce re-use. Additionally, a
DSL capturesdomainexpertise,eitherimplicitly by hiding
commonprogrampatternsin the DSL implementation,or
explicitly by exposingappropriateparameterizationto the
DSL programmer. Thus, the programmernecessarilyre-
useslibrary componentsanddomainexpertise.

Impr oved safety. DSLs enable more propertiesabout
programsto beautomaticallychecked.In contrastto aGPL,
thesemanticsof a DSL canberestrictedto makedecidable
somepropertiesthat arecritical to a domain[23]. Detect-
ing errorsearly in the developmentprocessalsoimproves
productivity. In addition,asre-useis not only improvedbut
systematized,DSL programsrely on componentsthat are
frequentlyusedandthuswell tested.

DSLsasa softwarearchitecture

Not all applicationscall for a DSL. In fact, a DSL only
makessenseto structureandimplementa programfamily.
A program family is a set of programsthat shareenough
characteristicsthat it is worthwhile to study and develop
themasawhole[18]. A programfamily is typically associ-
atedto agivenproblemin agivendomain.A DSL program
canbe viewed asa way to designatea memberof a pro-
gramfamily. A DSL compiler thenactsasan application
generatorwhich canproduceany memberof the program
family.

In practice,the formulationin termsof a DSL suggests
an attractive way to architecturesoftware to implementa
programfamily [7]. A programfamily is traditionally im-
plementedusinga library that capturescommoncodepat-
ternsandoffersre-usefor implementingthevariousfamily
members.As a library becomeslargeror moregeneric,its
usabilitydecreasesdueto themultiplicationof entrypoints,
parametersand options offered. As a result, the library
might be ignoredby programmersbecauseit is considered
too complex to useor too difficult to read.In this situation,
aDSL canoffer adomain-specificinterfaceto thelibrary so
that the programmerdoesnot have to directly manipulate
numeroushighly-parameterizedbuilding blocks; the com-
plexity is hidden. To that effect, the DSL compilerauto-
maticallygeneratescodethatcallsthelibrary functions;the
library canthenbeseenasanabstractmachinefor theDSL.
Thegeneratedcodecorrespondsto thecodethatwould be
manuallywritten to implementa family memberusingthe
library.

Designingand developinga DSL

Thedefinitionof aDSL critically reliesona thoroughanal-
ysisof thecommonalitiesandvariationsin a programfam-
ily, which identifiescommonpatternsin thedesignandim-
plementation[7]. Thegoalof thisanalysisis alsoto extract
thekey abstractions,properties,notationsandterminology
usedin thedomain. It contributesto determiningthebasic
elementsof thelanguageto bedesigned,aswell aspossible
or requiredverificationsto beperformedon programs.

DSLs for devicedri ver development

Devicedriversform agoodexampleof atight programfam-
ily: in additionto having thesameAPI (for a givenoperat-
ing systemandtypeof device), they all sharesimilar oper-
ations,althoughthey vary accordingto thehardware.They
are thus a good target for DSLs. Moreover, as shown in
Section2, theproductivity andsafetyof devicedriverdevel-
opmentarepoor. Thesearesoftwareengineeringconcerns
thatare addressedby DSLs. Additionally, DSLs canalso
addresstheefficiency issue,which canbea majorconcern
in devicedriverdevelopment.

4. Designof Devil

This sectiongivesa summaryof our domainanalysisof
thelower layerof drivers(i.e. thecommunicationwith de-
vices). For eachidentifiedconcept,we presentthe corre-
spondingDevil languageconstruct.

4.1. Domain analysis

To performour domainanalysis,we exploiteda variety
of information sources. We thoroughlyexamineda wide
spectrumof devicesandtheircorrespondingdrivers,mainly
from Linux sources:Ethernet,video,sound,disk,LED dis-
play, interrupt,DMA andmousecontrollers.Thisstudywas
supportedby literatureaboutdriver development[8, 21],
device documentationsavailable on the web, and discus-
sionswith device driver expertsfor Windows, Linux and
embeddedoperatingsystems.

The overall result of our domainanalysisshows that a
languageis neededto provide a high-level software inter-
faceto hardwaredevices. As is usuallythe casefor inter-
faces[10, 11], our languageshouldhave a declarative na-
ture.

4.2. Levelsof abstractions

Thetoplevel of aDevil specificationis thedeclarationof
a device. Physicaladdresses,abstractedasportsor ranges
of ports,parameterizethedeclaration.Portsthenallow de-
vice registers to be declared.Finally, device variablesare
definedfrom registers,forming the functional interfaceto
thedevice. Thesethreelevelsof abstractionareillustrated
by asimplifiedfragmentof theDevil descriptionof amouse
controller, displayedbelow.

device logitech_busmouse(base : bit[8] port@{0..3})
{

register sig_reg = base@1;
variable signature = sig_reg : int(8);
...

}

The top-level declaration introduces the log-
itech_busmouse description. This description is
parameterizedwith respectto a rangeof portsprovidedas
themainaddressbase andarangeof offsets(from 0 to 3).
An eight-bit registersig_reg is declaredat port base,
offset by 1. Finally, the device variablesignature is
the interpretationof this register as an eight-bit unsigned
(by default) integer. The resulting descriptionfragment
declaresa device whose functional interface consistsof
a single device variable (signature). Only device
variables are visible from outside a Devil description
(unlessthey are declaredprivate); ports and registersare
hiddensincetheseabstractionsarenotpartof thefunctional
interfaceof thedevice.

Let usnow examinein detaileachof theselevels.

4.3. Ports

Theportabstractionis at thebasisof thecommunication
with thedevice. Thisabstractionhidesthefactthat,depend-
ing on how thedevice is mapped,it canbeoperatedvia I/O

andmemoryoperations.Sincea device often hasseveral
communicationpointswhoseaddressesarederivedfrom a
few main addresses,Devil includesa port constructor, de-
notedby @, which takesasargumentsa rangedport anda
constantoffset(e.g.,base@1 asillustratedabove).To limit
the setof accessibleportsto thosethataremeaningfulfor
thegivendevice,therangeof valid offsetsmustbespecified
(e.g.,port@{0..3} asillustratedabove).

4.4. Registers

Basedonourdomainanalysis,registersaretypically de-
finedgiventwo ports:aport for readingandaport for writ-
ing. Only oneport needsto beprovidedwhenreadingand
writing sharethe sameport (as is the casefor sig_reg,
shown above), or when the register is read-onlyor write-
only (seeexamplebelow). Registersalsohaveasize(num-
berof bits),which mustbeexplicitly specified.

Bit masks. A registerdeclarationmaybeassociatedwith
a mask to specify the constraintson bits of this register.
Eachsymbol in the maskcorrespondsto a bit in the reg-
ister. A symbolcaneitherbe ‘.’ to denotea relevant bit,
‘0’ or ‘1’ for anirrelevantbit but with afixedvalue(0 or1)
whenreador written3, or ‘*’ for an irrelevantbit whether
reador written. By default, if no maskis specified,all bits
of a registerareassumedrelevant.As anexample,consider
thedeclarationof theregisterbelow.

register index_reg = write base@2, mask ’1..00000’;

The maskindicatesthatonly bits 6 and5 arerelevant4.
Bit 7 must have value1 when written. Similarly, bits 4
through0 musthave value0 whenwritten. Only the rel-
evantbits of a registercanbe usedto constructa variable.
In theexamplebelow, thetwo relevantbits make up a two-
bit unsignedinteger variable(i.e., a variablethat can take
valuesfrom 0 to 3).

private variable index = index_reg[6..5] : int(2);

Accesspre-actions. Someregistersrequireotherregisters
to be setto specificvaluesbeforebeingaccessed.For ex-
ample, indexed registerscan be viewed as a sequenceof
registerswith a fixedbaseaddress;accessingsuchregisters
typically consistsof manipulatingtwo ports: oneto setthe
index of theregisterto beaccessedandoneto reador write
the target register. To do so, pre-actionsmay be attached
to a register to set up a specificcontext before it is read
or written. The following exampledeclarestwo read-only

3This canbea hardwareconstraintor a provision madeby the device
vendorto allow futureextensions.

4Following theconventionusedin device andchipdocumentation,bits
arenumberedfrom right to left, startingwith 0.

registersthat can be accessedat the sameport base@0,
provided that the device variableindex is seteither to �
or � .

register dx_low =
read base@0, mask ’****....’, pre {index = 0};

register dx_high =
read base@0, mask ’****....’, pre {index = 1};

4.5. Devicevariables

For hardware efficiency reasons(e.g., to minimize the
numberof I/Os), a registermaygroupvariousindependent
values.For example(seeFigure1), threebits in a register
maybeusedto denotewhich buttonsof amousehavebeen
pushed,while theremainingbitsof theregistermayprovide
informationconcerningthe motion of the mouse.In other
cases,somemeaningfulvalueshave to be constructedby
assemblingbit sequencesfrom differentregisters. For ex-
ample,themousemotiondx in Figure1 is encodedin the
device usingthe lowestfour bits of two differentregisters.
In fact, thosemeaningfulvalues,that are possiblyspread
overseveralregisterfragments,representa convenientway
to expresshigh-level communicationswith the device. As
they canconceptuallybereador written likeany variablein
aGPL,wecall themdevicevariables. Sincethey donotdi-
rectlymapto physicalentries,thesevariablescorrespondto
a logical view of thedevice; they abstractover thephysical
representationof the device state. In essence,device vari-
ablesform the functionalinterfaceof thedevice to beused
by theprogrammer.

Construction of values. Previous examples of device
variableshave shown declarationscorrespondingto an en-
tire register (signature) and register fragments(in-
dex). It is also possibleto declarea variableas a com-
binationof these,asillustratedin thefollowing example.

variable dx =
dx_high[3..0] # dx_low[3..0] : signed int(8);

variable dy =
dy_high[3..0] # dy_low[3..0] : signed int(8);

Thehorizontalandverticalmotionof themouseis con-
structedby the concatenation(usingthe# operator)of the
two fragmentsof themotionregistersthatstorethelow and
high four bits of the actualmotion values. The resulting
eight-bitsequencesareinterpretedassignedintegers.

Types. Devil allows bit sequencesto be interpretedasa
giventype. Thesetof typescurrentlyofferedby Devil re-
flectsthetypesusedin thevariousdevice driversthatwere
studiedduringthedomainanalysis:booleans,signedor un-
signedintegersof varioussizes,enumeratedtypes,ranges
or setsof integers. For lack of space,examplesof these
constructsareomitted.

Someotherfeaturesof Devil arenotdetailedhere.These
featuresincludeaccesspost-actions,enumeratedtypesand
arrays,structuresto synchronizedevice variables,orderof
registeraccesses,register constructors,variablebehaviors
and conditionaldeclarationsdependingon device modes.
A detaileddescriptionof Devil canbefoundin [22].

4.6. Verification

In contrastwith GPLs,aDSL makesdomain-specificin-
formationexplicit. In Devil, declarationsenablethreecat-
egoriesof verificationthat arebeyond the scopeof GPLs.
First, becauseDevil is stronglytyped,all usesof the enti-
ties(e.g., ports,registers,variables)canbematchedagainst
their types. Second,omittedor doubledefinitionscanbe
detected.For example,all bits of registerscanbechecked
asbeingusedat leastonce5 : nodevicevariabledefinitionis
thusmissing. Lastly, overlappingdefinitions,i.e., building
entitiesusedmorethanonce,canbe locatedandreported
asan error. For example,the sameregisterbits cannotbe
includedin two differentvariables.

Theuseof Devil’ sfunctionalinterfacein aGPLalsopro-
videsopportunitiesfor verifications.Theseverificationsin-
cludetypecheckingandconditionalvariablechecking;they
canbebothstaticanddynamic[22].

5. Assessment

In the previous sections,we have shown that DSLs en-
able more propertiesaboutprogramsto be automatically
checked. In this section,we examinethenumberof errors
detected(i.e., covered)by bothaGPLandaDSL.TheGPL
usedin our studyis theC language,sinceit is traditionally
usedto write device drivers. Using Devil asan alternative
to GPLsintroducestwo languagesin thedevelopmentpro-
cess:Devil for specifyingadevice interfaceandC (thisuse
of C is denotedby CDevil in the restof the paper)for using
the library that implementstheDevil description.This ap-
proachleadsto an evaluationof the pair CDevil +Devil, and
thusof CDevil andDevil.

Theevaluationof theerror-detectioncoverage of Devil
andC is basedon mutationanalysis. This evaluationen-
ablesusto demonstratethebenefitsof theDSL approachin
termsof softwarerobustness.

DeMillo andMathurhaveanalyzed[9] theerrorsof TEX
reportedby Knuth [16]. Their analysisclearly revealsthat
simpleerrorsdo representa significantfraction,thoughnot
the majority, of the errorsin productionprograms.It also
revealsthatsucherrorsremainhiddenfor alongtimebefore
testingexposesthem. Theseobservationsare even more
importantconsideringthe permissive natureof a language
suchasC.

5Somebits canbedeclaredasirrelevantusingbit masksthough.

For a program	 , mutationtestingproducesa setof al-
ternateprograms.Eachalternateprogram,	�
 , known asa
mutantof 	 , is formedby modifying onestatementof 	 at
a time,accordingto somepredefinedmutationrules.These
mutationrulesarederivedempiricallyfrom studiesof errors
commonlymadeby programmerswhentranslatingrequire-
mentsinto code[1].

In traditionalmutationtesting,we want to reasonabout
thecoverageof a set � of testswith respectto a program	 .
Mutationtestingworkson theprinciplethat if � adequately
covers 	 , thensometestin � shouldbeableto discriminate
	 from a mutation 	� . Presumably, if amutationcannotbe
discriminatedby sometestin � , then � doesnot adequately
cover 	 . Theproportionof mutantsthatdieduringmutation
testingindicateshow well 	 is coveredby � .

A compiler(in our case,a C compileror a Devil com-
piler) canbe thoughtof asa test set, if we considereach
analysisperformedby thecompilerto bea test(i.e., anele-
mentof �). We’ll saythat thecompileradequatelycoversa
program	 if someanalysiscandiscriminate	 from every
mutation 	� .

Ourstudyfocuseson threedifferentdevices(Busmouse,
Ethernetcard,andIDE controller)andtheir corresponding
C drivers6. Ourexperimentconsistsof measuringtheerror-
detectioncoverageof CDevil , Devil andC asdiscoveredby
thecorrespondingcompilers/checkers7. Mutationrulesare
definedso asto ensurethat the resultingmutantis syntac-
tically correct,andactuallymodifiesthe semanticsof the
program.Mutationrulesfor C andDevil arealwayschosen
asto favor C. Our experimentthusreflectsworst casesfor
Devil.

Mutantsaregeneratedat a given programpoint. Such
a programpoint is calleda site. Eachsite leadsto several
mutants.For example,givenanintegerof two digits in base
16, 80 mutantscan be generated(2 for removing a digit,
48 for insertinga new digit, and30 for replacinga digit).
Table1 shows,for eachtargetdevice in ourexperiment,the
numberof siteswheremutantsaregenerated.

Device C Devil CDevil Devil+CDevil

Logitech Lines of code 36 21 18 39
Busmouse Mutation sites 62 81 21 102

IDE Lines of code 64 127 81 208
(Intel PIIX4) Mutation sites 95 277 42 319

Ethernet Lines of code 204 144 137 281
(NE2000) Mutation sites 247 456 258 714

Table 1. Number of mutation sites

Coverage Analysis. Figures2 and 3 summarizethe re-
sultsof our mutationanalysisperformedon C, Devil, and

6C driverscomefrom theLinux kernelversion2.2.12.
7Besidestaticverification,Devil alsoprovidesdynamicchecking.This

dynamiccheckingis not takeninto accountin ourexperiment.

CDevil . Thex-axis consistsof the device driversusedin the
study. The y-axis of Figure2 representsthe rateof unde-
tectedmutantsper site. The y-axis of Figure3 represents
thenumberof undetectedmutantsbalancedby thenumber
of sites.

Theseanalysisdatademonstratethat the propensityof
introducingundetectederrorsis 60%to 500%timeslower
whenusingDevil ratherthanusingC only. It canalsobe
observedthaterrorsin theDevil partof thedriverarenearly
alwaysdetected.

Theseresultscanbe further improved as the specifica-
tions and the compiler usedin the experimentrely on an
earlierversionof Devil whichdoesnotexploit all of its fea-
tures.

0
20
40
60
80
100

73

1
Busmouse

37

86

7

Ethernet

26

65

10

IDE

32

% undetected/site

Figure 2. Percentage of undetected errors/site

C Devil CDevil

0
50

100
150
200
250

Busmouse Ethernet IDE

undetected

Figure 3. Number of undetected errors

6. Relatedwork

Our work on device drivers startedwith a study of
graphicdisplayadaptorsfor a X11 server. We developeda
language,calledGAL, aimedatspecifyingdevicedriversin
thiscontext [25]. Althoughsuccessfulasaproofof concept,
GAL covereda very restricteddomain.It is this restriction
whichallowedusto modelthedomainwith a singleDSL.

TheUDI project8 aimedatmakingdevicedriverssource-
portable acrossOS platforms. To do so, it normalizes
the API betweenthe OS and the lower part of device
drivers [19]. This interfaceis being implementedasa li-
brary. Besidesshowing thetimelinessof our work, UDI is
complementaryto Devil. Furthermore,UDI is a goodbasis
for thedevelopmentof our futureDSLsfor theupperlayers

8TheUDI (Uniform Driver Interface)projectis theresultof acontribu-
tion of severalcomputercompaniesincludingCompaq,HP andIBM.

of adriversincethislibrary alreadyidentifiesthefundamen-
tal operationsof theselayers.

Windows-specificdrivergeneratorslike BlueWaterSys-
tem’s WinDK [4] and NuMega’s DriverWorks [6] offer
GUIs aimedat specifyingthemainfeaturesof thedriver to
begenerated.They producea driver skeletonthat consists
of invocationsof coarse-grainedlibrary functions. To our
knowledge,noexistingdrivergeneratorscover thecommu-
nicationwith thedevice.

Languagesfor specifying digital circuits and systems
haveexistedfor a while. A standardlanguage,widely used
in this domain,is VHDL [14]. A VHDL specificationde-
scribesthe low-level logic andelectronicfunctionalitiesof
a device. Devil differs from VHDL in that it concentrates
on communicationwith the device, not the device’s inner
workings. The interfacedescribedby a Devil specification
cannot bededucedby a VHDL specification.

7. Conclusion

Although devicesare rapidly evolving and requirefast
releasesof drivers, driver developmenthasreceived little
attentionfrom the researchcommunity. This situationis
surprisingwhenconsideringthe level of safetythatdrivers
shouldoffer to guaranteetheintegrity of their hostsystem.

In this paper, we have presentedthe following results.
We have analyzedthe domainof low-level device drivers
andlisted obstaclesto fastproductionof safedrivers. We
have pointedout thatdevice driversform a programfamily
that could be describedusing domain-specificlanguages.
Basedon our domain analysis,we have designeda lan-
guage,namedDevil, aimedat specifyingthe communica-
tion layerwith adevice,providing atyped,functionalinter-
face. Besidesstrongtyping, this languageallows the con-
sistency of domain-specificpropertiesto be automatically
checked. Errorsarethusdetectedearly in thedevelopment
processandsafetyis improved.Thisapproachsharplycon-
trastswith theuseof a general-purposelanguagewhich re-
quireswriting tediousanderror-proneassembly-level code
andwhich doesnot permitany usefulvalidation.

To assessour approach,we have shown that Devil is
expressive enoughto specifythe interfaceof a largespec-
trumof differentPCdevicesincludingEthernet,video,disk,
sound,interrupt,DMA andmousecontrollers. Implemen-
tationsgeneratedfrom suchspecificationshave not shown
any significantperformanceloss.To evaluatetheeffective-
nessof strongtyping and consistency checking,we have
performeda mutation testing experiment,comparingthe
staticerrordetectionof bothapproaches.

Devil improves productivity by providing domain-
specificabstractionsthat contribute to make programming
easier. Increasedproductivity alsocomesfrom reducingun-
detectederrors,asillustratedby ourmutationanalysiswhen

usingDevil ratherthanC alone.More generally, a specifi-
cationwrittenin Devil improvesproductivity by abstracting
the device interfacein an OS independentway, allowing
systematicreuse.

Following our approachto driver development,our fu-
turework aimsat designingDSLs to modeltheupperlay-
ersof drivers. TheseDSLs will make it possibleto verify
driversfrom thedevice interfaceto theoperatingsystem.

Availability . Devil specificationsaswell asanimplemen-
tationof a compiler/checkerareavailablefrom
http://www.irisa.fr/compose/devil.

Acknowledgment. TheauthorsthankAnne-Franc¸oiseLe
Meur andJulia Lawall for their commentson earlier ver-
sionsof thispaper, andRobinHansenwhowrotepartof the
Devil compiler.

References

[1] H. Agrawal, R. Demillo, R. Hathaway, W. Hsu, W. Hsu,
E. Krauser, R. J. Martin, A. Mathur, and E. Spafford.
Design of mutant operatorsfor the C programminglan-
guage. TechnicalReportSERC-TR-41-P, Software Engi-
neeringResearchCentre,PurdueUniversity, WestLafayette,
Indiana,Mar. 1989.

[2] B. Arnold, A. vanDeursen,andM. Res.An algebraicspeci-
ficationof alanguagedescribingfinancialproducts.In IEEE
Workshopon Formal MethodsApplicationin Software En-
gineering, pages6–13,Apr. 1995.

[3] E. Bjarnason. Applab: a laboratoryfor applicationlan-
guages.In L. Bendix,K. Nørmark,andK. Østerby, editors,
Nordic Workshopon ProgrammingEnvironmentResearch,
Aalborg. TechnicalReportR-96-2019,Aalborg University,
May 1996.

[4] BlueWater Systems,Inc. WinDK Users Manual. URL:
www.bluewatersystems.com.

[5] S. ChandraandJ. Larus. Experiencewith a languagefor
writing coherenceprotocols. In Proceedingsof the 1st
USENIXConferenceon Domain-SpecificLanguages, Santa
Barbara,California,Oct.1997.

[6] Compuware NuMega. DriverWorks User’s Guide. URL:
www.numega.com.

[7] C. ConselandR. Marlet. Architecturingsoftwareusinga
methodologyfor languagedevelopment.In C. Palamidessi,
H. Glaser, andK. Meinke, editors,Proceedingsof the �������
InternationalSymposiumonProgrammingLanguageImple-
mentationand Logic Programming, number1490 in Lec-
tureNotesin ComputerScience,pages170–194,Pisa,Italy,
Sept.1998.

[8] E. N. Dekker andJ. M. Newcomer. DevelopingWindows
NT device drivers : A programmer’s handbook. Addison-
Wesley, first edition,Mar. 1999.

[9] R. A. Demillo and A. P. Mathur. On the useof software
artifactsto evaluatethe effectivenessof mutationanalysis

for detectingerrorsin productionsoftware. TechnicalRe-
port SERC-TR-92-P, SoftwareEngineeringResearchCen-
tre,PurdueUniversity, WestLafayette,Indiana,Feb. 1991.

[10] R. Draves,M. Jones,andM. Thompson.MIG - TheMACH
InterfaceGenerator. Schoolof ComputerScience,Carnegie
Mellon University, July1989.

[11] E. Eide, K. Frei, B. Ford, J. Lepreau,and G. Lindstrom.
Flick: A flexible, optimizingIDL compiler. In Proceedings
of theACMSIGPLAN’97 ConferenceonProgrammingLan-
guageDesignandImplementation, pages44–56,LasVegas,
NV, USA, June15–18,1997.

[12] C. Elliott. Modeling interactive 3D andmultimediaanima-
tion with anembeddedlanguage.In Proceedingsof the1st
USENIXConferenceon Domain-SpecificLanguages, Santa
Barbara,California,Oct.1997.

[13] N. Gupta, L. J. Jagadeesan,E. E. Koutsofios,and D. M.
Weiss. Auditdraw: Generatingauditsthe fastway. In Pro-
ceedingsof theThird IEEESymposiumonRequirementsEn-
gineering, pages188–197,Jan.1997.

[14] IEEEStandards.1076-1993Standard VHDL LanguageRef-
erenceManual, 1994.
URL: standards.ieee.org.

[15] S. Kamin and D. Hyatt. A special-purposelanguagefor
picture-drawing. In Proceedingsof the 1st USENIXCon-
ferenceonDomain-SpecificLanguages, SantaBarbara,Cal-
ifornia, Oct.1997.

[16] D. E. Knuth. The errorsof TEX. Software Practice and
Experience, 19(7):607–685,July1989.

[17] D. Ladd and C. Ramming. Two applicationlanguagesin
softwareproduction. In USENIXSymposiumon Very High
LevelLanguages, New Mexico, Oct.1994.

[18] D. Parnas.On thedesignanddevelopmentof programfam-
ilies. IEEE Transactionson Software Engineering, 2:1–9,
mar1976.

[19] ProjectUDI. UDI Specifications,Version 1.0, September
1999.URL: www.project-udi.org.

[20] C. Pu, A. Black, C. Cowan, J. Walpole, and C. Consel.
Microlanguagesfor operatingsystemspecialization.In 1st
ACM-SIGPLANWorkshopon Domain-SpecificLanguages,
Paris, France,Jan.1997.ComputerScienceTechnicalRe-
port,Universityof Illinois at Urbana-Champaign.

[21] A. Rubini. Linux Device Drivers. O’Reilly, first edition,
Feb. 1998.

[22] L. Réveillère, F. Mérillon, C. Consel, R. Marlet, and
G. Muller. The Devil language. ResearchReport1319,
IRISA, Rennes,France,May 2000.

[23] S.Thibault,C. Consel,andG. Muller. Safeandefficientac-
tivenetwork programming.In 17thIEEESymposiumonRe-
liable DistributedSystems, pages135–143,WestLafayette,
Indiana,Oct.1998.

[24] S. Thibault, R. Marlet, andC. Consel. A domain-specific
languagefor videodevice driver: from designto implemen-
tation. In Proceedingsof the 1st USENIXConferenceon
Domain-SpecificLanguages, SantaBarbara,California,Oct.
1997.

[25] S. Thibault, R. Marlet, and C. Consel. Domain-specific
languages:from designto implementation– applicationto
videodevicedriversgeneration.IEEETransactionsonSoft-
ware Engineering, 25(3):363–377,May–June1999. Ex-
tentedversionof [24].

