
HAL Id: hal-00350196
https://hal.science/hal-00350196

Submitted on 6 Jan 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Updatable Timed Automata
Patricia Bouyer, Catherine Dufourd, Emmanuel Fleury, Antoine Petit

To cite this version:
Patricia Bouyer, Catherine Dufourd, Emmanuel Fleury, Antoine Petit. Updatable Timed Automata.
Theoretical Computer Science, 2004, 321 (2-3), pp.291-345. �10.1016/j.tcs.2004.04.003�. �hal-00350196�

https://hal.science/hal-00350196
https://hal.archives-ouvertes.fr


Updatable Timed Automata ⋆

Patricia Bouyer1, Catherine Dufourd2, Emmanuel Fleury3, and Antoine Petit1

1 LSV, CNRS UMR 8643 & ENS de Cachan,
61, Av. du Président Wilson,
94235 Cachan Cedex, France

Email:{bouyer,petit}@lsv.ens-cachan.fr
2 EDF – R&D – Dépt. OSIRIS – 1, Av. du Général de Gaulle

92141 Clamart Cedex, France
Email:catherine.dufourd@edf.fr

3 BRICS⋆⋆, Aalborg University
Fredrik Bajers Vej 7

9220 Aalborg Ø, Denmark
Email:fleury@cs.auc.dk

Abstract. We investigate extensions of Alur and Dill’s timed automata, based on the possibility to
update the clocks in a more elaborate way than simply reset them to zero. Wecall these automata
updatable timed automata. They form an undecidable class of models, in the sense that emptiness
checking is not decidable. However, using an extension of the region graph construction, we exhibit
interesting decidable subclasses. In a surprising way, decidability depends on the nature of the clock
constraints which are used, diagonal-free or not, whereas these constraints play identical roles in timed
automata. We thus describe in a quite precise way the thin frontier between decidable and undecidable
classes of updatable timed automata.

We also study the expressive power of updatable timed automata. It turnsout that any updatable au-
tomaton belonging to some decidable subclass can be effectively transformed into an equivalent timed
automaton without updates but with silent transitions. The transformation suffers from an enormous
combinatorics blow-up which seems unavoidable. Therefore, updatable timed automata appear to be a
concise model for representing and analyzing large classes of timed systems.

1 Introduction

Since their introduction by Alur and Dill [AD90,AD94], timed automata are one of the most-studied and
most-established models for real-time systems. Numerous works have been devoted to the “theoretical”
comprehension of timed automata (among them, see [ACD+92], [AHV93], [AFH94], [ACH94], [Wil94],
[HKWT95]). However the major property of timed automata is probably that emptiness checking is a
decidable problem for this model [AD94]. Based on this nice theoretical result, several model-checkers
have been developed (for instance CMC1 [LL98], H YTECH2 [HHWT95,HHWT97], KRONOS3 [Yov97]
and UPPAAL4 [LPY97,BLL+98]) and a lot of case studies have been treated (see the web pages of the
tools).

⋆ This work has been partly supported by the french RNTL project “Averroes” and french-indian CEPIPRA project
no2102− 1.

⋆⋆ Basic Research in Computer Science (http://www.brics.dk), funded by the Danish National Research Foun-
dation.
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A lot of work has naturally been devoted to extensions of timed automata, with much interest for classes
whose emptiness problem remains decidable. There are two main (non exclusive) reasons for extending
existing models. First, they can be used to model strictly larger classes of systems and therefore treat
more case studies. They also lead to more compact representations of some systems. Conciseness makes
modelling easier, in the same way advanced programming languages make the writing of programs easier
than with assembly languages.

Considering timed automata, extensions can be obtained in various ways. Recall that in a timed automaton,
a transition is guarded by a constraint over a set of variables, called clocks. This constraint has to be satisfied
in order to enable the transition. Right after the transition is taken, a subset of clocks is reset to zero. This set
of clocks is specified in the label of the transition. The constraints used in Alur and Dill’s original model
allow to compare (the value of) a clock, or the difference between two clocks, with a rational constant.
Note that comparing the sum of two clocks with a constant leads to an undecidable class of automata (see
[AD94] but also [Duf97,BD00] where more precise results on the number of clocks are given). Periodic
clock constraints, as defined in [CG00], allow to express properties like "the value of a clock is even" or
"the value of a clock is of the form0.5 + 3n wheren is some integer. The corresponding class of automata
is strictly more powerful than Alur and Dill’s timed automata if silent transitions (orε-transitions) are not
allowed but coincides with the original model otherwise. Note that, contrary to the untimed setting, silent
transitions strictly increase the expressive power of the model (see [BGP96,DGP97] or [BDGP98] for a
survey). Several other exotic extensions have been proposed among which we can mention [DZ98] where
subsets of clocks can be “freezed”.

The aim of the present paper is to investigate an other way to extend the model, with new operations on the
clocks. As we recalled just above, in Alur and Dill’s model, when a transition is taken, a specified subset
of clocks is reset to zero. Our goal is to study more complex updates on clocks, with a particular attention
to the decidability of the emptiness problem and to the expressive power of the corresponding classes of
automata. We will first study "deterministic" updates wherea clock can be reset to a given constant, which
does not have to be zero anymore, or to the value of another clock, or more generally to the sum of a
constant and of the value of an other clock. We will then be interested in "non-deterministic" updates,
where a clock can be reset to an arbitrary value greater than some fixed constant. Note that this type of
updates appear sometimes naturally, for example in models of telecommunication protocols (see e.g. the
study of the ABR protocol proposed in [BF99,BFKM03]). In thesequel, we will call the corresponding
automata,updatable timed automata.

It is easy to verify that such updates, even if we only use deterministic ones, lead to an undecidable class
of automata. Indeed, it is easy to simulate a two-counter machine (or Minsky machine) with an updat-
able timed automaton. But it turns out that very interestingsubclasses of updatable timed automata can be
proven decidable. A surprising result is that decidabilityoften depends on the clock constraints – diagonal-
free (i.e.where the only allowed comparisons are between a clock and a constant) or not (where differences
of two clocks can also be compared with constants). This point makes an important difference with “clas-
sical” (i.e. Alur and Dill’s) timed automata for which it is well-known that these two kinds of constraints
have the same expressive power. We show for instance that updates of the formx := x + 1 lead to an
undecidable class of timed automata if arbitrary clock constraints are allowed but to a decidable class if
only diagonal-free clock constraints are allowed. Note that automata with updates of the formx := x − 1

always form an undecidable class whatever constraints, diagonal-free or general, are used. We will show
that decidability is often not far from undecidability and we will describe in a quite thin way the frontier
between the two worlds.

Decidability results are obtained through a generalization of the region graph proposed by Alur and Dill.
Given a timed automaton, and using the region graph, a finite automaton can be constructed, which recog-
nizes exactly the untiming of the language recognized by theoriginal timed automaton. Note that the region
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graph depends on the class of constraints, diagonal-free ornot, and on updates. The main difficulty is then
to prove that a given set of updates is "compatible" (in a sense which will be of course precisely defined
in the paper) with the region graph. This compatibility has to be proven for all updates, not only for resets
as was the case in the original model, but also for deterministic and non-deterministic updates as described
previously. We will finally see that the complexity of this decision procedure remains PSPACE-complete.

In this paper, we also study the expressive power of updatable timed automata. We show that they are
not more powerful than classical timed automata in the sensethat for any updatable timed automaton, that
belongs to some decidable subclass, a classical timed automaton (potentially withε-transitions) recognizing
the same language – and even most often bisimilar – can be effectively constructed. However in most cases,
an exponential blow-up seems unavoidable and thus a transformation into a classical timed automaton does
not lead to an efficient decision procedure. This exponential blow-up suggests that we can have much more
concise models if using updatable timed automata than if we only use classical timed automata.

The paper is organized as follows. In section 2, we present basic definitions of timed words, clock con-
straints and updates. Updatable timed automata are defined in section 3 where the emptiness problem is
briefly introduced. Section 4 is devoted to our undecidability results. We first reduce an undecidable prob-
lem on two counter machines to the emptiness problem for a subclass of updatable timed automata. We
then deduce that for several other subclasses of updatable timed automata, emptiness is also undecidable.
In section 5, we first propose a generalization of the region automaton principle first described by Alur and
Dill. We then use this extension to exhibit large subclassesof updatable timed automata for which empti-
ness is decidable, when only diagonal-free clock constraints are used (section 5.2) and then when arbitrary
clock constraints (section 5.3) are used. The question of the expressive power of updatable timed automata
is addressed in section 6. A short conclusion summarizes ourresults and propose some open questions or
developments.

This journal paper is the full version corresponding to the two conference papers [BDFP00a,BDFP00b].

2 Preliminaries

2.1 Timed Words and Clocks

If Z is any set, letZ∗ (resp.Zω) be the set offinite (resp.infinite) sequences of elements inZ. We note
Z∞ = Z∗ ∪ Zω. We consider as time domainT the setQ+ of non-negative rationals or the setR+ of
non-negative reals andΣ as a finite set ofactions. A time sequenceover T is a finite (or infinite) non
decreasing sequenceτ = (ti)1≤i ∈ T∞. A timed wordω = (ai, ti)1≤i is an element of(Σ × T)∞, also
written as a pairω = (σ, τ), whereσ = (ai)1≤i is a word inΣ∞ andτ = (ti)1≤i a time sequence inT∞

of same length.
We consider a finite setX of variables, calledclocks. A clock valuationoverX is a mappingv : X → T

that assigns to each clock a time value. The set of all clock valuations overX is denotedTX . Let t ∈ T,
the valuationv + t is defined by(v + t)(x) = v(x) + t, ∀x ∈ X.

2.2 Clock Constraints

Given a set of clocksX, we introduce two sets of clock constraints overX. The most general one, denoted
by C(X), allows to compare a clock or the difference of two clocks with a constant. It is formally defined
by the following grammar:

ϕ ::= x ∼ c | x− y ∼ c | ϕ ∧ ϕ | ϕ ∨ ϕ

wherex, y ∈ X, c ∈ Q, ∼ ∈ {<,≤,=, 6=,≥, >}
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We also consider the proper subset ofdiagonal-freeclock constraints where the comparison between two
clocks is not any more allowed. This set is denoted byCdf (X) and is defined by the grammar:

ϕ ::= x ∼ c | ϕ ∧ ϕ | ϕ ∨ ϕ,

wherex ∈ X, c ∈ Q and ∼ ∈ {<,≤,=, 6=,≥, >}

Note that this restricted set of constraints is called diagonal-free because constraints of the formx− y ∼ c
are calleddiagonalclock constraints.

Clock constraints are interpreted over clock valuations. The satisfaction relation, denoted as “v |= ϕ” if
valuationv satisfies the clock constraintϕ, is defined in a natural way for both sets of constraints:






v |= x ∼ c if v(x) ∼ c
v |= x− y ∼ c if v(x)− v(y) ∼ c
v |= ϕ1 ∧ ϕ2 if v |= ϕ1 andv |= ϕ2

v |= ϕ1 ∨ ϕ2 if v |= ϕ1 or v |= ϕ2

2.3 Updates

Clock constraints allow to test the values of the clocks. In order to change these values, we use the notion
of updateswhich are functions fromTX toP(TX)5. An update hence associates with each valuation a set
of valuations.

In this work, we restrict to a small class of updates, the so-calledlocal updates, constructed in the following
way. We first define asimple updateover a clockz as one of the two following functions:

up ::= z :∼ c | z :∼ y + d

wherec, d ∈ Q, y ∈ X and ∼ ∈ {<,≤,=, 6=,≥, >}

Let v be a valuation andup be a simple update overz. A valuationv′ is in up(v) if v′(y) = v(y) for any
clocky 6= z and ifv′(z) satisfies:

{
v′(z) ∼ c ∧ v′(z) ≥ 0 if up = z :∼ c

v′(z) ∼ v(y) + d ∧ v′(z) ≥ 0 if up = z :∼ y + d

A local updateover a set of clocksX is a collectionup = (upi)1≤i≤k of simple updates, where eachupi

is a simple update over some clockxi ∈ X (note that it may happen thatxi = xj for somei 6= j). Let
v, v′ ∈ Tn be two clock valuations. The valuationv′ is in up(v) if for every i, the setupi(v) contains the
valuationv′′ defined by {

v′′(xi) = v′(xi)

v′′(y) = v(y) for any y 6= xi

The terminology “local” comes from the fact thatv′(x) only depends onx and not on the other values
v′(y).

Example 1.Let us consider the local updateup = (x :> y, x :< 7). Let v, v′ be two valuations. It holds
thatv′ ∈ up(v) if v′(x) > v(y) ∧ v′(x) < 7.

Note thatup(v) may be empty. For instance, the local update(x :< 1, x :> 1) leads to an empty set.

For any set of clocksX, we denote byU(X) the set of local updates overX. In this paper, we will simply
call updates these local updates. The following subsets ofU(X) will play an important role in the rest of
the paper.

5 P(TX) denotes the powerset ofTX .
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- U0(X) is the set of reset updates. Areset updateis a local updateup such that each simple update
definingup is of the formx := 0.

- Ucst(X) is the set of “constant” updates, that is the set of updatesup such that each simple update
definingup is of the formx := c with c ∈ Q.

- Udet(X) is the set of deterministic updates. An updateup is saiddeterministicif for any clock valuation
v, there exists at most one valuationv′ such thatv′ ∈ up(v). It is immediate to check that a local update
up = (upi)1≤i≤k is deterministic if all simple updatesupi are of one of the following form:
1. x := c with x ∈ X andc ∈ Q

2. x := y with x, y ∈ X
3. x := y + c with x, y ∈ X andc ∈ Q \ {0}

3 Updatable Timed Automata

We now define the central notion of updatable timed automata.As we explain in details below, these
automata extend the classical family of Alur and Dill’s timed automata [AD90,AD94].

3.1 The Model

An updatable timed automatonoverT is a tupleA = (Σ,X,Q, T, I, F,B), where:

– Σ is a finite alphabet of actions,
– X is a finite set of clocks
– Q is a finite set of states
– T ⊆ Q× [C(X)× (Σ ∪ {ε})× U(X)]×Q is a finite set of transitions
– I ⊆ Q is the subset of initial states
– F ⊆ Q is the subset of final states
– B ⊆ Q is the subset of Büchi-repeated states.

The special actionε is calledsilent actionand a transition inQ× [C(X)×{ε}×U(X)]×Q is calledsilent
transitionor ε-transition.

If C ⊆ C(X) is a subset of clock constraints andU ⊆ U(X) a subset of updates, the classUtaε(C,U)

denotes the set of all updatable timed automata in which transitions only use clock constraints inC and
updates inU . The subclass of automata which do not use silent transitions is simply writtenUta(C,U).

Timed automata, as studied in details by Alur and Dill [AD90,AD94], thus correspond to the classes
Utaε(Cdf (X),U0(X)) and Uta(Cdf (X),U0(X)) (whereCdf (X) andU0(X) are respectively the set of
diagonal-free clock constraints and reset updates as defined in section 2).

As for timed automata, a behavior in an updatable timed automaton is obtained through the notion of paths
and runs. Let us fix for the rest of this part an updatable timedautomatonA. A path in A is a finite or
infinite sequence of consecutive transitions:

P = q0
ϕ1,a1,up1
−−−−−−→ q1

ϕ2,a2,up2
−−−−−−→ q2 . . . , where(qi−1, ϕi, ai, upi, qi) ∈ T, ∀i > 0

The path is said to beacceptingif it starts in an initial state (q0 ∈ I) andeither it is finite and it ends in a
final state,or it is infinite and passes infinitely often through a Büchi-repeated state.
A run through the pathP from the clock valuationv0, with v0(x) = 0 for any clockx, is a sequence of the
form:

〈q0, v0〉
a1−−→
t1
〈q1, v1〉

a2−−→
t2
〈q2, v2〉 . . .
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whereτ = (ti)i≥1 is a time sequence and(vi)i≥0 are clock valuations such that:

{
vi−1 + (ti − ti−1) |= ϕi

vi ∈ upi (vi−1 + (ti − ti−1))

Note that any setupi(vi−1 + (ti − ti−1)) of a run has to be non empty. In the following, to make the
notations more compact , we will note such a run

〈q0, v0〉
ϕ1,a1,up1
−−−−−−−→

t1
〈q1, v1〉

ϕ2,a2,up2
−−−−−−−→

t2
〈q2, v2〉 . . .

The label of such a run is the timed wordw = (a1, t1)(a2, t2) . . . If the pathP is accepting, then this
timed word is said to be accepted byA. The set of all timed words accepted byA over the time domainT
is denoted byL(A,T), or simplyL(A).

Example 2.Consider the following updatable timed automaton.

p q r

x > 1, a, x :< 2 ∧ y := x+ 3 y > 5, b, y := 0

x = 4, c, y :> 0x− y < 2, d, x :< y

A possible (finite) accepting run in this automaton is the following:

〈p, (0, 0)〉
a
−−→
1.3
〈q, (0.2, 4.3)〉

b
−−→
2.1
〈r, (1, 0)〉

c
−−→
5.1
〈q, (4, 3.1)〉

d
−−→
9.6
〈p, (7.2, 8.6)〉

Let us explain this run:

– the transition〈p, (0, 0)〉
a
−−→
1.3
〈q, (0.2, 4.3)〉 is possible because after having waited1.3 units of time,

the value of bothx andy is 1.3, thus after the updatex :< 2 ∧ y := x + 3, the valuation(0.2, 4.3)

(4.3 = 1.3 + 3) is possible

– the transition〈q, (0.2, 4.3)〉
b
−−→
2.1
〈r, (1, 0)〉 is possible because after having waited2.1 − 1.3 = 0.8

units of time, the value ofx is 1 and the value ofy is 0.8, thus after resettingy to 0, we get that the
valuation(1, 0) can be reached

– etc...

Remark 1.In [AD94], Alur and Dill claimed that for any timed automatonin Utaε(C(X),U0(X)) (resp.
Uta(C(X),U0(X))), there exists a timed automaton inUtaε(Cdf (X),U0(X)) (resp.Uta(Cdf (X),U0(X)))
which accepts the same language; the interested reader willfind a full proof of this easy fact in [BDGP98].

3.2 Aim of The Paper

The following deep result is the core of the theory of timed automata together with its use for modeling real-
time systems. It has been implemented in several tools like CMC [LL98], K RONOS[DOTY96] or UPPAAL

[LPY97]. These tools have been intensively used on numerouscase studies [DOY94,JLS96,HSLL97,BBP02].

Theorem 1. [AD90,AD94] The classUtaε(Cdf (X),U0(X)) is decidable.

Remind that a class of automata is saiddecidableif there exists an algorithm which, taking as an input an
arbitrary automaton of the class, outputs “yes” or “no”, depending on whether the language recognized by
the automaton is empty or not.
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Our goal in this paper is twofold. First, we will study if and how the theorem above can be extended to the
classUtaε(C(X),U(X)) and to interesting subclasses. We will then compare the expressive power of these
subclasses to the expressive power of automata fromUtaε(Cdf (X),U0(X)) andUta(Cdf (X),U0(X)).

As it will turn out, it is necessary to distinguish the cases where only diagonal-free clock constraints are
used and where arbitrary clock constraints are authorized.Recall that on the contrary, any Alur and Dill’s
timed automaton using arbitrary clock constraints can be transformed into an other Alur and Dill’s timed
automaton using only diagonal-free clock constraints (seeRemark 1).

4 Undecidability Results

In this section, we first exhibit undecidable classes of updatable timed automata.

Let us first recall briefly that a two counter machine (known sometimes also as a Minsky machine) is a finite
set of labeled instructions over two countersc1 andc2. There are two types of instructions over counters:

- an incrementation instructionof counterx ∈ {c1, c2}:

p : x := x+ 1 ; goto q (wherep andq are instruction labels)

- adecrementation (or zero-testing) instructionof counterx ∈ {c1, c2}:

p : if x > 0

{
then x := x− 1 ; goto q

else gotor
(wherep, q andr are instruction labels)

The machine starts at an instruction labeled bys0 with c1 = c2 = 0 and stops at a special instruction
labeled by HALT . Thehalting problemfor a two counter machine consists in deciding whether the machine
reaches the instruction HALT .

The following result will be the basis of all our undecidability results on updatable timed automata.

Theorem 2. [Min67] The halting problem for two counter machines is undecidable.

Instructions of a two counter machine can easily be simulated by transitions of updatable timed automata.
States of the automaton are the labels of the instructions ofthe two counter machine. The transformation
can be done in the following way (the unique actiona of the alphabetΣ is not represented):

– Incrementation of counter x: p q
z = 0, x := x+ 1

– Decrementation of counterx: p

q

r

z = 0 ∧ x ≥ 1, x := x− 1

z = 0 ∧ x = 0

where the new clockz ensures that no time can elapse (there is no time progress assumption). Such a clock
will be used in all constructions presented in this section.More involved constructions could also be done
under the time progress assumption.

Thus, given a two counter machineM, an updatable timed automatonAM ∈ Uta(Cdf (X),U(X)) satis-
fying:

M halts ⇐⇒ L(AM) 6= ∅

can easily be constructed. We thus obtain:
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Proposition 1. LetX be a set of clocks containing at least 3 clocks. Then, the class Uta(Cdf (X),U(X))

of updatable timed automata is undecidable.

Since any class containing an undecidable subclass is obviously itself undecidable, we get immediately the
following corollary:

Corollary 1. LetX be a set of clocks containing at least 3 clocks. Then, the classesUta(C(X),U(X)),
Utaε(Cdf (X),U(X)) andUtaε(C(X),U(X)) are undecidable.

The previous simulations use updates of both typesx := x+ 1 andx := x− 1. We will show that if resets
are used, one such type of update is sufficient to build a timedautomatonAM as above from a two counter
machineM, and thus obtain undecidability results.

Let us first consider updates of the typex := x − 1, then incrementation of a counter can be simulated as
follows:

Incrementation of counter x:

p s q
z = 1, z := 0 z = 0, y := y − 1z := 0

We claim that a run on this path increases the value of clockx of one time unit and keeps unchanged the
value of clocky. Indeed, in such a run, the tuple of clock values are of the form (with the orderx, y, z
from left to right),(α, β, 0) when entering statep, (α+ 1, β+ 1, 0) when entering states and(α+ 1, β, 0)

when entering stateq. In the following, we will represent this by the simple figurebelow:

p s qz := 0 z = 1, z := 0 z = 0, y := y − 10�α

β

0

1A 0�α + 1

β + 1

0

1A 0�α + 1

β

0

1Ax

y

z

The simulation of the decrementation of a counter is identical as the one previously seen. We present it in
a quite different and schematic way as follows:

Decrementation of counterx:

p q

r

x ≥ 1 z = 0, x := x− 1z := 0

x = 0

x

y

z

0�α

β

0

1A 0�α

β

0

1A 0�α − 1

β

0

1A

0� 0

β

0

1A0�α

β

0

1Ax

y

z

If M is a two counter machine, we can thus construct, as before, a timed automatonAM with only resets
to zero and decrementations of clocks and such that

M halts ⇐⇒ L(AM) 6= ∅

We have thus proven the following result:
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Proposition 2. LetX be a set of clocks containing at least 3 clocks. LetU be a set of updates containing
bothU0(X) and{x := x− 1 | x ∈ X}. Then the classUta(Cdf (X),U) is undecidable.

Remark 2.Note that the previous result can be strengthened because inthe construction all reset operations
are performed when the clock we want to reset is 0 or 1, they canthus be replaced by decrementations.

Up to now, all the timed automata constructed for undecidability proofs only have diagonal-free clock
constraints (i.e. constraints inCdf (X)). In the remainder of this section, some of the constructions we will
make for proving some undecidability results will also use diagonal clock constraints (not inCdf (X) but in
C(X)), and as a byproduct of the results in section 5, it will appear that in these cases, the classes obtained
by replacingC(X) by Cdf (X) are indeed decidable.

From the constructions above, we can notice that it is no morenecessary to simulate a whole two counter
machine in order to prove undecidability results, but that,if resets are allowed, it is sufficient to be able to
simulate executions of the form:

z = 0, x := x− 10�α

β

0

1A 0�α − 1

β

0

1Ax

y

z

(⋆)

We first claim that such an execution can be simulated using only updates from the setU0(X) ∪ {x :=

x+ 1 | x ∈ X}. Indeed, consider the (part of) timed automaton below:

p q r s
z = 0, w := 0 x− w = 1, x := 0 x = w ∧ z = 0

w := w + 1 x := x+ 1

The sequence of clock valuations for a run along this path canbe described by:

p q q r r s· · · · · ·

x

y

z

w

0BB�α

β

0

δ

1CCA 0BB�α

β

0

0

1CCA 0BB�α

β

0

ǫ

1CCA 0BB� 0

β

0

α − 1

1CCA 0BB� κ

β

0

α − 1

1CCA 0BB�α − 1

β

0

α − 1

1CCA
Such a run thus simulates an execution through a transition (⋆).

Proposition 3. LetX be a set of clocks containing at least 4 clocks. LetU be a set of updates containing
bothU0(X) and{x := x+ 1 | x ∈ X}. Then the classUta(C(X),U) is undecidable.

The next undecidability results are obtained thanks to verysimilar techniques.

Proposition 4. LetX be a set of clocks containing at least 4 clocks. LetU be a set of updates containing
bothU0(X) and either

– {x :> 0 | x ∈ X} or
– {x :> y | x, y ∈ X} or
– {x :< y | x, y ∈ X}.

Then the classUta(C(X),U) is undecidable.
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Proof. As before, we simulate the execution through a transition (⋆) using parts of timed automata. The
three automata below correspond respectively to the three sets of updates of the proposition:

z = 0, w :> 0 x− w = 1, x :> 0 x = w ∧ z = 0

x

y

z

w

0BB�α

β

0

δ

1CCA 0BB�α

β

0

ǫ

1CCA 0BB� κ

β

0

α − 1

1CCA 0BB�α − 1

β

0

α − 1

1CCA
z = 0, w :> z x− w = 1, x :> z x = w ∧ z = 0

x

y

z

w

0BB�α

β

0

δ

1CCA 0BB�α

β

0

ǫ

1CCA 0BB� κ

β

0

α − 1

1CCA 0BB�α − 1

β

0

α − 1

1CCA
z = 0, w :< x x− w = 1, x :< x x = w ∧ z = 0

x

y

z

w

0BB�α

β

0

δ

1CCA 0BB�α

β

0

ǫ

1CCA 0BB� κ

β

0

α − 1

1CCA 0BB�α − 1

β

0

α − 1

1CCA
Hence, we get the undecidability results announced in the proposition. �

From the above results we can prove some more undecidabilityresults. We summarize all the results in
Table 1.

U0(X) ∪ ... Diagonal-free constraints General constraints
1 x := c, x := y ?
2 x := x+ 1 ?
3 x := y + c Undecidable
4 x := x− 1 Undecidable

5 x :< c

?

?
6 x :> c

Undecidable
7 x :∼ y + c

8 y + c <: x :< y + d

9 y + c <: x :< z + d Undecidable

with ∼ ∈ {≤, <,>,≥} andc, d ∈ Q+

Table 1.Undecidability results

Lines 2 and 4 correspond exactly to propositions 3 and 2 respectively. Line 3 is just an extension of Line 2.
The second column of lines 6, 7, 8 and 9 are direct consequences from proposition 4. The remaining case
is the one where we allow diagonal-free clock constraints and updates of the formy + c <: x :< z + d,
as described on line 9. The corresponding model which also allows in addition diagonal clock constraints
is undecidable (see above), we just need to be able to replacediagonal clock constraints by updates of the
form y + c <: x :< z + d. Assume there is a clock constraintx− y < c, its truth or falsity is equivalent to
the existence of a valueα taken in the real interval]x; y + c[. Adding a new clockz, it becomes equivalent
to having an updatex <: z :< y + c.

The next section is devoted to the study of classes marked with “?” and we will see that the emptiness
problem is in fact decidable for these remaining classes.
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5 Decidability Results

In this section, we extend the decidability result of Theorem 1 to other subclasses of updatable timed
automata. Recall that the principle of this deep result relies on the construction, for any timed automaton
A, of a finite untimed automatonB accepting exactly the language UNTIME(L(A)) where

UNTIME(L(A)) = {σ ∈ Σ∞ | there exists a time sequenceτ s.t.(σ, τ) ∈ L(A)}

The emptiness ofL(A) is obviously equivalent to the emptiness of UNTIME(L(A)), so the result follows
from the decidability of the emptiness checking problem foruntimed finite automata (see e.g. [HU79]).

We will generalize the construction of Theorem 1. Let us firstdefine the notion of regions and region
graphs.

5.1 Regions and Region Automaton

LetX be a finite set of clocks. We consider a finite partitioningR of TX . For each valuationv ∈ TX , the
unique element ofR that containsv is denoted by[v]R. We define the successors ofR, Succ(R) ⊆ R, in
the following natural way:

R′ ∈ Succ(R) if ∃v ∈ R, ∃t ∈ T s.t.[v + t]R = R′

We say that such a finite partition is aset of regionswhenever the following condition holds:

R′ ∈ Succ(R) ⇐⇒ ∀v ∈ R, ∃t ∈ T s.t.[v + t]R = R′ (⋆⋆)

This natural condition assesses that the equivalence relation defined by theR partitioning is stable with
time elapsing. Roughly, this means that two equivalent valuations stay equivalent while time is elapsing.
Let us note that this condition is not satisfied by any finite partition of TX as illustrated by the following
counter-example.

Example 3.Let us consider the partition ofT2 drawn on the figure
beside. Condition (⋆⋆) is not satisfied by the gray region. Indeed,
from valuation(0, 5; 1, 8), when time elapses it is possible to reach
the valuation(0, 7; 2) and thus the region defined by the constraints
0 < x < 1 ∧ y = 2. But this region can not be reached from
valuation(0, 5; 1, 1).

0 1 2

1

2

LetU ⊆ U(X) be a finite set of updates. Each updateup ∈ U induces naturally a function̂up : R→ P(R)

which maps any regionR onto the set{R′ ∈ R | up(R)∩R′ 6= ∅}. The set of regionsR is saidcompatible
with U if whenever a valuationv′ ∈ R′ is reachable from a valuationv ∈ R by somêup thenR′ is reachable
from anyv ∈ R by the samêup. Formally, we require:

R′ ∈ ûp(R) =⇒ ∀v ∈ R, ∃v′ ∈ R′ s.t.v′ ∈ up(v) (⋆ ⋆ ⋆)

Note that this condition has an interpretation similar to the one done for condition (⋆⋆). Of course these
conditions are related to some kind of bisimulation property, see the remark below.

Remark 3.If the transition relations(→֒up)up onTX are defined by

v →֒up v
′ ⇐⇒ v′ ∈ up(v)

and the relationρR by
v ρR v′ ⇐⇒ [v]R = [v′]R

then the condition (⋆ ⋆ ⋆) assesses thatρR is a bisimulation with respect to the relations(→֒up)up.
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Whenever a set of regionsR is compatible with a set of updatesU , we define theregion graphassociated
withR andU as the graph whose set of nodes isR and whose edges are of two distinct types:

R −→ R′ if R′ ∈ Succ(R)

R −→up R
′ if R′ ∈ ûp(R)

Example 4.Let us consider the set of four regionsR defined by the following equations:

R1


0 ≤ x < 1

0 ≤ y ≤ 1

x < y





R2


x ≥ 0

0 ≤ y ≤ 1

x ≥ y





R3


x > 1

y > 1

x ≥ y





R4


x ≥ 0

y > 1

x < y





0 1

1

x

y

R1 R2

R3

R4

It is easy to verify thatR is compatible with the set of updatesU = {x := 1, y := 0}. The region graph
associated withR andU is represented below on Figure 1.

R1

0 ≤ x < 1

0 ≤ y ≤ 1

x < y

R2

x ≥ 0

0 ≤ y ≤ 1

x ≥ y

R3

x > 1

y > 1

x ≥ y

R4

x ≥ 0

y > 1

x < y

time elapsing

updatex := 1

updatey := 0

Fig. 1.A simple example of region graph

Finally, letC ⊆ C(X) be a finite set of clock constraints. A set of regionsR is said to becompatiblewith
C if for every clock constraintϕ ∈ C and for every regionR, eitherR ⊆ ϕ orR ⊆ ¬ϕ.

Let nowA = (Σ,X,Q, T, I, F,B) be a timed automaton in some classUta(C,U) and letR be a family
of regions compatible withC andU . We define theregion automatonΓR(A) associated withA andR, as
the following finite (untimed) automaton:

12



– Its set of locations isQ×R.
• The initial locations are(q0,0) whereq0 ∈ I is initial and0 is the unique region containing the

valuation where all clocks are set to zero
• The final locations are(f,R) wheref is final inA andR is any region
• The repeated locations are(r,R) wherer is repeated inA andR is any region

– Its transitions are defined by(q,R)
a
−−→ (q′, R′) if there exists a region̂R and a transitionq

ϕ,a,up
−−−−−→ q′

in A such that:
• R −→ R̂ is a transition of the region graph,
• R̂ ⊆ ϕ

• R̂ −→up R
′ is a transition of the region graph.

Under conditions (⋆⋆) and (⋆ ⋆ ⋆), the region automaton is an interesting abstraction of theoriginal au-
tomaton in the sense that we obtain a result similar to the oneof Theorem 1.

Proposition 5. LetA be a timed automaton inUta(C,U) whereC (resp.U) is a finite set of clock con-
straints (resp. of updates). LetR be a set of regions compatible withC andU . Then the finite automaton
ΓR(A) accepts the languageUNTIME(L(A)).

Proof. Assume thatA = (Σ,Q, T, I, F,R,X).
Let us take a run inA

〈q0, v0〉
ϕ1,a1,up1
−−−−−−−→

t1
〈q1, v1〉

ϕ2,a2,up2
−−−−−−−→

t2
· · ·

For i ≥ 0, let us defineRi = [vi]R andR̂i = [vi + ti+1 − ti]R. It holds thatR̂i ∈ Succ(Ri) and, since
vi+1 ∈ upi+1(vi + ti+1), Ri+1 ∈ ûpi(R̂i). Moreover,vi + ti+1 |= ϕi+1 and sinceR is compatible with
C, we deduce that̂Ri ⊆ ϕi+1. Therefore, from the definition,

〈q0, R0〉
a1−−→ 〈q1, R1〉

a2−−→ · · ·

is an accepting path ofΓR(A). Hence UNTIME(L(A)) ⊆ L(ΓR(A)) holds.
Conversely, let us consider a run inΓR(A),

〈q0, R0〉
a1−−→ 〈q1, R1〉

a2−−→ · · ·

We setv0 = 0 and assume that we have already constructed sequences(vi)0≤i<n and(ti)1≤i<n such that
vi ∈ Ri and such that the following is a run ofA

〈q0, v0〉
ϕ1,a1,up1
−−−−−−−→

t1
〈q1, v1〉 · · ·

ϕi−1,ai−1,upi−1

−−−−−−−−−−−→
ti−1

〈qi−1, vi−1〉

Since〈qi−1, Ri−1〉
ai−−→ 〈qi, Ri〉 is a transition ofΓR(A), there exists by definition a region̂R and a

transition(qi−1, ϕi, ai, upi, qi) in A such that

– Ri−1 −→ R̂ is a transition of the region graph,
– R̂ ⊆ ϕi

– R̂ −→upi
Ri is a transition of the region graph.

From vi−1 ∈ Ri−1 and the fact that the set of regionsR satisfies (⋆⋆), it follows that there exists some
ti ∈ T such thatvi−1 + ti− ti−1 ∈ R̂. Now, from the hypothesis thatR is compatible withupi, we deduce
that there exists some valuationvi such thatvi ∈ upi(vi−1 + ti− ti−1). Hence the following is a path inA

〈q0, v0〉
ϕ1,a1,up1
−−−−−−−→

t1
〈q1, v1〉 · · ·

ϕi−1,ai−1,upi−1

−−−−−−−−−−−→
ti−1

〈qi−1, vi−1〉
ϕi,ai,upi
−−−−−−−→〈qi, vi〉

Therefore, we construct by induction a path inA,

〈q0, v0〉
ϕ1,a1,up1
−−−−−−−→

t1
〈q1, v1〉 · · · 〈qi−1, vi−1〉

ϕi,ai,upi
−−−−−−−→

ti

〈qi, vi〉 · · ·

We thus haveL(ΓR(A)) ⊆ UNTIME(L(A)) which concludes the proof of this proposition. �
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Since the emptiness checking problem for untimed (Büchi or with a finite acceptance condition) automaton
is decidable (see e.g. [HU79]), the previous proposition leads to the next theorem.

Theorem 3. LetC (resp.U) be a finite set of clock constraints (resp. of updates). Assume there exists a set
of regionsR such thatR is compatible withC andU , then the classUta(C,U) is decidable.

This theorem is of course fundamental, but it does not exhibit any real decidable class of updatable automata
for which we can decide emptiness. Indeed, we need to construct sets of clock constraintsC and sets of
updatesU , together with sets of regionsR such thatR is compatible with bothC andU .

As mentioned before, we quickly had the intuition that diagonal-free and general clock constraints do not
lead to the same (un)decidability properties. This is the reason why we proceed by distinguishing classes
of updatable timed automata according to the type of constraints, diagonal-free or not.

First we need a lemma claiming that we can restrict our investigations to updatable timed automata which
use integer (and not rational) constants only. The result isa trivial extension of a remark proposed and
proven by Alur and Dill for classical timed automata (cf lemma 4.1, page 15 of [AD94]).

Lemma 1. LetA be a timed automaton and letλ be a positive rational constant. LetλA be the timed
automaton obtained by replacing all the constantsµ of the clock constraints or the updates ofA by the
productλµ. Then the languageL(λA) equalsλL(A) whereλL(A) = {(ai, λti)i≥0 | (ai, ti)i≥0 ∈ L(A)}.

Hence, given a timed automatonA and a constantλ ∈ Q+, the emptiness ofL(A) is equivalent to the one
of L(λA). But if we consider thelcmm of all the constants used byA, the automatonmA deals only with
integer constants. Hence, when considering emptiness, we can assume without loss of generality that all
the constants appearing in (updatable) timed automata are integers. We will do such an assumption for the
rest of this section.

5.2 Decidable Classes of Diagonal-Free Updatable Timed Automata

In this section, we consider diagonal-free clock constraints only, on a set of clocksX. We first construct a
set of regions suitable for these constraints. For each clock x ∈ X, we consider an integer constantcx and
we define the set of intervals:

Ix = {[c] | 0 ≤ c ≤ cx} ∪ {]c; c+ 1[| 0 ≤ c < cx} ∪ {]cx; +∞[}

Now letα be a tuple((Ix)x∈X ,≺) where:

– ∀x ∈ X, Ix ∈ Ix

– ≺ is a total preorder6 onX0 = {x ∈ X | Ix is an interval of the form]c; c+ 1[}

The region associated withα is defined as the following set of valuations:
{

| ∀x ∈ X, v(x) ∈ Ix and
v ∈ TX |

| ∀x, y ∈ X0, x ≺ y ⇐⇒ frac(v(x)) ≤ frac(v(y))

}

In the sequel, we will refer to this set as “the regionα”.

Remark 4.The finite setR(cx)x∈X
of all such regions forms a partition ofTX . Note that it is exactly (with

slightly distinct notations) the set of regions used by Alurand Dill in their seminal paper [AD94]. Hence
the following lemma, which claims that this set verifies the condition (⋆⋆), is not an original result and we
prove it here only for the sake of completeness.

6 Recall that a preorder is a reflexive and transitive relation. If in additionthis preorder is antisymmetric, it is an order.
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Lemma 2. The setR(cx)x∈X
is a set of regions.

Proof. Assume thatα = ((Ix)x∈X ,≺). If for all x, Ix =]cx; +∞[, then obviously

∀v ∈ α,∀t ∈ T, v + t ∈ α

and thusSucc(α) = {α}. Otherwise, there exists at least a regionα′ 6= α such thatα′ ∈ Succ(α).
Among these regions we define the “closest” region toα, i.e. the regionαSucc such that

– αSucc ∈ Succ(α), and
– ∀v ∈ α,∀t ∈ T, if v + t 6∈ α then∃t′ ≤ t such thatv + t′ ∈ αSucc.

The regionαSucc = ((I ′x)x∈X ,≺
′) can be characterized as follows. LetZ = {x ∈ X | Ix is of the form[c]}.

We distinguish two cases:

1. If Z 6= ∅, then

– I ′x =






Ix if x 6∈ Z
]c; c+ 1[ if x ∈ Z andIx = [c] with 0 ≤ c < cx

]cx; +∞[ if x ∈ Z andIx = [cx]

– x ≺′ y if eitherx ≺ y or Ix = [c] with 0 ≤ c < cx andI ′y is of the form]d; d+ 1[

2. If Z = ∅, letM be the set of maximal elements of≺, i.e.

M = {x ∈ X0 | ∀z ∈ X0, x ≺ z =⇒ z ≺ x}

Then,

– I ′x =

{
Ix if y 6∈M
[c+ 1] if x ∈M andIx =]c; c+ 1[ with 0 ≤ c < cx

– ≺′ is the restriction of≺ to {x ∈ X | I ′x is of the form]d; d+ 1[}

We claim now that
∀v ∈ α, ∃t ∈ T such thatv + t ∈ αsucc

Indeed, letv be a valuation inα,

1. If Z 6= ∅, then letτ = min ({1− frac(v(x)) | Ix is of the form]c; c+ 1[}). Then the valuationv+ 1
2τ

is in the regionαsucc.
2. If Z = ∅, then letτ = 1− frac(v(x)) for anyx ∈M . Then the valuationv + τ is in αsucc.

Now, we get by an immediate induction that the setR(cx)x∈X
verifies condition (⋆⋆) which achieves the

proof of the lemma. �

Example 5.As an example, assume we have only two clocksx

andy with the constantscx = 3 andcy = 2. Then, the set of
regions associated with those constants is described in thefigure
beside.
The dark gray region is defined byIx =]1; 2[, Iy =]0; 1[, and
x ≺ y andy 6≺ x.

The immediate successor region of this (dark) gray region isde-
fined byIx =]1; 2[ andIy = [1] (drawn as a thick line). The
other successor regions are drawn in light gray.

0 1 2 3 x

1

2

y

The sets of regions we consider is now defined, the following result about their compatibility with sets of
diagonal-free clock constraints is immediate.
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Proposition 6. LetC ⊆ Cdf (X) be such that for any clock constraintx ∼ c of C, it holds thatc ≤ cx. Then
the set of regionsR(cx)x∈X

is compatible withC.

Note that the result does not hold anymore for an arbitrary set of constraints included inC(X). For instance,
in the example above, the region((]3;+∞[, ]2;+∞[),∅) is neither included inx−y ≤ 1 nor inx−y ≥ 1.

We now investigate the compatibility ofR(cx)x∈X
and sets of updatesU . We first consider the case of

simple updates. Recall that a simple update (cf section 2.3) is an update of the formz :∼ c or z :∼ y + c

wherey andz are clocks,∼ ∈ {<,≤,=,≥, >} andc is an (integer) constant. Note that even if the set
R(cx)x∈X

is the one used by Alur and Dill (cf Remark 4), its compatibility with all the updates distinct
from resets (i.e.of the formx := 0) is not proven yet.

Lemma 3. LetR(cx)x∈X
be a set of regions. This set of regions is compatible with anysimple updatez :∼ c

such thatc ≤ cz and with any simple updatez :∼ y+c such thatcz ≤ cy +c, with∼∈ {=, 6=, <,>,≤,≥}.

Proof. Assume thatα = ((Ix)x∈X ,≺) is a region ofR(cx)x∈X
. Recall that≺ is thus a total preorder

onX0 = {x ∈ X | Ix is an interval of the form]c; c + 1[}. Let up be a simple update overz. We first
characterize the regions of̂up(α).

Let α′ = ((I ′x)x∈X ,≺
′) (where≺′ is a total preorder onX ′

0). Thenα′ is in ûp(α) if I ′x = Ix for all x 6= z

and:

if up is z: ∼ c: I ′z can be any interval ofIz which intersects{γ ∈ T | γ ∼ c} and

– eitherI ′z is of the form[d] or ]cz; +∞[ and thus

• X ′
0 = X0 \ {z}

• ≺′=≺ ∩(X ′
0 ×X

′
0)

– eitherI ′z is of the form]d; d+ 1[ and thus

• X ′
0 = X0 ∪ {z}

• ≺′ is any total preorder onX ′
0 which coincides with≺ onX ′

0 \ {z}.

if up is z: ∼ y+c with c ∈ Z: I ′z can be any interval ofIz such that there existsa ∈ I ′z, b ∈ Iy with

a ∼ b+ c and

– eitherI ′z is of the form[d] or ]cz; +∞[

• X ′
0 = X0 \ {z}

• ≺′=≺ ∩(X ′
0 ×X

′
0)

– eitherI ′z is of the form]d; d+ 1[,

• X ′
0 = X0 ∪ {z}

∗ If y 6∈ X0,≺′ is any total preorder onX ′
0 which coincides with≺ onX ′

0 \ {z}.

∗ If y ∈ X0, then we have to take care of the relative values offrac(v′(y)) andfrac(v′(z))

when(Iy + c) ∩ I ′z 6= ∅:

· either(Iy + c)∩ I ′z = ∅ and≺′ is any total preorder onX ′
0 which coincides with≺ on

X0 \ {z}

· either(Iy + c) ∩ I ′z 6= ∅

Note that from the inequalitycz ≤ cy + c, this condition implies thatIy + c ⊆ I ′z.

In that case,≺′ is any total preorder onX ′
0 which coincides with≺ onX ′

0 \ {z} and

verifies:
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· z ≺′ y andy ≺′ z if ∼ is =

· z ≺′ y andy 6≺′ z if ∼ is<
· z ≺′ y if ∼ is≤
· y ≺′ z if ∼ is≥
· z 6≺′ y andy ≺′ z if ∼ is>
· (z ≺′ y andy 6≺′ z) or (z 6≺′ y andy ≺′ z) if ∼ is 6=

From this construction, it is now easy to check that condition (⋆ ⋆ ⋆) holdsi.e. that for anyv ∈ α and any
α′ ∈ ûp(α), there existsv′ ∈ α′ ∩ up(v). Indeed, sinceup is a local update overz, v′(x) = v(x) for all
x 6= z and we just have to definev′(z).

1. If z 6∈ X ′
0, then

(a) If I ′z = [c], v′(z) is of course set toc.
(b) If I ′z =]cz;∞[, sinceIy + c ⊆ I ′z, v(y) + c belongs to the open interval]cz;∞[. Hence, whatever
∼ in {=, 6=, <,≤, >,≥}, there exists some valueα such thatα ∼ v(y) + c.We thus setv′(z)α

2. if z ∈ X ′
0, then

(a) If x ≺′ z andz ≺′ x for somex, thenv′(z) = d+ frac(v′(x)) with I ′z =]d; d+ 1[

(b) If, for any clockx, eitherx 6≺′ z or z 6≺′ x, thenv′(z) = d+ τ with I ′z =]d; d+ 1[ and

max{frac(v′(x)) | x ≺′ z} < τ < min{frac(v′(x)) | z ≺′ x}

Note that since the time domain is assumed to be dense, there always exists (an infinity of) suchτ .

In all cases, it holdsv′ ∈ α′ ∩ up(α) and the lemma is proven. �

Example 6.Let us consider the case whereX = {x, y}, and
the constantscx andcy are given bycx = 3 andcy = 2. The
set of regionsRcx,cy

is represented on the figure beside. The
image of the regionR0, Ix =]1, 2[, Iy =]0, 1[, x ≺ y by the
updatex :> y + 2 is composed of three regions, namely:

– RegionR1: I ′x =]2; 3[, I ′y =]0; 1[ andy ≺′ x

– RegionR2: I ′x = [3], I ′y =]0; 1[

– RegionR3: I ′x =]3;+∞[, I ′y =]0; 1[ 0 1 2 3 x

1

2

y R0

R1

R2

R3

Consider now a local updateup = (upi)1≤i≤k where eachupi is a simple update over some clockxi. Let
alsoR(cx)x∈X

be a set of regions as defined above. It could happen that eachupi is compatible with this
set of regions whereasup itself is not compatible any more. Indeed, let us defineX = {x, y, z}, cx = 2,
cy = cz = 1, α((]2;∞[, ]1;∞[, {1}),∅) andα′((]2;∞[, ]1;∞[, ]1;∞[),∅). Finally, letup1 be the update
z :< x andup2 be the updatez :> y. It is obvious that

∀v′ ∈ α′,∃v1, v2 ∈ α s.t.v1 ∈ up1(v) andv2 ∈ up2(v)

However the two valuations(2.3, 1.1, 1) and(2.3, 3.4, 1) both belong toα and(2.3, 1.1, 1.8) is in α′ ∩

up((2.3, 1.1, 1)) whereasup((2.3, 3.4, 1)) = ∅.

Therefore, in order to get local updates compatible with thesets of regions of the formR(cx)x∈X
, we need

to restrict the local updates we consider. From the counterexample just above, it appears that a given clock
can not be set to an interval in which the lower and upper bounds depend on two distinct clocks. Moreover,
from lemma 3, we need to restrict the constants that are used by the simple updates. This naturally leads to
the following definition:
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Definition 1. Let (cx)x∈X be integer constants. The setU(cx)x∈X
is constituted of updates of the form

up =
∧

x∈X upx where, for each clockx ∈ X, upx is a local update over the clockx defined by one of the
four following abstract grammars:

– detx ::= x := c | x := z + d

with z ∈ X, c, d ∈ Z, c ≤ cx andcx ≤ cz + d

– infx ::= x :⊳ c | x :< z + d | infx ∧ infx
with ⊳∈ {<,≤}, z ∈ X, c, d ∈ Z, c ≤ cx andcx ≤ cz + d

– supx ::= x :⊲ c | x :> z + d | supx ∧ supx
with ⊲∈ {>,≥}, z ∈ X, c, d ∈ Z, c ≤ cx andcx ≤ cz + d

– intx ::= x :∈ (c; d) | x :∈ (c; z + d′) | x :∈ (z + c′; d) | x :∈ (z + c′; z + d′)

where( and) are either[ or ], z is a clock,c, c′, d, d′ are inZ,

c, c′ ≤ cx, cx ≤ cz + d′ andcx ≤ cz + c′

The basis of an updateup =
∧

x∈X upx of U(cx)x∈X
is intuitively the setY of clocks which can be modified

by the updateup. Formally, this setY is defined through its complement:

X \ Y = {z ∈ X | upz is equal toz := z}

The first step for proving the compatibility ofR(cx)x∈X
andU(cx)x∈X

is given by the following lemma. Its
proof is very similar to the one of lemma 3 and therefore left to the reader.

Lemma 4. LetR(cx)x∈X
be a set of regions. This set of regions is compatible with anylocal update of

U(cx)x∈X
which basis is reduced to a single clock{x}.

We can now state our main result concerning the compatibility of sets of regions and sets of updates, in the
case of diagonal-free updatable timed automata.

Proposition 7. Let (cx)x∈X be integer constants. Then the set of regionsR(cx)x∈X
is compatible with the

set of updatesU(cx)x∈X
.

Proof. Let α = ((Iy)y∈X ,≺), α′ = ((I ′y)y∈X ,≺
′) be two regions ofR(cx)x∈X

andup be an update of
U(cx)x∈X

such thatα′ ∈ ûp(α) i.e. there exists some valuationsv ∈ α andv′ ∈ α′ such thatv′ ∈ up(v).
For any clockx, let vx be the valuation defined by:

vx(y) =

{
v(y) if y 6= x

v′(x) if y = x

and letαx = ((I
(x)
y )y∈X ,≺

(x)) be the (unique) region ofR(cx)x∈X
containingvx.

Now letw be a valuation inα. From lemma 4,R(cx)x∈X
is compatible withupx, thus, for any clockx,

there exists some valuationwx ∈ upx(w) ∩ αx. We now define the valuationw′ by setting

w′(y) = wy(y) for any clocky

From the definition of a local update, it turns out thatw′ ∈ up(w). We claim thatw′ ∈ α′, too. Indeed, for
any clocky, w′(y) = wy(y) ∈ I

(y)
y = I ′y. It remains to show that the sequencefrac(w′(x))x∈X verifies

the conditions given by the preorder≺′. To this purpose, it is sufficient to prove that the preorder≺′ (which
is given, a priori, by the valuationv′) can be defined from≺ and the sequence(≺(x))x∈X .

From the constructions given in lemma 3, which can be extended to prove lemma 4, it is easy to check that
the preorder≺′ can be computed as follows.
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LetX ′ be a disjoint copy of the set of clocksX. We first define a sequence(≺(x))x∈X of preorders on the
setX ∪X ′. Intuitively≺(x) is obtained from≺(x) by simply replacing the clockx by its copyx′. Formally

∀y, z ∈ X \ {x}, y ≺(x)
z if y ≺(x) z

∀y ∈ X \ {x}, y ≺(x)
x′ if y ≺(x) x

∀y ∈ X \ {x}, x′ ≺(x)
y if x ≺(x) y

We then define≺ as the union of all the≺(x). It is clear that≺ is still a preorder onX ∪X ′. Now,≺′ can
be obtained from≺ by first restricting it toX ′ ×X ′ and then transforming each clockx′ into its copyx.
And we thus get thatw′ ∈ α′.

We thus have proven that ifα′ ∈ ûp(α), then for any valuationw ∈ α, there exists a valuationw′ ∈

up(w) ∩ α′. Condition (⋆ ⋆ ⋆) is thus satisfied. �

From Theorem 3 and propositions 6 and 7, we get immediately the next theorem which is our main (effec-
tive) result concerning decidability ofdiagonal-freeupdatable automata.

Theorem 4. Let – C ⊆ Cdf (X) be a finite set of diagonal-free clock constraints,

– for any clockx, cx be an integer constant such that, for any constraintx ∼ c of C, it
holdsc ≤ cx,

– U ⊆ U(cx)x∈X
be a finite set of updates.

Then the classUta(C,U) is decidable.

This theorem is not yet sufficient for deciding, given an arbitrary (diagonal-free) timed automatonA,
whether its emptiness can be decided using a region automaton construction. If we can find constants
(cx)x∈X such that any update used inA is inU(cx)x∈X

and any constraintx ∼ c used inA satisfiesc ≤ cx,
then the emptiness ofA can be checked using a region automaton construction. We finally now describe a
procedure which gives a sufficient condition for the existence of such constants(cx)x∈X .

Let C ⊆ Cdf (X) be a set of diagonal-free clock constraints and letU ⊆ U(X) be a set of updates such that

up =
∧

x∈X

upx ∈ U =⇒ for all x, upx ∈ {detx, infx, supx, intx} where: (♦df )

– detx ::= x := c | x := z + d

with z ∈ X, c ∈ N andd ∈ Z

– infx ::= x :⊳ c | x :< z + d | infx ∧ infx
with ⊳∈ {<,≤}, z ∈ X, c ∈ N andd ∈ Z

– supx ::= x :⊲ c | x :> z + d | supx ∧ supx
with ⊲∈ {>,≥}, z ∈ X, c ∈ N andd ∈ Z

– intx ::= x :∈ (c; d) | x :∈ (c; z + d′) | x :∈ (z + c′; d) | x :∈ (z + c′; z + d′)

where( and) are either[ or ], z is a clock andc, c′, d, d′ are inZ

If the Diophantine system of linear inequations on variables (cx)x∈X

{c ≤ cx | x ∼ c ∈ C or x :∼ c ∈ U} ∪ {cz ≤ cy + c | z :∼ y + c ∈ U} (Sdf )

has a solution, thenU ⊆ U(cx)x∈X
andC is compatible withR(cx)x∈X

, and therefore, applying Theorem 4,
the classUta(C,U) of updatable timed automata is decidable.

Note that if all the constantsc appearing in the updatesx :∼ y + c are positive, then the system (Sdf )
always has a solution. Otherwise, from the results of [Dom91], the existence of a solution is decidable.
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Remark 5.We have shown in section 4 that updates of the formz := z − 1 lead to an undecidable class of
automata, whatever are the types of constraints used in the automata. Note that, fortunately, this is not in
contradiction with the results above. Indeed, when dealingwith such updates, the Diophantine system (Sdf )
contains inequations of the formcz ≤ cz − 1 and has therefore no solution.

Complexity.As for timed automata (see [AD94]), decidability of emptiness for a class of updatable timed
automata verifying hypotheses of Theorem 4 is a PSPACE-complete problem; and the proof is quite similar.

Recall that for classical (untimed) automata (accepting finite or infinite sequences), decidability of the
emptiness is NLOGSPACE-complete. The non deterministic on-the-fly algorithm consists in starting from
an initial stateq0, to guess a new stateq and to verify whether there is a transition fromq0 to q, which can
be done without any additional space (just looking at the automaton). The algorithm continues by guessing
a new stateq′ and by verifying the existence of a transition betweenq andq′, and so on until a final state is
reached. Therefore, besides the automaton, only two stateshave to be stored. Since a state can be coded in
logarithmic space, we get that the emptiness problem is in NLOGSPACE(the proof of completeness can be
found in any book on Complexity Theory).

Let nowA be an updatable timed automaton in some classUta(C,U) andR be a set of regions satisfying
the hypotheses of Theorem 4. As explained, the emptiness ofL(A) can be checked by testing the emptiness
on the untimed region automatonΓR(A). If we apply the algorithm recalled above and if we want to
compute its complexity, we have to compute the space needed to encode a state ofΓR(A). Such a state
is a pair(q,R) whereq is a (discrete) state ofA andR a region ofR(cx)x∈X

. For encoding a region, it is
sufficient to store, for each clock, two integers (the boundsof the interval where the clock is supposed to
be) and, for each pair of clocks, a boolean which indicates whether the first clock is before the second in
the preorder defining the region, or not.

Therefore, a state ofΓR(A) can be encoded in polynomial space and emptiness of updatable timed au-
tomata, when belonging to a decidable class as described previously, is in PSPACE. Since these decidable
classes contain in particular Alur and Dill’s timed automata, we get immediately the PSPACE-hardness and
thus the PSPACE-completeness.

5.3 Decidable Classes of General Updatable Timed Automata

We now investigate classes of updatable timed automata where general constraints are used. As we have
noticed just after proposition 6, diagonal constraints arenot compatible with sets of regions defined in the
previous subsection. For example, if we deal with two clocksx andy, the regionx > 3 ∧ y > 2 is neither
included inx− y ≤ 1, nor inx− y > 1. We have thus to define new sets of regions.

To this purpose we consider for each pair of clocks(y, z) in X an integer constantdy,z and we define the
set

Jy,z = {]−∞;−dz,y[}

∪ {[d] | −dz,y ≤ d ≤ dy,z}

∪ {]d; d+ 1[ | −dz,y ≤ d < dy,z}

∪ {]dy,z; +∞[}

The region defined by a tupleα = ((Ix)x∈X , (Jx,y)x,y∈X ,≺) where

- ∀x ∈ X, Ix ∈ Ix,

- ∀(y, z) ∈ X∞, Jy,z ∈ Jy,z, whereX∞ denotes the set{(y, z) ∈ X2 | Iy or Iz is non bounded}

- ≺ is a total preorder onX0 = {x ∈ X | Ix is an interval of the form]c; c+ 1[}
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is the following subset ofTX :





| ∀x ∈ X, v(x) ∈ Ix,|
v ∈ TX | ∀x, y ∈ X0, it holds thatx ≺ y ⇐⇒ frac(v(x)) ≤ frac(v(y)),|

| ∀(y, z) ∈ X∞, v(y)− v(z) ∈ Jy,z|






The finite setR(cx)x∈X ,(dy,z)y,z∈X
of all such regions forms a partition ofTX . By a proof very similar to

the one of lemma 2, it is easy to verify that this set of regionsalso satisfies condition (⋆⋆), i.e. that the
following lemma holds:

Lemma 5. The setR(cx)x∈X ,(dy,z)y,z∈X
is a set of regions.

Example 7.Assume that we have only two clocksx andy and
that the maximal constants arecx = 3 andcy = 2, with clocks
constraintsx − y ∼ 0 andx − y ∼ 1. Then, the set of regions
associated with those constants is described in the figure beside.
The gray region is defined byIx =]3;+∞[, Iy =]2;+∞[ and
−1 < y − x < 0 (i.e.Jy,x is ]− 1; 0[).

0 1 2 3 x

1

2

y

Once again, the compatibility of this set of regions with sets of clock constraints is easy and immediate.

Proposition 8. LetC ⊆ C(X) be such that for any clock constraintx ∼ c of C, we havec ≤ cx and for any
clock constraintx − y ∼ c in C, we have−dy,x ≤ c ≤ dx,y. Then the set of regionsR(cx)x∈X ,(dy,z)y,z∈X

is compatible withC.

As in the diagonal-free case, we now introduce a set of updates which depends on the constants(cx)x∈X

and(dy,z)y,z∈X . They will be defined in such a way that they will be compatiblewith the set of regions we
have just defined. Note that from the undecidability resultsof section 4, we have to restrict drastically the
set of updates we use if we want to preserve the decidability.

Example 8.For example, if we consider the incrementation
updatey := y+1 and the set of regions depicted on the figure
beside, the images of the regionR1 are the regionsR1, R2

andR3. But we can not reach regionR1 (resp.R2, resp.R3)
from every point of regionR1. Thus, this set of regions is not
compatible with the updatey := y + 1.
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1

2

y
R3

R2

R1

Definition 2. Let (cx)x∈X , (dy,z)y,z∈X be integer constants. The setU(cx)x∈X ,(dy,z)y,z∈X
of local updates

consists of the updates of the formup =
∧

x∈X upx where, for each clockx ∈ X, upx is a local update of
one of the following forms:

– x :⊳ c with ⊳∈ {=, <,≤}, z ∈ X, c ∈ N, c ≤ cx and, for any clocky, cy ≥ c+ dy,x

– x := y with y ∈ X, andcx ≤ cy and, for any clockz, dz,x ≤ dz,y, dx,z ≤ dy,z

As claimed by the following proposition, this set of updatesand the set of regions previously defined are
suitable for handling updatable timed automata with general clock constraints.

Proposition 9. Let(cx)x∈X , (dy,z)y,z∈X be integer constants. Then the set of regionsR(cx)x∈X ,(dy,z)y,z∈X

is compatible with the set of updatesU(cx)x∈X ,(dy,z)y,z∈X
.
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Proof. As in the case of diagonal-free updatable timed automata, wefirst deal with the particular case of
simple updates.

Assume thatα = ((Ix)x∈X , (Jx,y)x,y∈X ,≺) where≺ is a total preorder onX0 and assume also thatup is
a simple update overz, then the regionα′ = ((I ′x)x∈X , (J

′
x,y)x,y∈X ,≺

′) (where≺′ is a total preorder on
X ′

0) is in ûp(α) if and only if I ′x = Ix for all x 6= z, J ′
x,y = Jx,y for all x, y 6= z and:

if up is z: ∼ c, I ′z can be any interval ofJz which intersects{γ ∈ T | γ ∼ c} and

– eitherI ′z is of the form[d] and thus

• X ′
0 = X0 \ {z}

• ≺′=≺ ∩(X ′
0 ×X

′
0)

• X ′
∞ = {(x, y) ∈ X∞ | (x 6= z ∧ y 6= z) or (x = z ∧ Iy =]cy;∞[) or (Ix =]cx;∞[∧y = z)

and∀(x, y) ∈ X ′
∞,

∗ J ′
x,y = Jx,y if x 6= z andy 6= z

∗ J ′
x,z =]dx,z;∞[ .

Note that ifv is a valuation such thatcx < v(x) andv(z) ⊳ c with ⊳∈ {=, <,≤}, then

cx−c < v(x)−v(z). Thus, from the hypothesiscx ≥ c+dx,z, we getdx,z < v(x)−v(z).

∗ J ′
z,y =]−∞;−dz,y[ .

Note that ifv is a valuation such thatcy < v(y) andv(z) ⊳ c with ⊳∈ {=, <,≤}, then

v(z)−v(y) < c−cy. Thus, from the hypothesiscy ≥ c+dz,y, we getv(z)−v(y) < −dz,y.

– eitherI ′z is of the form]d; d+ 1[ and thus

• X ′
0 = X0 ∪ {z}

• ≺′ is any total preorder onX ′
0 which coincides with≺ onX ′

0 \ {z}

• X ′
∞ = {(x, y) ∈ X∞ | (x 6= z ∧ y 6= z) or (x = z ∧ Iy =]cy;∞[) or (Ix =]cx;∞[∧y = z)

and∀(x, y) ∈ X ′
∞,

∗ J ′
x,y = Jx,y if x 6= z andy 6= z

∗ J ′
x,z =]dx,z;∞[.

∗ J ′
z,y =]−∞;−dz,y[.

if up is z: ∼ y, let us first defineI ′z.

– if Iy = [d], I ′z = [d] if d ≤ cz, I ′z =]cz;∞[ otherwise

– if Iy =]d; d+ 1[, I ′z =]d; d+ 1[ if d < cz, I ′z =]cz;∞[ otherwise

– if Iy =]cy;∞[, I ′z =]cz;∞[ (since by hypothesiscz ≤ cy)

Now

– eitherI ′z is of the form[d] (and thusIy = [d] from what precedes)

• X ′
0 = X0 ∪ {z}

• ≺′=≺ ∩(X ′
0 ×X

′
0)

• X ′
∞ = {(x, x′) ∈ X∞ | (x 6= z ∧ x′ 6= z) or (x = z ∧ Ix′ =]cx′ ;∞[) or (Ix =]cx;∞[∧x′ =

z)}

and∀(x, x′) ∈ X ′
∞,

∗ J ′
x,x′ = Jx,x′ if x 6= z andx′ 6= z

∗ J ′
z,x′ is the unique interval ofJz,x′ which containsJz,x′ .

Note that unicity comes from the hypothesis thatdz,x′ ≤ dy,x′

∗ J ′
x,z is the unique interval ofJx,z which containsJx,z.

Note that unicity comes from the hypothesis thatdx,z ≤ dx,y
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– eitherI ′z is of the form]d; d+ 1[ (and thusIy =]d; d+ 1[, too)

• X ′
0 = X0 ∪ {z}

• ≺′ is any total preorder onX ′
0 which coincides with≺ onX ′

0 \ {z} and such thatz ≺′ y and

y ≺′ z

• The setX ′
∞ and the intervalsJ ′

x,x′ are defined as in the previous caseI ′z = [d]

– eitherI ′z is of the form]cz;∞[

• X ′
0 = X0 \ {z}

• ≺′=≺ ∩(X ′
0 ×X

′
0)

• X ′
∞ = X∞∪{(x, z), (z, x) | x ∈ X} andJ ′

x,x′ = Jx,x′ if x 6= z andx′ 6= z. The computation

of J ′
z,x (andJ ′

x,z) requires to distinguish several cases depending of the form of Ix andIy

1. Ix = [f ], Iy = [g]. Then

J ′
z,x =






[g − f ] if − dx,z ≤ g − f ≤ dz,x

]dz,x;∞[ if dz,x < g − f

]−∞;−dx,z[ if g − f < −dx,z

2. Ix = [f ], Iy =]g; g + 1[. Then

J ′
z,x =






]g − f − 1; g − f [ if − dx,z ≤ g − f − 1 < dz,x

]dz,x;∞[ if dz,x ≤ g − f − 1

]−∞;−dx,z[ if g − f − 1 < −dx,z

3. Ix = [f ], Iy =]cy;∞[. Then

J ′
z,x is the unique interval ofJz,x which containsJy,x.

Note that unicity comes from the hypothesis thatdz,x ≤ dy,x anddx,z ≤ dx,y

4. Ix =]f ; f + 1[, Iy = [g].

This case is identical to case 2 above.

5. Ix =]f ; f + 1[, Iy =]g; g + 1[. Then

J ′
z,x =






If x ≺ y ∧ y ≺ x then [g − f ] when − dx,z ≤ g − f ≤ dz,x

]dz,x;∞[ whendz,x < g − f

]−∞;−dx,z[ wheng − f < −dx,z

If x ≺ y ∧ y 6≺ x then ]g − f ; g − f + 1[ when − dx,z ≤ g − f < dz,x

]dz,x;∞[ whendz,x ≤ g − f

]−∞;−dx,z[ wheng − f < −dx,z

If x 6≺ y ∧ y ≺ x then ]g − f − 1; g − f [ when − dx,z ≤ g − f − 1 < dz,x

]dz,x;∞[ whendz,x ≤ g − f − 1

]−∞;−dx,z[ wheng − f − 1 < −dx,z

6. Ix =]f ; f + 1[, Iy =]cy;∞[. This case is identical to case 3 above.

7. Ix =]cx;∞[. This case is identical to case 3 above.

From this construction, it is easy to prove, in a similar way than for lemma 3, that condition (⋆ ⋆ ⋆) holds
for simple updates.

The extension to local updates ofU ⊆ U(cx)x∈X ,(dy,z)y,z∈X
(under the hypotheses of the proposition) is

obtained by a technique similar to the one used in proposition 7. ⊓⊔
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R1 R2 R3 R4 R0 Example 9.Consider the regions depicted on the left. We want to
compute the updating successors of the regionR0 by the update
x :< 2. The four updating successors are drawn on the figure. Their
equations are:

– RegionR1: I ′x = [0] andI ′y =]2;+∞[

– RegionR2: I ′x =]0; 1[, I ′y =]2;+∞[ andJy,x =]1;+∞[

– RegionR3: I ′x = [1] andI ′y =]2;+∞[

– RegionR4: I ′x =]1; 2[, I ′y =]2;+∞[ andJy,x =]1;+∞[

Our main effective result concerning the decidability of general updatable automata is given by the follow-
ing theorem. Its proof follows immediately from Theorem 3 and propositions 8 and 9.

Theorem 5. LetC ⊆ C(X) be a finite set of general clock constraints such that:

– for every clockx, a constantcx such that for any constraintx ∼ c in C, c ≤ cx,

– for every pair of clocks(x, y), a constantdx,y such that for any constraintx− y ∼ c in C, c ≤ dx,y,

and letU ⊆ U(cx)x∈X ,(dx,y)x,y∈X
be a set of updates. The classUta(C,U) is then decidable.

Like for Theorem 4, if we want to apply the previous theorem toa given updatable timed automatonA, we
need to find (if they exist) some constants(cx)x∈X and(dx,y)x,y∈X for which the updates and constraints
of A satisfy the hypothesis of this theorem. Let us now describe aprocedure which ensures the existence
of such constraints.

Let C ⊆ C(X) be a finite set of arbitrary constraints and letU ⊆ U(X) be a finite set of updates such that:

up =
∧

x∈X upx ∈ U =⇒ ∀x ∈ X, upx ∈ {x := c, x :< c, x :≤ c | c ∈ N}

∪ {x := y | y ∈ X}
(♦gen)

If the Diophantine system of linear inequations on the variables(cx)x∈X and(dx,y)x,y∈X

{c ≤ maxx | x ∼ c ∈ C}

∪ {c ≤ maxx,y | x− y ∼ c ∈ C}

∪ {c ≤ maxx, maxz ≥ c+ maxz,x | x :< c or x :≤ c or x := c ∈ U , andz ∈ X}
∪ {maxx ≤ maxy, maxz,y ≥ maxz,x, maxx,z ≤ maxy,z | x := y ∈ U andz ∈ X}

(Sgen)

has a solution, thenU ⊆ U(cx)x∈X ,(dx,y)x,y∈X
andC is compatible withR(cx)x∈X ,(dx,y)x,y∈X

. And thus,
from Theorem 5, the classUta(C,U) is decidable.

It is easy to verify that the system (Sgen) always has a solution. We thus get the following theorem:

Theorem 6. Let C ⊆ C(X) be a finite set of arbitrary constraints and letU be a finite set of updates
defined as in (♦gen). Then the classUta(C,U) of updatable timed automata is decidable.

Remark 6.From the undecidability results of the previous section, this theorem is the most general we
can expect when dealing with general clock constraints. Nevertheless, under precise conditions, we could
refine the results and exhibit decidable subclasses which use updates not of the form (♦gen). For instance,
let (cx)x∈X , (dy,z)y,z ∈ X be constants. The set of regionsR(cx)x∈X ,(dy,z)y,z∈X is compatible with, for
examples, updates like:

– z := y + c as soon ascz ≤ cy + c and for each clockx, dx,z ≤ dx,y − c anddz,x ≤ dy,x + c

– z :> c as soon asc ≤ cz and for each clockx, cz − cx ≥ dz,x

However, we will not give details of these refinements, if oneis needed for a special model, then the
previous proof can be extended.
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Complexity. As in the diagonal-free case (see the end of section 5.2), emptiness for decidable classes
of updatable timed automata with arbitrary clock constraints, as characterized in Theorem 5, is PSPACE-
complete. Indeed, a region from a set of the formR(cx)x∈X ,(dy,z)y,z∈X can still be encoded in polynomial
space.

5.4 Conclusion and Discussion

Table 2 summarizes the undecidability and decidability results obtained in the two previous sections. In
order to have a global and readable picture, we do not recall the precise conditions on the constants given
in the hypotheses of our two main theorems 4 and 5, under whichdecidability is ensured.

U0(X) ∪ ... Diagonal-free constraints General constraints
1 x := c, x := y PSPACE-complete
2 x := x+ 1 PSPACE-complete
3 x := y + c Undecidable
4 x := x− 1 Undecidable

5 x :< c

PSPACE-complete

PSPACE-complete
6 x :> c

Undecidable
7 x :∼ y + c

8 y + c <: x :< y + d

9 y + c <: x :< z + d Undecidable

with ∼ ∈ {≤, <,>,≥} andc, d ∈ Q+

Table 2.Decidability results

It is worth to notice that, contrary to the case of Alur and Dill’s timed automata, considering diagonal-free
clock constraints or arbitrary clock constraints do not lead to similar decidability results.

Note also that differences between decidable and undecidable classes are sometimes tricky. Among these
differences, let us mention for instance the following facts:

– when only diagonal-free clock constraints are used, decrementation leads to undecidable classes whereas
incrementation leads to decidable classes (see lines 2 and 4)

– when arbitrary clock constraints are used, both decrementations and incrementations lead to undecid-
able classes (see also lines 2 and 4)

– non-deterministic updates of the formx :< c always lead to decidable classes whereas updates of the
form x :> c lead to decidable classes only when diagonal-free clock constraints are used (see lines 5
and 6)

– non-deterministic updates of the formx+ c :< z :< y+ d always lead to undecidable classes whereas
updates of the formy+ c <: z :< y+ d lead to decidable classes if diagonal-free clock constraints are
used (see lines 8 and 9)

6 Expressiveness of Updatable Timed Automata

Now that we have described precisely the frontier between undecidability and decidability, it becomes
natural and interesting to study the expressiveness of the decidable subclasses and compare them with
the expressiveness of timed automata and timed automata with ε-transitions (or silent actions), as defined
originally by Alur and Dill ( [AD90,AD94], see section 3.1).
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We start by defining some criteria to compare automata in section 6.1. We then prove thatε-transitions are
unavoidable if we want to express the languages recognized by updatable timed automata using classical
timed automata, see section 6.2. We then study the easier case of updatable automata using deterministic
updates in section 6.3 and the general case in section 6.4.

6.1 Several Equivalence Relations

We recall in this section several known criteria to compare automata.

Language equivalence.The simplest criterium to compare automata is the equality of the accepted lan-
guages. Two timed automata are saidlanguage equivalentwhenever they accept the same timed language.
We extend this definition to families of timed automata ; two families of timed automata, sayAut1 andAut2,
are language equivalent whenever every timed automaton from one of the families is language equivalent
to an automaton of the other family. We then writeAut1 ≡ℓ Aut2.
For example, it is well known that diagonal constraints can be removed from timed automata without
changing the expressiveness of the model (see Remark 1). With the formalism presented above, it can be
written as

Uta(Cdf (X),U0(X)) ≡ℓ Uta(C(X),U0(X)) .

Transition systems and similarity. Language equivalence does not provide any information about the
internal structure of the automata, contrary to similarity. To define similarity, we first need to recall the
notion of transition systems.

Definition 3. A transition systemis a tupleT = (S, Γ, s0,−→) whereS is a set of states,Γ is a finite or
infinite alphabet,s0 ∈ S is the initial state and−→⊆ S × Γ × S is a set of transitions.

If T is such a transition system, anexecutionin T is a sequence of consecutive transitions

s0
α1−−→ s1

α2−−→ s2 . . .

where for everyi > 0, si−1
αi−−→ si is a transition ofT .

The similarity [Par81,Mil89] defines step to step a correspondance betweentwo transition systems. A
transition systemT = (S, Γ, s0,−→) simulatesa transition systemT ′ = (S′, Γ, s′0,−→

′) if there exists a
relation< ⊆ S × S′ such that:

INITIALIZATION : ∀s0 ∈ S0, ∃s
′
0 ∈ S

′
0 s.t.s0 < s′0

PROPAGATION:
(TRANSFER)

if s1 < s′1 ands1
e
−→ s2 then there existss′2 ∈ S

′

s.t.s′1
e
−→′s′2 ands2 < s′2

Such a relation is called asimulation relation. If the relation<−1 defined by

x <−1 y ⇐⇒ y < x

is also a simulation relation, then< is abisimulation relation.

Timed transition systems are particular transition systems where the alphabet contains actions correspond-
ing to time elapsing.

Definition 4. A timed transition systemon the alphabetΣ and the time domainT is a transition system
T (S, Γ, s0,−→) whereΓ is the setΣ ∪{ε}∪{ǫ(d) | d ∈ T} and the transition−→ satisfies the following
properties:
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– TEMPORAL DETERMINISM: for all the statess, s′, s′′ of S and for everyd ∈ T, if s
ǫ(d)
−−−→ s′ and

s
ǫ(d)
−−−→ s′′, thens′ = s′′.

– TIME ADDITIVITY : for all the statess, s′′ of S and for all d1, d2 ∈ T, if s
ǫ(d1+d2)
−−−−−−→ s′′, then there

existss′ ∈ S such thats
ǫ(d1)
−−−−→ s′ ands′

ǫ(d2)
−−−−→ s′′.

– 0-DELAY: for all the statess, s′ ∈ S, s
ǫ(0)
−−−→ s′ if and only ifs = s′.

The three conditions that we just described are classical when we consider process algebra like TCCS [Yi90,Yi91].

If T is such a timed transition system, adelay executionis an execution of the form

s0
α1−−→ s1

α2−−→ s2 . . .
αn−−−→ sn

such thatn ≥ 0, for every1 ≤ i ≤ n, αi = ε or αi = ǫ(di) for somedi ∈ T.

If T = (S, Γ, s0,−→) is a timed transition system, we define theabstract transition systemassociated with
T by Tabs = (S, Γ, s0,=⇒) where






s
a

=⇒ s′ if a 6= ε and there existss′′ ∈ S, s
ε
−→

∗
s′′

a
−−→ s′

s
ǫ(d)
=⇒ s′ if






there exists a delay execution

s = s0
α1−−→ s1

α2−−→ s2 . . .
αn−−−→ sn = s′

such thatd =
∑
{di | αi = ǫ(di)}

where the relation
ε
−→

∗
represents the reflexive and transitive closure of

ε
−→. The transition systemTabs

abstracts silent actions ofT . The relation
ε
−→

∗
thus corresponds to

ǫ(0)
=⇒. Note also that the relation

a
=⇒

only abstracts silent actions that can be done before actiona.

As a timed transition system is a particular transition system, the notion of similarity defined before can be
applied.

Strong and weak (bi)similarity. An updatable timed automatonA(Q,X,Σε, I, F,R, T ) defines in a
natural way two timed transition systems:

– the transition systemT (A) = (Q × TX , Σε,T, (q0,0),−→) where the transition relation−→ is
defined by:

{
(q, v)

ǫ(d)
−−−→ (q, v + d)

(q, v)
a
−−→ (q′, v′) if there existsq

ϕ,a,up
−−−−−→ q′ ∈ T s.t.v |= ϕ andv′ ∈ up(v)

– the abstract transition systemTabs(A) defined as previously fromT (A).

Of course, ifA is a timed automaton without silent actions,T (A) andTabs(A) are identical.

An updatable timed automatonA strongly simulatesan other updatable timed automatonB, and we will
noteA <s B, wheneverT (A) simulatesT (B). We say thatA andB arestrongly bisimilar, and we will
noteA ≡s B, whenever there exists a bisimulation relation≡ such thatT (A) ≡ T (B).

An updatable timed automatonA weakly simulates7 another updatable timed automatonB, and we will
noteA <w B, wheneverTabs(A) simulatesTabs(B). We say thatA andB areweakly bisimilar, and we
noteA ≡w B, whenever there exists a bisimulation relation≡ such thatTabs(A) ≡ Tabs(B).

7 Note that this definition of weak simulation is quite different from the usual one because, as said before, the tran-
sition relation

a
=⇒ only abstracts silent actions that can be done before the other actions, whereas, in the classical

definition, the transition relation abstracts all the silent actions,i.e. those that can be done before or after the real
actions.
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Remark 7.Of course, two strongly bisimilar updatable timed automataare also weakly bisimilar. If a
bisimulation relation preserves the final and repeated states, two strongly or weakly bisimilar automata are
language equivalent.

We close these preliminaries by a technical result ensuringthat we can restrict our study to updatable timed
automata where all constants appearing in the constraints or in the updates are integer.
Let A be an updatable timed automaton andλ a constant. We denote byλA the timed automaton in
which all the constants appearing in the constraints or the updates ofA are multiplied byλ. The proof of
the following lemma follows the one of lemma 4.1 page 15 in [AD94] which claims a similar result for
language equivalence within timed automata.

Lemma 6. LetA andB be two timed automata andλ ∈ Q+∗ a constant. Then

A <w B ⇐⇒ λA <w λB and A <s B ⇐⇒ λA <s λB

Hence, in the rest of this section, we may assume that only integer constants are used.

We have now all the comparison tools that will be useful in ournext study of the expressiveness of decidable
subclasses of updatable timed automata.

6.2 ε-Transitions are Necessary

We first prove thatε-transitions are necessary to express the decidable fragment of updatable timed au-
tomata described in section 5. Let us consider the timed automatonA with silent actions described by the
following picture:

q0 q1

x = 1

a

x := 0

0 < x < 1, b

x = 1, ε, x := 0

There is no classical timed automaton without silent actionaccepting the same timed language asA [BDGP98].
We will prove that there exists an updatable timed automatonwith general constraints and updates of the
form x := c or x :< c (c integer) which recognizes the timed languageL(A). This timed language can be
described by:

(ai, ti)i≥1 ∈ L ⇐⇒ ∀i ≥ 1,






ti = i andai = a

or
ti ∈]i− 1; i[ andai = b

An execution in this automaton can thus be represented by thefollowing scheme:

a

0 1

a b

2

b

3 4

a

expressing thata actions can be performed each time unit, but not if ab has been performed during the last
unit of time.

This timed language is recognized by the updatable timed automatonB on the following picture:
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q2

x := 1
1 < x < 2

b

x := x− 1

x = 2

a

x := 1

where the clockx is set to1 when first entering stateq2.
By considering for example the bisimulation relation

R =
{

((q0, v), (q2, v + 1)) | v ∈ T{x}
}
∪

{
((q1, v), (q2, v)) | v ∈ T{x}

}

it is easy to see thatA andB are weakly bisimilar, and thusL(A) = L(B).

In section 4, we noticed that adding the decrementation of clocks to the classical model leads in general to
undecidability. However, in this precise case, clockx is bounded by2, we will thus be able to transform au-
tomatonB into an updatable timed automaton belonging to some decidable class as described in section 5.
Let us indeed consider the following automatonD:

p0 p1 p2 p3

1 < x < 2

x = y − 1
, b, y :< 1

1 < y < 2

y = x− 1
, b, x :< 1

1 < y < 2, b, x :< 1

1 < x < 2, b, y :< 1

x = y − 1

x = 2
, a, x := 1

y = 2

y = x− 1
, a, y := 1

x = 2, a, x := 1

y = 2, a, y := 1

x := 1

Claim: D recognizes precisely the timed languageL(A) = L(B).

Proof. We start by describing in an informal manner howD behaves. A statep0 or p3 can be reached only
if an a has just been performed and a statep1 or p2 can be reached only if ab has just been performed. The
values ofx andy are both1 when reaching statep0 or p3 (an easy verification can be done by analyzing
the transitions arriving in these states). From any of thesetwo states, a sequence ofa’s, one at each time
unit, can be performed. Moreover, statep1 or p2 can be reached when an actionb is performed, before one
time unit has passed.

To prove thatL(B) = L(D), we transform the automatonB in the following way. We first add a “hole”

(stateq3) with a unique transition leading toq3, namely the transitionq2
0<x<1, b
−−−−−−−→ q3. We denote byBm

the resulting automaton. It can be depicted as:

q2

1 < x < 2

b

x := x− 1

x = 2

a

x := 1

q3

0 < x < 1, b
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We then define the relationR′ by:

R′ = {(q2, α), (p0, (α+ 1, α+ 1)) | 0 ≤ α ≤ 1} ∪ {(q2, α), (p3, (α+ 1, α+ 1)) | 0 ≤ α ≤ 1}

∪ {((q2, α), (p2, (α+ 1, α))) | 0 < α ≤ 1} ∪ {((q2, α), (p1, (α, α+ 1))) | 0 < α ≤ 1}

∪ {((q3, α), (p2, (β, α))) | α > 0 andβ 6= α+ 1} ∪ {((q3, α), (p2, (α, β))) | α > 0 andβ 6= α+ 1}

The transfer property is satisfied in a trivial way. The relation R′ is thus a bisimulation relation and the
automataD andBm are bisimilar. Moreover,B andBm obviously recognize the same timed language.�

We thus get the following theorem:

Theorem 7. The decidable subclass of updatable timed automata which use general clock constraints (as
described in Section 5.3) is strictly more expressive (for the language equivalence≡ℓ) than classical timed
automata withoutε-transitions.

6.3 Expressiveness of Deterministic Updates

We start our expressiveness study by considering deterministic updates only. Recall that these updates,
defined in section 2.3, are built using simple updates of one of the following form:

1. x := c with x ∈ X andc ∈ N

2. x := y with x, y ∈ X
3. x := y + c with x, y ∈ X andc ∈ Z \ {0}

Recall that thanks to Lemma 6, we assume, without loss of generality, that constants are inN andZ (we do
not need to consider constants inQ).
In a first step, we consider simple updates of one of the forms 1or 2. The fact that updatable timed au-
tomata using such updates and classical timed automata are language equivalent is often considered as a
"folklore" result. However, we did not find any proof of this result in theliterature. Hence, and for the
sake of completeness, we propose a complete proof.

If U is a set of simple deterministic updates, we denote byLu(U) the set of updates which can be written
as

∧
x∈X upx whereupx ∈ U for everyx ∈ X.

Theorem 8. Let U ⊆ Lu ({x := d | x ∈ X andd ∈ N} ∪ {x := y | x, y ∈ X}) be a set of updates. Let
A ∈ Uta(C(X),U) (resp.A ∈ Utaε(C(X),U)). There exists a timed automatonB ∈ Uta(C(X),Ucst(X))

(resp.B ∈ Utaε(C(X),Ucst(X))) such thatA ≡s B.

Remind (see section 2.3) thatUcst(X) denotes updates to constants, that is updates of the formx := c.

Proof. Let A = (Q,X,Σ, I, F,R, T ) be a timed automaton inUta(C(X),U). We construct a timed au-
tomatonB = (Q′,X,Σ, I ′, F ′, R′, T ′) in Uta(C(X),Ucst(X)) such thatA ≡s B.

Assume thatX = {x1, . . . , xn}. We set:

– Q′ = Q×XX ,
– I ′ = I × {Id} whereId is the identity ofX,
– F ′ = F ×XX

– R′ = R×XX .

Intuitively, in a state(q, σ) (with q ∈ Q andσ ∈ XX ), the value of clockx is stored in the clockσ(x). We
now just have to define the set of transitionsT ′ of B.

Let us consider a transitionq
ϕ,a,up
−−−−−→ q′ of A and a state(q, σ) of B. We associate the functionup :

X −→ X ∪ N to up, whereup(x) is:

30



– d wheneverx := d is part of the updateup,
– y wheneverx := y is part of the updateup,
– x in all other cases (the update is thus implicitelyx := x).

In B, there will be a transition

(q, σ)
ϕ′,a,up′

−−−−−−→ (q′, σ′)

such that:

– If up(x) ∈ X, thenσ′(x) = σ ◦ up(x). If up(x) 6∈ X, it is a bit more complicated. Some clocks
are not used (it means that they do not correspond to any of theσ′(x) already defined). We choose
some of these clocks in order to define theσ′(x) which are not already defined,i.e. theσ′(x) such that
up(x) 6∈ X. More formally, we have:

#{x ∈ X | up(x) ∈ X} ≥ #{up(x) | x ∈ X andup(x) ∈ X}

and thus
#{x ∈ X | up(x) 6∈ X} ≤ #(X \ {up(x) | x ∈ X andup(x) ∈ X})

We can thus consider an injective applicationι defined on the set{x ∈ X | up(x) 6∈ X} onto the set
X \ {up(x) | x ∈ X andup(x) ∈ X} and we can setσ′(x) = ι(x) if up(x) 6∈ X.

– ϕ′ is defined byϕ[x← σ(x)]8

– up′ is defined by
∧

x∈X andup(x) 6∈X σ′(x) := up(x)

We define the relationR on (Q× TX)× ((Q×XX)× TX) by

{(〈q, v̂〉, 〈(q, σ), v〉) | q ∈ Q, σ ∈ XX , v ∈ TX , v̂ ∈ TX andv̂ = v ◦ σ}

The construction has been done precisely forR to be a bisimulation relation.
Note that the same construction can be done for timed automata havingε-transitions as well (in which case
they are taken as normal actions) because automatonB does not have properε-transitions. �

We illustrate the previous construction on the following example.

Example 10.Consider the automaton on the left of the figure below.

p q

ψ, b, y := 0

p q

ϕ, a

p q

ϕ, a

p q

ψ, b, x := 0

Ax,y = A Ax,x

[y ∼ c← x ∼ c]

Ay,y

[x ∼ c← y ∼ c]

Ay,x

[x ∼ c← y ∼ c]
[y ∼ c← x ∼ c]

A

ψ, b

x := 0

ψ, b

x := 0

ϕ, a

ϕ, ap q

ψ, b, y := 0

ϕ, a, x := y

8 The notationϕ[x← σ(x)] is for the formulaϕ in which the variablex is replaced byσ(x).
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The construction described in the proof of the previous theorem applies toA and leads to the automaton
drawn in the figure above, on the right (which consists of fourcopies of the original automaton, one for
each application from the set{x, y} onto the set{x, y}). In the copyAh1,h2

ofA, the value ofx is stored in
the clockh1 whereas the value ofy is stored in the clockh2. A constraintx ∼ cmust thus to be replaced by
a constrainth1 ∼ c, as indicated on the figure. To illustrate the use of theι injection: in stateq of automaton
Ay,y, y has to be reset to zero, buty is the reference for clockx (σ(x) = y), we thus need to store the
new value ofy in a clock which plays no role, thus inx. In this case,ι(y) = x, and thusσ′(x) = y and
σ′(y) = x. That’s why the transition goes to statep of automatonAy,x. These two automata are strongly
bisimilar.

We now pursue the study of updatable timed automata with deterministic updates by looking at the case
wheresimple updates are of the formx := d.

Theorem 9. Let A ∈ Uta(C(X),Ucst(X)) (resp.A ∈ Utaε(C(X),Ucst(X))). There exists a timed au-
tomatonB ∈ Uta(C(X),U0(X)) (resp.B ∈ Utaε(C(X),U0(X))) such thatA ≡s B.

Proof. LetA be a timed automaton inUta(C(X),Ucst(X)). Recall that from lemma 6, we assume without
loss of generality that any update ofU is in fact of the form{x := d | x ∈ X andd ∈ Z}.

We construct an automatonB in Uta(C(X),U0(X)), strongly bisimilar toA. For every tupleα = (αx)x∈X

in ZX such that for every clockx, x := αx is a clock constraint appearing inA, we construct a copy of the
automatonA, that we denote byAα. Intuitively, in the automatonAα, the value of the clockx is what the
value should be inA decremented byαx (α corresponds to a shift of the clocks, comparing with what their
values should be in the initial automaton).

If q
ϕ,a,up
−−−−−→ q′ is a transition ofA, for everyα, there will be a transitionqα

ϕα,a,upα
−−−−−−−→ q′α′ where:

– ϕα = ϕ[x← x+ αx],
– upα = up[x := 0 instead ofx := c],
– α′

x = c if x := c is part of the updateup, α′
x = αx otherwise.

There are finitely many tuplesα = (αx)x∈X , we thus only build finitely many copies of the initial automa-
ton. We denote byB the union of all these automataAα. The automatonB is obviously inUta(C(X),U0(X)).

We define the relationR between the states of the transition system associated withA and the states of the
transition system associated withB as:

(q, v)R(qα, vα) ⇐⇒ v = vα + α

The relationR is trivially a bisimulation relation, which concludes the proof.

Like above, automatonB has no properε-transition, hence the same construction also holds for automata
in Utaε(C(X),Ucst(X)). �

We now illustrate the construction of the proof on the following example.

Example 11.Let us consider the automatonA drawn below, on the left. The previous construction gives
the automaton on the right: here, we only need two copies of the automaton because the maximal constant
for x is 1 whereas the maximal constant fory is 0.
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p q

y > 0, a, x := 1

x− y < 2, c, y := 0

b,

x := 0

A

p(0,0) q(0,0)

A(1,0)

b,

x := 0

p(1,0) q(1,0)

b,

x := 0

y > 0, a, x := 0

y > 0,

a, x := 0

x− y < 1, c, y := 0

A(0,0)

x− y < 2, c, y := 0

If we consider now an updatable timed automaton which uses both updates of the formsx := y andx := d,
we can apply first the construction described in the proof of Theorem 8 and then the construction described
in the proof of Theorem 9 to get a bisimilar classical timed automaton. We thus get the following result.

Corollary 2. LetC ⊆ C(X) be a set of clock constraints, and let

U ⊆ Lu ({x := d | x ∈ X andd ∈ Q} ∪ {x := y | x, y ∈ X})

LetA ∈ Uta(C,U) (resp.A ∈ Utaε(C,U)). There exists a timed automatonB ∈ Uta(C(X),U0(X)) (resp.
B ∈ Utaε(C(X),U0(X))) such thatA ≡s B.

We now consider the whole set of deterministic udpates and wewill generalize the previous results. From
the decidability results of section 5, we know that for general updatable timed automata, deterministic
updates of the formx := y + c can not always be replaced by resets. We thus need to restrictourselves to
diagonal-free timed automata with particular classes of updates. Note that the proof of the next theorem is
much more involved than the proofs of the two previous theorems and that its results can not be considered
any more as"folfklore" .

Recall that the system (Sdf ) of linear inequations associated with a set of constraintsand a set of updates
has been defined at the end of section 5.2, page 19.

Theorem 10. LetC ⊆ Cdf (X) be a set of diagonal-free clock constraints and

U ⊆ Lu ({x := d | x ∈ X andd ∈ N} ∪ {x := y + d | x, y ∈ X andd ∈ Z})

a set of deterministic updates such that the system (Sdf ) of linear inequations associated withC andU
has at least a solution. LetA ∈ Uta(C,U) (resp.A ∈ Utaε(C,U)). There exists an automatonB ∈
Uta(Cdf (X),U0(X)) (resp.B ∈ Utaε(Cdf (X),U0(X))) such thatA ≡s B.

Proof. LetA be a timed automaton inUta(C,U). We build a timed automatonB in Uta(C(X),U ′) where
U ′ ⊆ Lu ({x := d | x ∈ X andd ∈ N} ∪ {x := y | x, y ∈ X}) which will be strongly bisimilar toA.
Applying Corollary 2 will give the proof.

We consider integer constants(maxx)x∈X , solutions of the system (Sdf ) (see page 19) for the automaton
A. For everyα = (αx)x∈X ∈ ZX such that for every clockx, αx ≤ maxx + 1, for every stateq of A,
we consider a copyqα of q. Intuitively, in the stateqα, the value of the clockx will be the value this clock
should have inq, minusαx (α can be seen as a shift of the clocks w.r.t. their values in the initial automaton).

If q
ϕ,a,up
−−−−−→ q′ is a transition ofA, we add a transitionqα

ϕα,a,upα
−−−−−−−→ q′α′ , for everyα with:
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– ϕα = ϕ[x← x+ αx],
– upα = up[x := y instead ofx := y + c],

– α′
x =

{
αy + c if x := y + c update ofup
0 if x := c update ofup

If the value ofα′
x computed in this way satisfies thatα′

x > maxx, then we updateα′
x to

maxx + 1.
We say thatα′ is obtained fromα in an elementary waythanks to the updateup.

The number of tuplesα = (αx)x∈X ∈ ZX such that for every clockx, αx ≤ maxx +1 is infinite. We did
thus construct, for every stateq, an infinite number of copies. However, we will prove that, from the initial
states indexed by(0, . . . , 0), only a finite number of such states are reachable.

It is of course sufficient to prove that the set of tuplesα such that a stateqα is reachable, is lower bounded.
Assume that it is not the case. There exists a sequence of tuples(α(i))i≥0 such thatα(0) = (0, . . . , 0), and
for everyi, α(i+1) is obtained fromα(i) in an elementary way thanks to an updateupi, and moreover, the
sequence(α(i)

x )i≥0 tends to−∞ (for a given clockx). By definition ofU , everyupi can be written in the
form: ∧

x∈X1

x := dx ∧
∧

x∈X2

cx<0

x := yx + cx ∧
∧

x∈X3

cx≥0

x := yx + cx

with X1,X2 andX3 disjoint sets. We thus set

up′i :=
∧

x∈X2

cx<0

x := yx + cx

and we define the sequence(β(i))i≥0 with:

{
β(0) = α(0)

β(i+1) is obtained in an elementary way fromβ(i) thanks toup′i

It is easy to verify that the sequence(β(i))i≥0 is decreasing, and non-stationary (for the natural order on

the tuples of integers) because(α
(i)
x )i≥0 tends to−∞ for some clockx.

Let z1 be a clock such that the sequence(β
(i)
z1

)i≥0 tends to−∞. There exists at least an update of the form

z1 := z2 + c1 belonging toU (thus withc1 < 0) such that the sequence(β
(i)
z2

)i≥0 also tends to−∞. In this
way, we can construct a sequence of clocks(zp)p≥1 such that:

– there exists an updatezp := zp+1 + cp in U (with cp < 0),

– for everyp ≥ 1, the sequence(β(i)
zp )i≥0 tends to−∞.

The set of clocks is finite, there exists thusp < q such thatzp = zq. However, the constants(maxx)x∈X

are solutions of the system (Sdf ), page 19 and this system contains in particular the inequations

maxzp
≤ maxzp+1

+ cp with cp < 0
...

maxzq−1
≤ maxzq

+ cq−1 with cq−1 < 0

In particular the constantmaxzp
= maxzq

has to satisfymaxzp
< maxzp

, which is not possible.

Thus we have proven that the set of statesqα which are reachable is finite. We denote byB the automaton
we just constructed. This automaton belongs toUta(C(X),U ′).
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We define the relationR as follows, between the states of the transition system associated withA, and the
states of the transition system associated withB:

(q, v)R(qα, vα) ⇐⇒

{
v andvα + α are equivalent for the region equivalenceR(maxx)x∈X

v(x) ≤ maxx =⇒ v(x) = vα(x) + αx for everyx ∈ X

We will prove thatR is a bisimulation relation.

Let us assume that(q, v)R(qα, vα) and that(q, v)
a
−−→ (q′, v′). It means that there exists a transition

q
ϕ,a,up
−−−−−→ q′ in A such thatv |= ϕ andv′ = up(v). In B, there is a transitionqα

ϕα,a,upα
−−−−−−−→ q′α′ . We set

v′α′ = upα(vα) and we will prove that(q′, v′)R(q′α′ , v′).

• if x is a clock such thatx := c belongs toup, thenx := c also belongs toupα.
Thus,v′α′(x) = c = v′(x) andα′

x = 0.
• if x is a clock such thatx := y + c belongs toup, thenx := y also belongs toupα,
• Assume thatv′(x) ∈ Ix with Ix ≤ maxx (i.e. thatIx =]d− 1; d[ or [d] with d ≤ maxx).

We want to show thatv′(x) = v′α′(x) + α′
x. To this aim, we compute

v′α′(x) + α′
x = vα(y) + α′

x becausex := y belongs toupα

We distinguish two cases:
1. If α′

x ≤ maxx, we then get that

v′α′(x) + α′
x = vα(y) + αy + c

However, we have that(q, v)R(qα, vα) andv(y) ≤ maxy (becausev′(x) = v(y)+c ≤ maxx

andmaxx ≤ maxy + c), thus

v′α′(x) + α′
x = v(y) + c = v′(x)

2. If α′
x > maxx, it means thatαy + c > maxx. However,

v′(x) = v(y) + c = vα(y) + αy + c > maxx

It is of course not possible because we did assume thatv′(x) ≤ maxx.
• Assume thatv′(x) > maxx. We distinguish two cases:

1. If α′
x > maxx, thenv′α′(x) + α′

x > maxx.
2. If α′

x ≤ maxx, thenv′α′(x) + α′
xvα(y) + αy + c. There are also two cases:

(i) if vα(y) + αy ≤ maxy, then

v′α′(x) + α′
x = v(y) + c = v′(x) > maxx

(ii) if vα(y) + αy > maxy, then asmaxx ≤ maxy +c, we get thatv′α′(x) + α′
x > maxx.

In all cases, we have seen thatv′α′(x) + α′
x > maxx, and that is precisely what we wanted.

• the change betweenup andupα keeps the relative order of the fractional parts.

We thus get that(q′, v′)R(q′α′ , v′α′). The reverse is very similar.

We did thus exhibit a bisimulation relation betweenA andB. �

Remark 8.Up to the (un)decidability results (cf section 4), we cannot extend the previous result to timed
automata that also use diagonal clock constraints, becausethis leads to an undecidable model. It is interest-
ing to understand why the previous proof cannot be extended and thus where the diagonal-free hypothesis
is fundamental. In order to have a finite number of copies of each state, we set the valuemaxx +1 to α′

x

whenever the computed value is greater thanmaxx +1. This change does not disturb the truth or the falsity
of diagonal-free clock constraints, but can change the truth or the falsity of diagonal clock constraints.

Example 12.In this case also, we consider a simple example. The two automata drawn on figure 2 are
strongly bisimilar. The one on the right results from the construction described above, taking as initial
automaton the one on the left. The maximal constants aremaxx = 0 andmaxy = 1.
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p q

y > 1, a, x := y + 1

b, y := 0

p(1,0) q(1,0)

y > 1, a, x := y

b, y := 0

p(0,0) q(0,0)

b, y := 0

y > 1, a, x := y

Fig. 2.Two strongly bisimilar automata

6.4 Expressiveness of Non-Deterministic Updates

We now study the general case of non-deterministic updates.From the example of section 6.2, it is false to
say that any updatable timed automaton with non-deterministic updates is strongly equivalent to a classical
timed automaton. We will thus concentrate our efforts on weak similarity. We will prove that any updatable
timed automaton with non-deterministic updates, from a decidable class, is weakly bisimilar to a timed
automaton withε-transitions. But, as it will appear, the constructions aremuch more technical than in the
case of deterministic updates. We first deal with diagonal-free automata.

Construction for diagonal-free clock constraints. We propose a normal form for diagonal-free updatable
timed automata. Let(maxx)x∈X be a family of integer constants. In what follows we only consider clock
constraintsx ∼ c with c ≤ maxx. As defined in section 5.2, we set:

Ix = {[c] | 0 ≤ c ≤ maxx} ∪ {]c; c+ 1[| 0 ≤ c < maxx} ∪ {]maxx;∞[}

A clock constraintϕ is said to betotal if ϕ is a conjunction
∧

x∈X(x ∈ Ix) where for each clockx, Ix is
an element ofIx. Any diagonal-free clock constraint bounded by the constants (maxx)x∈X is equivalent
to a disjunction of total clock constraints.

We also define
I ′x = {]c; c+ 1[| 0 ≤ c < maxx} ∪ {]maxx;∞[}

An updateupx is saidelementaryif it is of one of the following forms:

– x :∈ Ix with Ix ∈ Ix,
– x := y + c ∧ x :∈ I ′x with I ′x ∈ I

′
x andmaxx ≤ maxy + c,

–
(∧

y∈H x :< y + c ∧ x :∈ I ′x

)
with H ⊆ X, I ′x ∈ I

′
x and∀y ∈ H, maxx ≤ maxy + c,

–
(∧

y∈H x :> y + c ∧ x :∈ I ′x

)
with H ⊆ X, I ′x ∈ I

′
x and∀y ∈ H, maxx ≤ maxy + c.

An elementary updateupx is compatiblewith a total constraint
∧

x∈X(x ∈ Ix) if:

– Iy + c ⊆ I ′x wheneverupx is x := y + c ∧ x :∈ I ′x,
– for anyy ∈ H, Iy + c ⊆ I ′x wheneverupx is ((

∧
y∈H x :∼ y + c) ∧ x :∈ I ′x) andI ′x = Ix.

Definition 5. Let(maxx)x∈X be integer constants and letA be a timed automaton inUta(Cdf (X),U(X)).
We say thatA is in normal formfor the constants(maxx)x∈X whenever for every transitionq

ϕ,a,up
−−−−−→ q′

ofA, the following holds:
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– ϕ is a total clock constraint,
– up =

∧
x∈X upx where for every clockx, upx is an elementary update, compatible withϕ.

Applying classical rules of propositional calculus and splitting the transitions, we easily obtain the normal
form for diagonal-free updatable timed automata (recall that we restrict here our work to updates defined
by (♦df ), page 19):

Proposition 10. Let C be a set of diagonal-free clock constraints andU be a set of updates defined by
the grammar (♦df ). We assume that the system (Sdf ) has a solution,(maxx)x∈X . Any timed automaton of
Uta(C,U) is strongly bisimilar to a timed automaton ofUta(Cdf (X),U(X)) which is in normal form for
the constants(maxx)x∈X .

Before stating our main result about the expressiveness of diagonal-free updatable timed automata, let us
try to illustrate the difficulties and the techniques that wewill use on two toy examples.

Example 13.Consider the following automaton:

x < 2, a, x :< 1 x = 1, b

The timed language recognized by this automaton is{(a, t)(b, t′) | 0 ≤ t < 2 and0 < t′ − t < 1}.
The previous automaton can be weakly simulated by the following automaton, which only has deterministic
updates:

x < 2, a, zx := 0 zx < 1, ε, x := 1 x = 1, b

The non-deterministic update of the first automaton has beenreplaced by a silent action. The clockzx which
has been added represents the fractional part ofx and thus checks whether it does not become bigger than
1.

Example 14.Let us consider the following automaton:

y < 1, a

x :< y ∧ y := 0

x = 2, b

The timed language recognized by this automaton is{(a, t)(b, t′) | t < 1 andt′ > 2}.
A first (wrong) idea is to perform the transformation above:

y < 1, a

zx := 0 ∧ y := 0

zx < 1, ε

x := 1 ∧ zx := 0

x = 2, b

However the transformation is not correct. This automaton accepts for example the timed word(a, 0.5)(b, 1.8),
which is not recognized by the initial automaton.
To avoid this problem, we can add a new clock,wx,y which aims at keeping in mind that, whenx has been
updated, the value ofx was less than the value ofy. This leeds to the following automaton:
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y < 1, a

zx := 0 ∧ wx,y := zy ∧ y := 0

wx,y > 1 ∧ zx < 1, ε

x := 1 ∧ zx := 0

x = 2, b

When the second transition is taken, the value ofx is set to1 (this transition is chosen at a non-determinisc
date), and to ensure that the value ofy was greater thanx, we add the constraintwx,y > 1. The clockwx,y

thus stores the value ofy when an updatex :< y is done in the original automaton. Clocky can then be
reset safely, information on the old value ofx and thus on the differencex− y is stored inwx,y. It is easy
to verify that this automaton recognizes the same timed language as the initial automaton.

We will generalize the constructions of these two examples to prove the next theorem on the expressiveness
of updatable automata with non-deterministic updates and diagonal-free clock constraints.

Theorem 11. Let C be a set of diagonal-free clock constraints andU be a set of updates defined by the
grammar (♦df ). We assume in addition that the system (Sdf ) has a solution forC andU . LetA ∈ Uta(C,U)

(resp.A ∈ Utaε(C,U)). There exists an automatonB ∈ Utaε(Cdf (X),U0(X)) such thatB <w A and
A ≡ℓ B.

Proof. Thanks to lemma 6 and proposition 10, we assume that all constants appearing inA are integers
and thatA is in normal form for some constants(maxx)x∈X .
A clock x is saidfixed if the last update forx was either of the formx := c or (x := y + c ∧ x :∈ I ′x)

where the clocky was itself fixed. A clock which is not fixed is saidfloating. The terminology “floating”
comes from the fact that the value of a floating clock is not precisely known, we only know the interval of
the form]d; d+ 1[ to which it belongs.
The transformation algorithm constructs (a lot of) copies of the original automatonA, by adding suitable
clocks, transforming the transitions and adding silent actions in order to go from one copy to another.

Adding clocks.

For any clockx in X, we define a clockzx which intuitively represents the fractional part ofx.
For any pair of clocks(x, y), we also define two clocks,wx,y andw′

x,y, which will compare the fractional
parts ofx andy. LetX be the set of these2|X|2 additional clocks. We will explain their precise roles along
the construction.

Duplication of the original automaton.

Let us consider a subsetY of X, that corresponds intuitively to the floating clocks, and a partial order≺
defined onY , which represents the relative order of the fractional parts of the clocks inY .
Moreover, for any clocky of Y , we define an intervalIy, of the form]d; d + 1[ with 0 ≤ d < maxy. The
clocky will be supposed to be in the intervalIy.
Finally, we consider a subsetZ of X, whose role will be explained below.

For any tupleτ = ((Iy)y∈Y ,≺, Z), we construct a copyAτ of the automatonA. On each transition ofAτ ,
we add the clock constraint ∧

y∈Y

y ∈ Iy ∧
∧

x∈X

zx < 1

Some such constraints are trivially equivalent to “False”,in which case the corresponding transition can be
erased.
We denote byT the set of all the tuplesτ described above.

Fixed clocks.

When the fractional part of a fixed clock reaches the value1, we stay in the same copy of the automaton.
To ensure this, in every copyAτ with τ = ((Iy)y∈Y ,≺, Z), we add on each state and for every clock
x ∈ X \ Y , a loop labelled by(zx = 1, ε, zx := 0).
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Floating clocks.

We can fix some floating clocks withs a silent action. Of course, a clock can be fixed only by reaching
an integer value. Among the floating clocks, the first ones which will reach first the upper bound of their
interval are those maximal for the preorder. Formally, letAτ with τ = ((Iy)y∈Y ,≺, Z) and letM be the
set of maximal elements for≺. For any stateq of Aτ , we construct anε-transition leading to the copy ofq
in the automatonAτ ′ such thatτ ′ = ((Iy)y∈Y ′ ,≺′, Z ′) where:






Y ′ = Y \M

≺′=≺ ∩(Y ′ × Y ′)

Z ′ = Z \ {wx,y, w
′
x,y | x ∈M}

Thisε-transition is labelled by the clock constraint
∧

x∈M, wx,y∈Z

(wx,y ≥ 1) ∧
∧

x∈M, w′
x,y∈Z

(w′
x,y < 1) ∧

∧

y∈Y

(zy < 1)

and the update ∧

y∈M

y := sup(Iy)

wheresup(Iy) represents the upper bound ofIy, i.e.d+ 1 if Iy =]d; d+ 1[.
The existence of a clockwx,y (resp.w′

x,y) shows that an update of the formx :< y+c (resp.x :> y+c) has
been used previously. The clock constraintwx,y ≥ 1 (resp.w′

x,y < 1) ensures that we did really simulate
such an update.

Modification of the transitions.

We consider a copyAτ with τ = ((Iy)y∈Y ,≺, Z) and a transition(qτ , ϕ, a, up, q′τ ) of this copy. This
transition will be replaced by a transition(qτ , ϕ, a, ûp, q′bτ ) whereq′bτ is the state, corresponding toq′τ in an
other copyAbτ with τ̂(Îy)

y∈bY , ≺̂, Ẑ) which will be made precise below.

The componentŝY , (Îy)
y∈bY , ≺̂ and ûp will be built inductively by considering one after the otherthe

updates appearing inup.
The new updatêup will only be defined thanks to deterministic updates (of the formx := c or x := y+ c).
Initially, we setŶ = Y , Îy = Iy for everyy ∈ Y , ≺̂ =≺, ûp = ∅ andẐ = Z.

Before listing all the possible updates, we explain the roleof the setZ, which has not been precised yet.
Assume that the clockx has been updated thanks tox :< y + c wherey is a fixed clock. The clockx
becomes floating. We use the clockzx in order to store the fractional part ofx, we reset this clock to zero.
We also need to keep in mind the current value of the fractional part of y, stored until now “in” the clock
zy. As zx must stay less thanzy, zy mustreach1 beforezx does. Of course, if the clocky is not updated,
this can be checked using the clockzy, but if the clocky is also updated, or is updated beforezy reaches1,
the old value ofzy will be forgotten. We thus add the clockwx,y to the setZ and we setwx,y := zy. The
clockwx,y will keep in mind the old value ofzy, whatever the clocky becomes. The property that we now
need to check is thatwx,y ≥ 1. The role of the clocksw′

x,y is similar, but they are used for the updates of
the formx :> y + c, wherey is a fixed clock. The condition “zx reaches the value1 beforezy” is checked
thanks to the clock constraintw′

x,y < 1. Example 14 illustrates the use of these clocks.

As said before, we now list all the possible values for the updates:

• if upx is x := c, we just need to considerx as a fixed clock:

Ŷ ← Ŷ \ {x}, Ẑ ← Ẑ \ {wx,y, w
′
x,y | y ∈ X}, ûp← ûp ∧ x := c ∧ zx := 0

• if upx is x :∈ I ′x,
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1. if I ′x =]cx; +∞[, then

Ŷ ← Ŷ \ {x}, Ẑ ← Ẑ \ {wx,y, w
′
x,y | y ∈ X}, ûp← ûp ∧ x := cx + 1 ∧ zx := 0

2. if I ′x =]c; c+ 1[, then

Ŷ ← Ŷ ∪ {x}, Ẑ ← Ẑ \ {wx,y, w
′
x,y | y ∈ X}, ≺̂ is a total preorder compatible with

≺̂ on the set̂Y \ {x}, ûp← ûp ∧ zx := 0

– if upx is x := y + c ∧ x :∈ I ′x,

1. if y 6∈ Y ,

• Ŷ ← Ŷ \ {x},

• Ẑ ← Ẑ \ {wx,y, w
′
x,y | y ∈ X}

• ûp← ûp ∧ x := y + c ∧ zx := zy

2. if y ∈ Y ,

• if I ′x is bounded,

· Ŷ ← Ŷ ∪ {x},

· Ẑ ← Ẑ \ {wx,y, w
′
x,y | y ∈ X},

· x≺̂y andy≺̂x,

· Îx = I ′x,

· ûp← ûp ∧ zx := xy

• if I ′x is not bounded,i.e. I ′x =]cx; +∞[,

· Ŷ ← Ŷ \ {x},

· Ẑ ← Ẑ \ {wx,y, w
′
x,y | y ∈ X},

· ûp← ûp ∧ x := cx + 1 ∧ zx := zy

• if upx is
(∧

y∈H x :< y + c
)
∧ x :∈ I ′x, we setH1 = H ∩ Y andH2 = H \ Y and

• if I ′x is bounded,

· Ŷ = Ŷ ∪ {x},

· Ẑ = (Ẑ \ {wx,y, w
′
x,y | y ∈ X}) ∪ {wx,y | y ∈ H2},

· x≺̂y andŷ6≺x if y ∈ H1,

· ûp← ûp ∧ zx := 0 ∧
∧

y∈H2
wx,y := zy.

• if I ′x is ]cx; +∞[,

· Ŷ = Ŷ \ {x},

· Ẑ = (Ẑ \ {wx,y, w
′
x,y | y ∈ X}),

· ûp← ûp ∧ x := cx + 1 ∧ zx := 0.

• if upx is
(∧

y∈H x :> y + c
)
∧ x :∈ I ′x, we setH1 = H ∩ Y andH2 = H \ Y and

• if I ′x is bounded,

· Ŷ = Ŷ ∪ {x},

· Ẑ = (Ẑ \ {wx,y, w
′
x,y | y ∈ X}) ∪ {w

′
x,y | y ∈ H2},

· y≺̂x andx̂6≺y if y ∈ H1,
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· ûp← ûp ∧ zx := 0 ∧
∧

y∈H2
w′

x,y := zy.

• if I ′x is ]cx; +∞[,

· Ŷ = Ŷ \ {x},

· Ẑ = (Ẑ \ {wx,y, w
′
x,y | y ∈ X}),

· ûp← ûp ∧ x := cx + 1 ∧ zx := 0.

It remains to prove that the resulting automaton weakly simulates the initial automaton and that, in addition,
it recognizes the same timed language.

We now define a relationR, which will be a simulation relation. Roughly, a state of theoriginal automaton
will be in relation with all the copies of this state in the copies of the automaton. The set of states of the
timed transition system associated withA is Q × TX , whereas the set of states of the transition system
associated withB is:

{qτ | q ∈ Q andτ ∈ T} × TX∪{zx|x∈X}∪Z

We define the relation< by

< =






| ∀y ∈ Y, v(y) ∈ Iy and0 ≤ v′(zy) ≤ 1,|
| ∀y ∈ X \ Y, eitherv(y) = v′(y) or (v(y) > cy andv′(y) > cy),|
| y1 ≺ y2 =⇒ frac(v(y1)) ≤ frac(v(y2)),((qτ , v

′), (q, v)) |
| wx,y ∈ Z =⇒ frac(v(x)) < v′(wx,y)|
| andw′

x,y ∈ Z =⇒ frac(v(x)) > v′(w′
x,y).






It is easy but tiresome to prove that< is a simulation relation and that the automatonB recognizes the same
timed language as the initial automaton.

The automaton which has been constructed only has deterministic updates and diagonal-free clock con-
straints. We finally use Corollary 2 to conclude the proof of theorem 11. �

Example 15.Consider the timed automaton below:

p q

ψ, b, x := d

ϕ, a, x :> c

The transformation of the proof builds the automaton depicted on figure 3 (in this case, no clockwx,y or
w′

x,y is needed). This construction suffers from an important combinatorics explosion, we thus only draw
a small part of the resulting automaton, it should be sufficient for understanding the construction.

Let us describe this automaton. There is only one clockx. One copy for each interval]α;α + 1[ (with
c < α ≤ maxx) is needed. The transition going up on the right of the figure represents the fact that clock
x has reached the upper bound of interval]α;α+ 1[ where it was floating. This transition can be taken in a
non-deterministic way, it thus fixa posteriorithe value clockx had after the updatex :> c. Loops on the
upper automaton represent when the value forx through the updatex :> c is taken as an integer value or a
value greater than the maximal constant (in which case, the precise value is not important, we just need to
know that it is bigger thanmaxx, thus we set it arbitrarly tomaxx +1.
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p q

ψ, b, x := d

p q

Inv(zx < 1)

ϕ, a, zx := 0
zx < 1, ε,

x := α+ 1

zx < 1 ∧ ψ,

b, x := d

ϕ, a, x := α with α > cϕ, a, x := maxx + 1

Ax∈]α;α+1[

with c < α ≤ maxx

A

[x ∼ e← True/False]

Fig. 3.Removing the non-deterministic updates

Construction for general clock constraints. We consider now updatable timed automata with general
clock constraints. As in the previous section, we define a normal form for these automata. We consider
again the setsIx, I ′x, Jx,y defined in sections 5.2 and 5.3. We will say that a clock constraint

∧

x∈X

x ∈ Ix ∧
∧

x,y∈X

x− y ∈ Jx,y

is total whenever for every clockx, Ix ∈ Ix and for all clocksx, y ∈ X, Jx,y ∈ Jx,y. We will say that an
updateupx for the clockx is strictly elementarywhenever it is of one of the following forms:

– x := c with 0 ≤ c ≤ maxx,
– x :∈ I ′′x with I ′′x ∈ I

′′
x (I ′′x is the set{]c; c+ 1[| 0 ≤ c < maxx}),

– (x := y ∧ x :∈ I ′x) with I ′x ∈ I
′
x.

A strictly elementary updateupx is compatiblewith a total clock constraint
∧

x∈X

x ∈ Ix ∧
∧

x,y∈X

x− y ∈ Jx,y

if Iy ⊆ I ′x as soon asupx is x := y ∧ x :∈ I ′x.

Definition 6. Let ((maxx)x∈X , (maxx,y)x,y∈X) be a tuple of constants and letA be a timed automaton
in Uta(C(X),U(X)).A is said to be innormal formfor the constants((maxx)x∈X , (maxx,y)x,y∈X) if for
every transitionq

ϕ,a,up
−−−−−→ q′ ofA:
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– ϕ is a total clock constraint, and
– up =

∧
x∈X upx with for every clockx, upx is a strictly elementary update, compatible withϕ.

Applying the classical rules of the propositional calculusand splitting the transitions, we obtain the nor-
mal form for the timed automata with general clock constraints (recall that updates are restricted to the
definition♦gen, page 24).

Proposition 11. LetC be a set of general clock constraints and letU be a set of updates generated by the
grammar (♦gen). We assume that the system (Sgen) has a solution,((maxx)x∈X , (maxx,y)x,y∈X). Every
automaton inUta(C,U) is strongly bisimilar to an automaton inUta(C(X),U(X)) which is in normal
form for the constants((maxx)x∈X , (maxx,y)x,y∈X).

When we are interested in decidable subclasses of timed automata with general clock constraints, we must
restrict the set of updates which we consider. As will be established in the following theorem, the decidable
timed automata can be weakly simulated by classical timed automata with silent actions.

Theorem 12. LetC be a set of general clock constraints andU be a set of updates generated by the gram-
mar (♦gen). LetA be an automaton inUta(C,U). There exists an automatonB in Utaε(C(X),U0(X))

such thatB <w A andA ≡ℓ B.

The proof is similar to the one of theorem 11, and is even simpler since we do not have updates of the form
x :∼ y + c (with ∼ ∈ {<,≤,≥, >}).

6.5 Summary of the Expressiveness Results

In this section, we proved the expressiveness results whichare summarized in Table 3 (TA represents
the classUta(C(X),U0(X)) whereas TAε represents the classUtaε(C(X),U0(X)). The sign>ℓ means
“strictly more expressive” (from a language point of view).

U0(X) ∪ ... Diagonal-free constraints General constraints
1 x := c, x := y ≡s TA
2 x := x+ 1 ≡s TA
3 x := y + c Turing
4 x := x− 1 Turing

5 x :< c

TAε

>ℓ TA, TAε

6 x :> c

Turing
7 x :∼ y + c

8 y + c <: x :< y + d

9 y + c <: x :< z + d Turing

with ∼ ∈ {≤, <,>,≥} andc, d ∈ Q+

Table 3.Expressiveness results

The updatable timed automata model is thus not much more expressive than classical timed automata. The
transformation of a (decidable) updatable timed automatoninto a classical timed automaton with silent
actions suffers from a big combinatorics blow-up, thus updates appear to provide asynthetic way to rep-
resent timed behaviours. We do not know whether some simplertransformation exists, but the preliminary
examples 13, 14 and 15 let us think that it is rather improbable that it exists.
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7 Conclusion

In this paper, we studied a natural extension of Alur and Dill’s timed automata, based on the possibility to
update clocks in a more elaborate way than simply reset them to zero. Our results concern both decidability
results (summarized in table 2, page 25) and expressivenessproperties (summarized in table 3, page 43).

Our work lets open some mostly theoretical questions about updatable timed automata. For example, one
could be interested in the following questions:

– Is it possible to transform an updatable timed automaton into an equivalent traditional timed automaton
in a simpler way than the one presented in section 6?

– Is it sometimes unavoidable to useε-transitions when transforming updatable timed automata into
equivalent timed automata? If so, when can we do so?

However, from our point of view, the main interest of this work is to provide a sound theoretical framework
for the use of updatable timed automata as a model in real casestudies (if that was necessary, a recent paper
[Bou03] has recalled how much these theoretical frameworkswere necessary to tools). Indeed, updatable
timed automata allow to represent in a concise way systems which can not be modelled in a natural way
by timed automata. We also proved that analyzing these models can be done in a complexity not higher
than the one of classical timed automata. Subclasses of updatable timed automata have been implemented
in the tool UPPAAL. Their implementation uses a technique inspired by our Diophantine inequations sys-
tems [BBFL03].

Acknowledgements:We would like to thank Béatrice Bérard for her careful reading of the paper and her
comments.
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