N

HAL

open science

Updatable Timed Automata

Patricia Bouyer, Catherine Dufourd, Emmanuel Fleury, Antoine Petit

» To cite this version:

Patricia Bouyer, Catherine Dufourd, Emmanuel Fleury, Antoine Petit. Updatable Timed Automata.
Theoretical Computer Science, 2004, 321 (2-3), pp.291-345. 10.1016/j.t¢s.2004.04.003 . hal-00350196

HAL Id: hal-00350196
https://hal.science/hal-00350196
Submitted on 6 Jan 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00350196
https://hal.archives-ouvertes.fr

Updatable Timed Automata*

Patricia Bouye¥, Catherine Dufourtf Emmanuel Fleur; and Antoine Petit

1 LSV, CNRS UMR 8643 & ENS de Cachan,
61, Av. du Président Wilson,
94235 Cachan Cedex, France
Email:{ bouyer, petit} @sv. ens- cachan. fr
2 EDF - R&D — Dépt. OSIRIS — 1, Av. du Général de Gaulle
92141 Clamart Cedex, France
Email:cat heri ne. duf our d@df . fr
3 BRICS™, Aalborg University
Fredrik Bajers Vej 7
9220 Aalborg @, Denmark
Email:f | eury@s. auc. dk

Abstract. We investigate extensions of Alur and Dill's timed automata, based on thépibggo
update the clocks in a more elaborate way than simply reset them to zercal\Weese automata
updatable timed automatahey form an undecidable class of models, in the sense that emptiness
checking is not decidable. However, using an extension of the regaphgronstruction, we exhibit
interesting decidable subclasses. In a surprising way, decidability dementhe nature of the clock
constraints which are used, diagonal-free or not, whereas thegeaiotssplay identical roles in timed
automata. We thus describe in a quite precise way the thin frontier betweigialole and undecidable
classes of updatable timed automata.

We also study the expressive power of updatable timed automata. Itdutnisat any updatable au-
tomaton belonging to some decidable subclass can be effectively tnaesfinto an equivalent timed
automaton without updates but with silent transitions. The transformatitersfrom an enormous
combinatorics blow-up which seems unavoidable. Therefore, uddatated automata appear to be a
concise model for representing and analyzing large classes of tirsezhsy.

1 Introduction

Since their introduction by Alur and Dill [AD90,AD94], tintkautomata are one of the most-studied and
most-established models for real-time systems. Numerarksahave been devoted to the “theoretical”
comprehension of timed automata (among them, see [AZA), [AHV93], [AFH94], [ACH94], [Wil94],
[HKWT95]). However the major property of timed automata iskpably that emptiness checking is a
decidable problem for this model [AD94]. Based on this niceodretical result, several model-checkers
have been developed (for instance CM[CL98], HYTECH? [HHWT95,HHWT97], KRONOS® [Yov97]
and UPPAALY [LPY97,BLL198]) and a lot of case studies have been treated (see the wels pathe
tools).

* This work has been partly supported by the french RNTL project ‘es” and french-indian CEPIPRA project
n°2102 — 1.
** Basic Research in Computer Scienbet(p: / / ww. bri cs. dk), funded by the Danish National Research Foun-
dation.
Thttp://ww. | sv. ens-cachan. fr/~fl/cncweb. ht m
Zhttp://ww cad. eecs. ber kel ey. edu/ ~t ah/ HyTech/
Shttp://ww verimag. i nmag. fr/ TEMPORI SE/ kr onos/
“http:// ww. uppaal . cont

A lot of work has naturally been devoted to extensions of raatomata, with much interest for classes
whose emptiness problem remains decidable. There are two (m@n exclusive) reasons for extending
existing models. First, they can be used to model stricttyda classes of systems and therefore treat
more case studies. They also lead to more compact représastaf some systems. Conciseness makes
modelling easier, in the same way advanced programmingiieges make the writing of programs easier
than with assembly languages.

Considering timed automata, extensions can be obtaineatious ways. Recall that in a timed automaton,
atransition is guarded by a constraint over a set of varsabkled clocks. This constraint has to be satisfied
in order to enable the transition. Right after the transitgotaken, a subset of clocks is reset to zero. This set
of clocks is specified in the label of the transition. The ¢aints used in Alur and Dill’s original model
allow to compare (the value of) a clock, or the differencensein two clocks, with a rational constant.
Note that comparing the sum of two clocks with a constantdéadn undecidable class of automata (see
[AD94] but also [Duf97,BD00] where more precise results be humber of clocks are given). Periodic
clock constraints, as defined in [CGO0Q], allow to exprespertes like "the value of a clock is even" or
“"the value of a clock is of the form.5 + 3n wheren is some integer. The corresponding class of automata
is strictly more powerful than Alur and Dill’s timed autonaaf silent transitions (oe-transitions) are not
allowed but coincides with the original model otherwise t&that, contrary to the untimed setting, silent
transitions strictly increase the expressive power of tloeleh (see [BGP96,DGP97] or [BDGP98] for a
survey). Several other exotic extensions have been prd@seng which we can mention [DZ98] where
subsets of clocks can be “freezed”.

The aim of the present paper is to investigate an other waytémd the model, with new operations on the
clocks. As we recalled just above, in Alur and Dill's modehem a transition is taken, a specified subset
of clocks is reset to zero. Our goal is to study more compladatgs on clocks, with a particular attention
to the decidability of the emptiness problem and to the esgive power of the corresponding classes of
automata. We will first study "deterministic" updates whaidock can be reset to a given constant, which
does not have to be zero anymore, or to the value of anothek,obw more generally to the sum of a
constant and of the value of an other clock. We will then berggted in "non-deterministic" updates,
where a clock can be reset to an arbitrary value greater thiaue $ixed constant. Note that this type of
updates appear sometimes naturally, for example in modééezommunication protocols (see e.g. the
study of the ABR protocol proposed in [BF99,BFKMO03]). In thequel, we will call the corresponding
automataypdatable timed automata

It is easy to verify that such updates, even if we only userdeteéstic ones, lead to an undecidable class
of automata. Indeed, it is easy to simulate a two-counterhinac(or Minsky machine) with an updat-
able timed automaton. But it turns out that very interessinclasses of updatable timed automata can be
proven decidable. A surprising result is that decidabdiften depends on the clock constraints — diagonal-
free (.e.where the only allowed comparisons are between a clock andstant) or not (where differences
of two clocks can also be compared with constants). Thistppakes an important difference with “clas-
sical” (i.e. Alur and Dill's) timed automata for which it is well-known @i these two kinds of constraints
have the same expressive power. We show for instance thatagpdf the forme := z + 1 lead to an
undecidable class of timed automata if arbitrary clock tamsts are allowed but to a decidable class if
only diagonal-free clock constraints are allowed. Noté thaomata with updates of the form:= = — 1
always form an undecidable class whatever constraintgpdel-free or general, are used. We will show
that decidability is often not far from undecidability ane wvill describe in a quite thin way the frontier
between the two worlds.

Decidability results are obtained through a generalinatibthe region graph proposed by Alur and Dill.
Given a timed automaton, and using the region graph, a fiotten@aton can be constructed, which recog-
nizes exactly the untiming of the language recognized bytiggnal timed automaton. Note that the region

graph depends on the class of constraints, diagonal-freetpand on updates. The main difficulty is then
to prove that a given set of updates is "compatible" (in aesaevisich will be of course precisely defined
in the paper) with the region graph. This compatibility ha&é proven for all updates, not only for resets
as was the case in the original model, but also for detertigraad non-deterministic updates as described
previously. We will finally see that the complexity of thisaision procedure remainssPACEcomplete.

In this paper, we also study the expressive power of updatiinled automata. We show that they are
not more powerful than classical timed automata in the sthvador any updatable timed automaton, that
belongs to some decidable subclass, a classical timed atdarpotentially witte-transitions) recognizing
the same language — and even most often bisimilar — can ltiedly constructed. However in most cases,
an exponential blow-up seems unavoidable and thus a tramafion into a classical timed automaton does
not lead to an efficient decision procedure. This exponkoitav-up suggests that we can have much more
concise models if using updatable timed automata than ifmewse classical timed automata.

The paper is organized as follows. In section 2, we presesit lokefinitions of timed words, clock con-
straints and updates. Updatable timed automata are defirgetfion 3 where the emptiness problem is
briefly introduced. Section 4 is devoted to our undecidghbiksults. We first reduce an undecidable prob-
lem on two counter machines to the emptiness problem for elassof updatable timed automata. We
then deduce that for several other subclasses of updatai@d automata, emptiness is also undecidable.
In section 5, we first propose a generalization of the regigaraaton principle first described by Alur and
Dill. We then use this extension to exhibit large subclasgegpdatable timed automata for which empti-
ness is decidable, when only diagonal-free clock condtaire used (section 5.2) and then when arbitrary
clock constraints (section 5.3) are used. The questioneoéxipressive power of updatable timed automata
is addressed in section 6. A short conclusion summarizesesutts and propose some open questions or
developments.

This journal paper is the full version corresponding to tlie tonference papers [BDFP00a,BDFPOO0b].

2 Preliminaries

2.1 Timed Words and Clocks

If Z is any set, letZ* (resp.Z%) be the set ofinite (resp.infinite) sequences of elements i We note
7> = Z* U Z*. We consider as time domaih the setQ* of non-negative rationals or the sRt" of
non-negative reals and' as a finite set ofctions A time sequencever T is a finite (or infinite) non
decreasing sequenee= (t;)1<; € T>. A timed wordw = (a;,%;)1<; is an element of X' x T)>°, also
written as a paiw = (o, 7), wheres = (a;)1<; Is aword inX> andr = (t;)1<; a time sequence >
of same length.

We consider a finite seX of variables, calle¢tlocks A clock valuationover X is a mappingy : X — T
that assigns to each clock a time value. The set of all clottkati@ns overX is denotedl'X. Lett € T,
the valuatiorv + ¢ is defined by(v + ¢)(z) = v(z) + ¢, Vo € X.

2.2 Clock Constraints

Given a set of clocks(, we introduce two sets of clock constraints overThe most general one, denoted
by C(X), allows to compare a clock or the difference of two clockswetconstant. It is formally defined
by the following grammar:

p u= ch‘x—ywc‘g@/\(p|<p\/<p
Whel’ex, yGX, CEQ’ N€{<7S7:77Aa27>}

We also consider the proper subsetl@gonal-freeclock constraints where the comparison between two
clocks is not any more allowed. This set is denoted’lpy X) and is defined by the grammar:

p u= x| A | Ve,
wherez € X, c€ Qand ~ € {<, <, =,#,2,>}

Note that this restricted set of constraints is called diedifree because constraints of the form y ~ ¢
are calleddiagonalclock constraints.

Clock constraints are interpreted over clock valuatiortge $atisfaction relation, denoted as = ¢” if
valuationv satisfies the clock constraigt is defined in a natural way for both sets of constraints:

vExz~c if v(z) ~c
vEx—y~cifu(z)—ov(y) ~c
vE @i Apy if v andu E o
vEp1 Vs ifolEporvlEps

2.3 Updates

Clock constraints allow to test the values of the clocks.roteoto change these values, we use the notion
of updateswhich are functions fronT* to (T~)°. An update hence associates with each valuation a set
of valuations.

In this work, we restrict to a small class of updates, thealtedlocal updatesconstructed in the following
way. We first define aimple updat@ver a clock: as one of the two following functions:

up = z:i~c | zi~y+d
wherec,d € Q, y € X and ~ € {<,<,=,#,>,>}

Let v be a valuation andp be a simple update over A valuationv’ is in up(v) if v'(y) = v(y) for any
clocky # z and ifv’(z) satisfies:

V(z) ~eAv'(2) >0 if up==z:~c
v(z)~ou(y) +dAV(2) >0 if up=z:~y+d

A local updateover a set of clocks(is a collectionup = (up;)1<i<) Of simple updates, where eagp,;
is a simple update over some clogk € X (note that it may happen that = x; for somei # j). Let
v, v € T™ be two clock valuations. The valuatienis in up(v) if for every i, the setup;(v) contains the
valuationv” defined by
v"(zi) = v’ (i)
{v”(y) =v(y) foranyy#a;

The terminology local’ comes from the fact that’(x) only depends on: and not on the other values
' (y).

Example 1.Let us consider the local update = (z :> y,z :< 7). Letwv, v’ be two valuations. It holds
thatv' € up(v) if v/(z) > v(y) Av'(z) < 7.

Note thatup(v) may be empty. For instance, the local update< 1,z :> 1) leads to an empty set.

For any set of clocks(, we denote by/(X) the set of local updates ovéf. In this paper, we will simply
call updates these local updates. The following subset& &f) will play an important role in the rest of
the paper.

®P(T¥) denotes the powerset Bf* .

- Up(X) is the set of reset updates.r@set updates a local update:p such that each simple update
definingup is of the formz := 0.
- U(X) is the set of “constant” updates, that is the set of updagesuch that each simple update
definingup is of the formz := ¢ with ¢ € Q.
- Ugel(X) is the set of deterministic updates. An updagas saiddeterministidf for any clock valuation
v, there exists at most one valuatiorsuch that’ € up(v). Itis immediate to check that a local update
up = (up;)1<i<k IS deterministic if all simple updatesy; are of one of the following form:
1. z:=cwithz € X andc e Q
2. x:=ywithz,ye X
3. z:=y+cwithz,y € X andc € Q\ {0}

3 Updatable Timed Automata

We now define the central notion of updatable timed autonragawe explain in details below, these
automata extend the classical family of Alur and Dill’s tidneutomata [AD90,AD94].

3.1 The Model
An updatable timed automataverT is a tupled = (¥, X, Q, T, I, F, B), where:

— Y is afinite alphabet of actions,

— X is afinite set of clocks

— @ is afinite set of states

—TCQx[C(X)x (Xu{e}) xU(X)] x Q is afinite set of transitions
— I C Q is the subset of initial states

— F C Qs the subset of final states

— B C Q is the subset of Biichi-repeated states.

The special action is calledsilent actionand a transition irf) x [C(X) x {e} xU(X)] x Q is calledsilent
transitionor e-transition

If C C C(X) is a subset of clock constraints alldC /(X) a subset of updates, the clddta. (C,U)
denotes the set of all updatable timed automata in whiclsitians only use clock constraints ¢hand
updates iri/. The subclass of automata which do not use silent transit®simply writtenUta(C,).

Timed automata, as studied in details by Alur and Dill [AD®D94], thus correspond to the classes
Uta. (Car (X),Up(X)) and Uta(Cyr (X),Up(X)) (WhereCyr(X) andly(X) are respectively the set of
diagonal-free clock constraints and reset updates as defirsection 2).

As for timed automata, a behavior in an updatable timed aatomis obtained through the notion of paths
and runs. Let us fix for the rest of this part an updatable tism&®maton4. A pathin A is a finite or
infinite sequence of consecutive transitions:

P = qdo gL q1 P2.02,Ub2 qo ..., Where(q,;_l, Vi, i, UP;, (h) S T'7 Vi >0

The path is said to bacceptingif it starts in an initial stateq, € I) andeitherit is finite and it ends in a
final stateor it is infinite and passes infinitely often through a Blchigafed state.

A run through the pattP from the clock valuatiom,, with v (z) = 0 for any clockz, is a sequence of the
form:

<qulU0> j—ll’ <Q1,’01> (Z—? <CI2,’02> s

wherer = (¢;);>1 IS a time sequence arfd;);>(are clock valuations such that:

{Uil + (t — tim1) =

v; € up; (Vi—1 + (8 —ti—1))

Note that any setp;(v;—1 + (t; — t;—1)) of a run has to be non empty. In the following, to make the
notations more compact , we will note such a run

$1,a1,UP1 $2,a2,UpP2

<QO7UO> <Q1,U1> <QQ,U2>...

2

The label of such a run is the timed woud = (a4,t1)(az,t2) ... If the path P is accepting, then this
timed word is said to be accepted ldy The set of all timed words accepted Hdyover the time domaiff
is denoted by.(A, T), or simply L(A).

Example 2.Consider the following updatable timed automaton.

r>1,a, x:<2ANy:=x+3 y>55b1y:=0

r—y<2d, x:<y r=4,¢c,y:>0

A possible (finite) accepting run in this automaton is théofeing:

(,(0,0)) === (¢, (0.2,4.3)) —— (r,(1,0)) — {q,(4,3.1)) —=— {p,(7.2,8.6))

Let us explain this run:

— the transition(p, (0,0)) —— (g, (0.2,4.3)) is possible because after having waitesl units of time,
the value of bothr andy |s 1.3, thus after the update :< 2 A y := x + 3, the valuation(0.2, 4.3)
(4.3 =1.3 + 3) is possible

— the transition(q, (0.2, 4.3)) % (r,(1,0)) is possible because after having waitetl — 1.3 = 0.8
units of time, the value of is 1 and the value of; is 0.8, thus after resetting to 0, we get that the
valuation(1,0) can be reached

— etc...

Remark 1.In [AD94], Alur and Dill claimed that for any timed automatém Uta. (C(X), Uy (X)) (resp.
Uta(C(X),Uy(X))), there exists a timed automatontitta. (Cqs (X), Uy (X)) (resp.Uta(Cyr (X)), Uo(X)))
which accepts the same language; the interested readdingil full proof of this easy fact in [BDGP98].

3.2 Aim of The Paper

The following deep result is the core of the theory of timetbanata together with its use for modeling real-
time systems. It has been implemented in several tools IME (LL98], KRONOS[DOTY96] or UPPAAL
[LPY97]. These tools have been intensively used on numerasss studies [DOY94,JLS96,HSLL97,BBP02].

Theorem 1. [AD90,AD94] The clasdJta. (Cqr (X),Us(X)) is decidable.

Remind that a class of automata is sdatidableif there exists an algorithm which, taking as an input an
arbitrary automaton of the class, outputs “yes” or “no”, eleging on whether the language recognized by
the automaton is empty or not.

Our goal in this paper is twofold. First, we will study if andva the theorem above can be extended to the
classUta. (C(X),U(X)) and to interesting subclasses. We will then compare theesgjwe power of these
subclasses to the expressive power of automata @ean(Cqr (X)), Uy (X)) andUta(Car (X)), Up (X)).

As it will turn out, it is necessary to distinguish the casdweve only diagonal-free clock constraints are
used and where arbitrary clock constraints are authorRedall that on the contrary, any Alur and Dill’s
timed automaton using arbitrary clock constraints can &esfiormed into an other Alur and Dill’s timed
automaton using only diagonal-free clock constraints Remark 1).

4 Undecidability Results

In this section, we first exhibit undecidable classes of tgdula timed automata.

Let us first recall briefly that a two counter machine (knowmstimes also as a Minsky machine) is a finite
set of labeled instructions over two countersandc,. There are two types of instructions over counters:

- anincrementation instructioof counterz € {c;, ¢ }:
p: x:=x+1; goto ¢ (wherep andq are instruction labejs
- adecrementation (or zero-testing) instructiohcounterz € {cy, co}:

thenxz:=x —1; goto ¢

(wherep, ¢ andr are instruction labels
else gotor

p:if >0 {

The machine starts at an instruction labeledspywith ¢; = ¢2 = 0 and stops at a special instruction
labeled by FALT. Thehalting problemnfor a two counter machine consists in deciding whether thehina
reaches the instructionAdT.

The following result will be the basis of all our undecidatyiresults on updatable timed automata.
Theorem 2. [Min67] The halting problem for two counter machines is ucidable.

Instructions of a two counter machine can easily be simdlbjetransitions of updatable timed automata.
States of the automaton are the labels of the instructiotiseofivo counter machine. The transformation
can be done in the following way (the unique actioaf the alphabet’ is not represented):

z=0,z:=ax+1
— Incrementation of counter z: @ ’ ~@

z=0ANx>1l,z:=xz—1

O,
z=0ANxz=0 e

where the new clock ensures that no time can elapse (there is no time prograsspssn). Such a clock
will be used in all constructions presented in this sectMare involved constructions could also be done
under the time progress assumption.

— Decrementation of counterz: @

Thus, given a two counter machide!, an updatable timed automatety, € Uta(Cqr(X),U(X)) satis-
fying:
Mhalts < L(Apm) #92

can easily be constructed. We thus obtain:

Proposition 1. Let X be a set of clocks containing at least 3 clocks. Then, thes&lés(Cqr (X), U(X))
of updatable timed automata is undecidable.

Since any class containing an undecidable subclass isudlyiiself undecidable, we getimmediately the
following corollary:

Corollary 1. Let X be a set of clocks containing at least 3 clocks. Then, thesefsta(C(X),U (X)),
Uta.(Cqr(X),U(X)) andUta.(C(X), U (X)) are undecidable.

The previous simulations use updates of both types x + 1 andz := x — 1. We will show that if resets
are used, one such type of update is sufficient to build a tmutaimaton4 ., as above from a two counter
machineM, and thus obtain undecidability results.

Let us first consider updates of the type= = — 1, then incrementation of a counter can be simulated as
follows:

Incrementation of counter x:

Z;:()@ z=1,2:=0
N

We claim that a run on this path increases the value of ciookone time unit and keeps unchanged the
value of clocky. Indeed, in such a run, the tuple of clock values are of thmftwith the orderz, y, =
from left to right), («, 3, 0) when entering state, (o + 1, 5+ 1, 0) when entering stateand(« + 1, 3,0)
when entering state In the following, we will represent this by the simple figurelow:

— =1 2:=0
Z: O@ z z

xT «
Y B
z <0>

The simulation of the decrementation of a counter is idahas the one previously seen. We present it in
a quite different and schematic way as follows:

Decrementation of counterz:

T «a
z 0

If M is a two counter machine, we can thus construct, as befoiraead tautomatomd ., with only resets
to zero and decrementations of clocks and such that

Mhalts < L(Am) #92

We have thus proven the following result:

Proposition 2. Let X be a set of clocks containing at least 3 clocks.idie a set of updates containing
bothify(X) and{z := x — 1 | = € X}. Then the clas§/ta(Cq4 (X),U) is undecidable.

Remark 2.Note that the previous result can be strengthened becatlsdonstruction all reset operations
are performed when the clock we want to reset is 0 or 1, theyhuanbe replaced by decrementations.

Up to now, all the timed automata constructed for undecldglproofs only have diagonal-free clock
constraintsi(e. constraints irC4 (X)). In the remainder of this section, some of the construstisa will
make for proving some undecidability results will also usgdnal clock constraints (not &y (X) but in
C(X)), and as a byproduct of the results in section 5, it will appleat in these cases, the classes obtained
by replacingC(X) by C4 (X) are indeed decidable.

From the constructions above, we can notice that it is no mecessary to simulate a whole two counter
machine in order to prove undecidability results, but tHagsets are allowed, it is sufficient to be able to
simulate executions of the form:

{O z=0,z:=0x—-1 ‘Oj)

We first claim that such an execution can be simulated usithg updates from the séf,(X) U {x :=
x+ 1|2 € X}. Indeed, consider the (part of) timed automaton below:

wi=w-+1 r:i=x+1

zzO,w:zOQx—w:l,x:zOQx:wAzzo
® O () “(®)

The sequence of clock valuations for a run along this pattbeagescribed by:

oo 0)) ()

Such a run thus simulates an execution through a transitpn (
Proposition 3. Let X be a set of clocks containing at least 4 clocks. idie a set of updates containing
bothify(X) and{z := « + 1 | x € X}. Then the clas$/ta(C(X),U) is undecidable.

g vwe 8
> o@ R
cowR
A O@R

The next undecidability results are obtained thanks to senjlar techniques.
Proposition 4. Let X be a set of clocks containing at least 4 clocks. idie a set of updates containing
bothi/y (X) and either

—{z:>0]zeX}or
—{x:>y|z,yecX}or
—{r<y|z,ye X}

Then the clas#/ta(C(X),U) is undecidable.

Proof. As before, we simulate the execution through a transitiQruging parts of timed automata. The
three automata below correspond respectively to the tlatseo§ updates of the proposition:

O z=0, w:>0

r—w=1z:>0 — —
) N c=wAz=0
N O
K a—1
0 0
a—1 a—1

O zzO,w:>zﬂ x—wzl,x:>zﬂ x:w/\z:()o
/ /

a—1
B
0

a—1

O

g v 8§
—

g vwe 8
S
/-~
nowR
N—

Hence, we get the undecidability results announced in thpqsition. O

From the above results we can prove some more undecidatatyts. We summarize all the results in
Table 1.

Up(X) U ... Diagonal-free constraints General constraints
1 ri=cr =y ?
2 r:=x+1 ?
3 rz:=y+c Undecidable
4 ri=x—1 Undecidable
5 z:<c ?
6 T:>c ”
! Tyt Undecidable
8 ly+ec<iz:<y+d
9 lyte<ixz:<z+d Undecidable

with ~ € {<,<,>,>}andc, d € Q*
Table 1. Undecidability results

Lines 2 and 4 correspond exactly to propositions 3 and 2 otisply. Line 3 is just an extension of Line 2.
The second column of lines 6, 7, 8 and 9 are direct conseqsédrara proposition 4. The remaining case
is the one where we allow diagonal-free clock constraintsgdates of the forny + ¢ <: x :< z + d,

as described on line 9. The corresponding model which alswsin addition diagonal clock constraints
is undecidable (see above), we just need to be able to repilagenal clock constraints by updates of the
formy 4 ¢ <: x :< z + d. Assume there is a clock constraint- y < ¢, its truth or falsity is equivalent to
the existence of a value taken in the real intervadk; y + ¢[. Adding a new clock, it becomes equivalent
to having an update <: z : < y + c.

The next section is devoted to the study of classes markdd“®itand we will see that the emptiness
problem is in fact decidable for these remaining classes.

10

5 Decidability Results

In this section, we extend the decidability result of Theore to other subclasses of updatable timed
automata. Recall that the principle of this deep resuleseatin the construction, for any timed automaton
A, of a finite untimed automatoBi accepting exactly the languageviME (L(.A)) where

UNTIME(L(A)) = {0 € X*° | there exists a time sequenes.t.(o,7) € L(A)}

The emptiness of.(A) is obviously equivalent to the emptiness of tIME (L(.A)), so the result follows
from the decidability of the emptiness checking problemuiotimed finite automata (see e.g. [HU79]).

We will generalize the construction of Theorem 1. Let us fitstine the notion of regions and region
graphs.

5.1 Regions and Region Automaton

Let X be a finite set of clocks. We consider a finite partitionfdgf T . For each valuation € TX, the
unique element oR that contains is denoted byv] . We define the successors®f Succ(R) C R, in
the following natural way:

R eSucc(R)if e R, FHteTstv+tlg =R
We say that such a finite partition issat of regionsvhenever the following condition holds:
R' €Succ(R) < WweR, HeT stv+itlg =R (%%)

This natural condition assesses that the equivalenceomldéfined by theR partitioning is stable with
time elapsing. Roughly, this means that two equivalentat&ns stay equivalent while time is elapsing.
Let us note that this condition is not satisfied by any finitipan of T as illustrated by the following
counter-example.

Example 3.Let us consider the partition @? drawn on the figure
beside. Conditionx) is not satisfied by the gray region. Indeed,
from valuation(0, 5; 1, 8), when time elapses it is possible to reach
the valuation(0, 7; 2) and thus the region defined by the constraints
0 < x < 1 Ay = 2. But this region can not be reached from
valuation(0, 5; 1, 1).

0 1 2

LetUd C U(X) be afinite set of updates. Each updapes ¢/ induces naturally a functiomp : R — P(R)
which maps any regioR onto the se{ R’ € R | up(R)NR' # @}. The set of region® is saidcompatible
with ¢/ if whenever a valuation’ € R’ is reachable from a valuatianc R by someup thenR’ is reachable
from anyv € R by the samé:p. Formally, we require:

R e up(R) = Vv € R, 3’ € R’ s.t.v' € up(v) (% * %)

Note that this condition has an interpretation similar te tine done for conditionk{). Of course these
conditions are related to some kind of bisimulation propeste the remark below.

Remark 3.If the transition relationg—;,) ., on TX are defined by
vy v = v € up(v)

and the relatiopx by
vpr v = [vlr = []r

then the condition« * x) assesses thak is a bisimulation with respect to the relatiofts ;) -

11

Whenever a set of regiori® is compatible with a set of updatés we define theegion graphassociated
with R andi/ as the graph whose set of node&kisind whose edges are of two distinct types:

R— R if R €Succ(R)
R —., R if R €up(R)

Example 4.Let us consider the set of four regioRsdefined by the following equations:

Ry Ro Rs3 Ry
0<zxr<l1 x>0 x>1 x>0
0<y<1 0<y<1 y>1 y>1

T <y T >y T >y <y

0 1 T
It is easy to verify thafR is compatible with the set of updatés= {z := 1,y := 0}. The region graph
associated withR and/ is represented below on Figure 1.

—— time elapsing

~»= updater := 1

- - —» updatey :=0

Fig. 1. A simple example of region graph

Finally, letC C C(X) be a finite set of clock constraints. A set of regiddss said to becompatiblewith
C if for every clock constraing € C and for every regiorR, eitherR C g or R C —¢.

LetnowA = (X, X,Q,T,1, F, B) be atimed automaton in some cldg&(C,l/) and letR be a family
of regions compatible witld andZ{. We define theegion automatorz (.A) associated witbd andR, as
the following finite (untimed) automaton:

12

— Its set of locations i§) x R.
e The initial locations aréq,, 0) whereq, € I is initial andO0 is the unique region containing the
valuation where all clocks are set to zero
e The final locations aréf, R) wheref is final in.A and R is any region
e The repeated locations afe R) wherer is repeated ind and R is any region
— Its transitions are defined ky, R) - (¢, R) if there exists a regiof® and a transitiog —~=2 ¢/
in A such that:
e R — Ris atransition of the region graph,
° ﬁ Cop
e R —p R’ is atransition of the region graph.

Under conditions#*) and & x), the region automaton is an interesting abstraction ofotiginal au-
tomaton in the sense that we obtain a result similar to theobii@eorem 1.

Proposition 5. Let A be a timed automaton itVta(C,U) whereC (resp.l) is a finite set of clock con-
straints (resp. of updates). L& be a set of regions compatible withand{. Then the finite automaton
I'r (A) accepts the languag@NTIME (L(.A)).

Proof. Assume thatd = (X, Q,T,I,F, R, X).
Let us take a run i1

¥1,a1,up1 $2,02,Uup2
_rer s re

<q13 'U1>

1 ta
Fori > 0, let us defineR; = [v;]r andR; = [v; + tiy1 — ;)% It holds thatR; € Succ(R;) and, since
Viy1 € upit1(v; +tit1), Riv1 € up;(R;). Moreover,w; + t;+1 = ¢;+1 and sinceR is compatible with
C, we deduce thaR; C ;1. Therefore, from the definition,

(90, v0)

(g0, Ro) == (q1, Ry) == -+
is an accepting path dfz (A). Hence WWTIME(L(.A)) C L(I'r(A)) holds.
Conversely, let us consider a runiik (A),

(g0, Ro) —2 {q1, R1) —2 -

We setvy = 0 and assume that we have already constructed sequén&es; <, and(t;)1<i<, such that
v; € R; and such that the following is a run gf

$1,a1,UpP1 Pi—1,0i—1,UPi—1

<Q1701>"' <qz‘—1,?1i—1>

1 ti—1

(qo,vo)

Since (g1, Ri_1) —— (g;, R;) is a transition of'z (A), there exists by definition a regioR and a
transition(g; 1, i, a;, up;, ¢;) in A such that

- Ri1— R is a transition of the region graph,
- Ji C i
— R —,, R; is atransition of the region graph.

Fromwv;_; € R;_; and the fact that the set of regioRssatisfies £x), it follows that there exists some
t; € Tsuchthat; | +t;, —t;_1 € R. Now, from the hypothesis th& is compatible withup;, we deduce
that there exists some valuationsuch that; € up;(v;_1 +t; —t;_1). Hence the following is a path id

©1,a1,upy Pi—1,0i—1,UPi—1 Pi,Qq,UP;
—_—

(qu,v1) -~ (qi—1,vi1) (i, vs)

1 ti—1

(g0, vo)

Therefore, we construct by induction a path4n

¥1,a1,UpP1 Pi,Qq,UPq

S g 0i)

(q0,v0) (qu,v1) - {qi—1,vi-1)

We thus have.(I'z (A)) € UNTIME(L(A)) which concludes the proof of this proposition. O

13

Since the emptiness checking problem for untimed (BUuchiithr &/finite acceptance condition) automaton
is decidable (see e.g. [HU79]), the previous propositiadseto the next theorem.

Theorem 3. LetC (resp.Uf) be a finite set of clock constraints (resp. of updates). issthere exists a set
of regionsR such thatR is compatible witiC andi/, then the clas&/ta(C, /) is decidable.

This theorem is of course fundamental, but it does not ekaityi real decidable class of updatable automata
for which we can decide emptiness. Indeed, we need to cahsets of clock constraints and sets of
updated/, together with sets of regiorf8 such thatR is compatible with botf¢ andi/.

As mentioned before, we quickly had the intuition that diagjefree and general clock constraints do not
lead to the same (un)decidability properties. This is tlesoa why we proceed by distinguishing classes
of updatable timed automata according to the type of canssradiagonal-free or not.

First we need a lemma claiming that we can restrict our inyasbns to updatable timed automata which
use integer (and not rational) constants only. The resudttisvial extension of a remark proposed and
proven by Alur and Dill for classical timed automatd emma 4.1, page 15 of [AD94]).

Lemma 1. Let A be a timed automaton and latbe a positive rational constant. Let4 be the timed
automaton obtained by replacing all the constantsf the clock constraints or the updates.dfby the
productAp. Then the languagg(AA) equalsA\L(A) whereAL(A) = {(a;, Ati)i>o | (@i, ti)i>0 € L(A)}.

Hence, given a timed automatehand a constant € Q, the emptiness aof(.A) is equivalent to the one
of L(\A). But if we consider thécm m of all the constants used b¥, the automatom:.A deals only with
integer constants. Hence, when considering emptinessawassume without loss of generality that all
the constants appearing in (updatable) timed automatatgers. We will do such an assumption for the
rest of this section.

5.2 Decidable Classes of Diagonal-Free Updatable Timed Aarnata

In this section, we consider diagonal-free clock constsaimly, on a set of clockX". We first construct a
set of regions suitable for these constraints. For eaclkalae X, we consider an integer constaptand
we define the set of intervals:

e ={[10<c<c} U{lee+ 1] 0 < ¢ < ¢} U{]en; +oo[}
Now let« be a tuple((I;)zex, <) where:

-Vee X, I, €I,
- < is atotal preordéron X, = {z € X | I, is an interval of the fornjc; ¢ + 1[}

The region associated withis defined as the following set of valuations:

o TX Vo e X, v(z) € I, and
)
' Vo, y € Xo, z <y <= frac(v(z)) < frac(v(y))

In the sequel, we will refer to this set athe region ”.

Remark 4.The finite sefR of all such regions forms a partition @f* . Note that it is exactly (with
slightly distinct notations) the set of regions used by Adad Dill in their seminal paper [AD94]. Hence
the following lemma, which claims that this set verifies tloadition (xx), is not an original result and we
prove it here only for the sake of completeness.

® Recall that a preorder is a reflexive and transitive relation. If in additiapreorder is antisymmetric, it is an order.

14

Lemma 2. The setR ., is a set of regions.

):L'EX

Proof. Assume thaty = ((I;)zex, <). If for all z, I, =]c,; +o0[, then obviously
YVvea,Vte T, v+t e

and thusSucc (o) = {a}. Otherwise, there exists at least a regign# « such thate’ € Succ(a).
Among these regions we define the “closest” region toe. the regionug,cc such that

— asyce € Succ(a), and
- Y eaVteT,ifv+t&athendt’ <¢suchthav + ¢ € asycc.

The regiomg,cc = ((I2)zex, <") can be characterized as follows. L&t= {x € X | I, is of the form[c|}.
We distinguish two cases:

1. If Z # @, then
I, ifx & Z
—IL=q]ese+1] ifxe Zandl, =[cJwith0 <c<c¢,
Jex; ool if x € Z andI, = [c,]
—x <"y ifeitherz < yorl, = [c]with0 < ¢ < ¢, andl, is of the form|d; d + 1]

2. If Z = @, let M be the set of maximal elements&f i.e.
M={xeXy|Vze€Xp, 2 <2 = z=<za}

Then,

, L if y g M

T e+ 1] if € Mandl, =]c;c+ 1[with0 < ¢ < ¢,

— <’is the restriction of to {x € X | I, is of the form]d; d + 1[}

We claim now that
Vo € o, 3t € Tsuchthat +t € agyee

Indeed, lew be a valuation inv,
1. If Z # @, thenletr = min ({1 — frac(v(z)) | I, is of the form]c; ¢ + 1[}). Then the valuation+ 37

is in the regiong, ...
2. If Z =@, thenletr =1 — frac(v(z)) for anyx € M. Then the valuation + 7 is in agyee-

Now, we get by an immediate induction that the Bgt) _, Vverifies condition £x) which achieves the
proof of the lemma. O

Example 5.As an example, assume we have only two clacks
andy with the constants, = 3 andc, = 2. Then, the set of

regions associated with those constants is described figtire Y i i i i
beside. \ \ | I
The dark gray region is defined by =|1;2[, I, =]0;1], and S <
x < yandy 4 z. 1‘1/:7‘/ '/:7‘}7777
The immediate successor region of this (dark) gray regidie-is } //J'L// }
fined by I, =]1;2[andI, = [1] (drawn as a thick line). The 0 Z771 7757757775

other successor regions are drawn in light gray.

The sets of regions we consider is now defined, the followasmiit about their compatibility with sets of
diagonal-free clock constraints is immediate.

15

Proposition 6. LetC C Cqr(X) be such that for any clock constraint~ c of C, it holds thatc < ¢,. Then
the set of region® .,), _ . is compatible witfC.

Note that the result does not hold anymore for an arbitrargfssnstraints included i@ (X). For instance,
in the example above, the regi6fi3; +oo|,]2; +0]), @) is neither included in: —y < 1 norinxz —y > 1.

We now investigate the compatibility 62, ., and sets of updateg. We first consider the case of
simple updates. Recall that a simple updatésection 2.3) is an update of the form~ corz :~ y + ¢
wherey andz are clocks~ € {<,<,=,>,>} andc is an (integer) constant. Note that even if the set
R(c,).cx IS the one used by Alur and Dilcf{ Remark 4), its compatibility with all the updates distinct
from resetsi(e. of the formzx := 0) is not proven yet.

Lemma 3. LetR.,),., be asetofregions. This set of regions is compatible withsemple update :~ ¢
such that < ¢, and with any simple update:~ y+csuchthat, < ¢,+c, with~e {=,#, <, >, <, >}

Proof. Assume thatv = ((I;).ex, <) is a region ofR). .. Recall that< is thus a total preorder
on Xy, = {# € X | I, is aninterval of the fornjc; ¢ + 1[}. Let up be a simple update over We first
characterize the regions @p(«).

Leta/ = ((I))zex,<") (Where<'is atotal preorder oX(). Thenea is inup(«) if I, = I, forall z # z
and:

if upisz ~ c: I, can be any interval df, which intersect{y € T | v ~ ¢} and
— either] is of the form[d] or]c,; +oo[and thus
o« Xj=Xo\{z}
o <'=<N(X}xX{)
— either’ is of the form|d; d + 1] and thus
o X|=XoU{z}
e <’is any total preorder oX{, which coincides with< on X{ \ {z}.

if upisz ~ y+cwith c € Z: I’ can be any interval of, such that there exists € I, b € I, with
a~b+cand
— either] is of the form[d] or]c.; +oo|
o X\ =X\ {z}
o <'=<N(X{)x Xp)
— eitherI] is of the form|d; d + 1],
o X|=XoU{z}
« If y & Xy, <’ is any total preorder oiX{, which coincides with< on X \ {z}.
x If y € Xy, then we have to take care of the relative valueSaxf(v' (y)) andfrac(v’(z))
when(I, +c) NI, # @:
- either(I, +¢)NI, = @ and<’is any total preorder o, which coincides with< on
Xo \ {#}
- either(Iy +c¢)NI, # &
Note that from the inequality. < ¢, + ¢, this condition implies thaf, + ¢ C I..
In that case’ is any total preorder oX(, which coincides with< on X \ {z} and
verifies:

16

-z <"yandy <’ z if ~is=

-z =<"yandy £ z if ~is<
2=y if ~is<
sy <z if ~is>
-z A yandy <’ z if ~is>

“(z<"yandy £’ 2)or (z £ yandy <’ 2) if ~is#

From this construction, it is now easy to check that condifiox x) holdsi.e. that for anyv € « and any
o' € up(a), there exists’ € o/ Nup(v). Indeed, sincep is a local update ovet, v'(z) = v(z) for all
x # z and we just have to definé(z).

1. If z ¢ X{, then
(@) If I, = [¢], /(=) is of course set to.
(b) If I, =]c,; 00], sincel, + ¢ C I, v(y) + c belongs to the open intervhl, ; oo[. Hence, whatever
~in{=,#,<,<,>,>}, there exists some valuesuch thaiv ~ v(y) + ¢.We thus set’(z2)«a
2. if z € X{, then
(@) Ifz <’ zandz <’ « for somex, thenv'(z) = d + frac(v'(x)) with I, =]d; d + 1]
(b) If, for any clockz, eitherz £’ z or z £’ x, thenv’(z) = d + 7 with I, =|d;d + 1] and

max{frac(v'(z)) | z <" 2z} <7 < min{frac(v'(z)) | z <" =}
Note that since the time domain is assumed to be dense, thergsaexists (an infinity of) such.

In all cases, it holds’ € o/ N up(a) and the lemma is proven. O

Example 6.Let us consider the case wheXe= {x, y}, and
the constants, andc, are given by, = 3 andc, = 2. The
set of regionsk.., ., is represented on the figure beside. The
image of the regioRy, I, =|1,2[, I, =]0,1[,z < y by the

<

|
I
\
\
updater :> y + 2 is composed of three regions, namely: 2 ‘L
I
— RegionR;: I, =|2; 3, I! =]0;1[andy <’ « 1k
~ RegionRy: I, = [3], I, =]0; 1 L

o

— RegionR;: I, =]3; +ocf, I, =]0; 1]

Consider now a local update = (up;)1<i<r Where eachup; is a simple update over some claek Let
alsoR.,),., be a set of regions as defined above. It could happen thatgads compatible with this
set of regions whereag itself is not compatible any more. Indeed, let us deflhe= {z,y, 2z}, ¢, = 2,
ey = ¢, =1, a((]2; 00[,]1; 00[, {1}), @) anda/((]2; oo[, |1; o[,]1; 00[), @). Finally, letup; be the update
z :< x andup, be the update :> y. It is obvious that

Vo' € o, vy, ve € as.tovy € upy(v) andvs € ups(v)

However the two valuation&.3,1.1,1) and(2.3,3.4,1) both belong torv and (2.3,1.1,1.8) isin &’ N
up((2.3,1.1,1)) whereasup((2.3,3.4,1)) = @.

Therefore, in order to get local updates compatible withsttts of regions of the forR ..., ., we need

to restrict the local updates we consider. From the couxaenple just above, it appears that a given clock
can not be set to an interval in which the lower and upper bsdegend on two distinct clocks. Moreover,
from lemma 3, we need to restrict the constants that are ysttelsimple updates. This naturally leads to
the following definition:

17

Definition 1. Let (c,).cx be integer constants. The ddt.), _. is constituted of updates of the form
up = M\ c x up= Where, for each clock € X, up, is a local update over the clockdefined by one of the
four following abstract grammars:

—det, = z:=c | xz:=2+4+d

withz € X,e,d€Z,c<c,ande, <c, +d
—inf, == z:<c | x:<z+d | inf, Ainf,

with <€ {<,<},z€ X,¢,d €Z,c <cyandc, <c,+d
—sup, == x:>c | xz:>z+d | sup, Asup,

with>€ {>,>},2€ X,¢,d€Z,c < ¢y andec, <c,+d
—int, == z:€(¢d) | x:€(z+d) | x:€(z4+3d) | z:€(z+52+d)

where(and) are either[or |, z is a clock,c, ¢/, d,d’ are inZ,
c,d <y, ey <c,+d ande, <c, +¢

The basis of an update = A . y up. ofU.,), . isintuitively the set” of clocks which can be modified
by the updatep. Formally, this set” is defined through its complement:

X\Y ={z€ X |up,isequal toz := z}

The first step for proving the compatibility & ., andl/,), . is given by the following lemma. Its
proof is very similar to the one of lemma 3 and therefore lethie reader.

Lemma4. Let R,
U,

).cx D€ a set of regions. This set of regions is compatible withlaogl update of
which basis is reduced to a single clogk}.

)a:GX

We can now state our main result concerning the compayilnifisets of regions and sets of updates, in the
case of diagonal-free updatable timed automata.

Proposition 7. Let (¢,).cx be integer constants. Then the set of regi@ys,), _, is compatible with the
set of updated/.,), -

Proof. Leta = ((I)yex,<),a" = ((I;)yex,<") be two regions ofR .,), ., andup be an update of
Ue,),.x Such tha’ € up(a) i.e.there exists some valuationsc « andv’ € o' such that' € up(v).
For any clockz, letv, be the valuation defined by:

_Joly) fy#a
Ux(y)_{v(:c) ify=ua

and leto, = ((I§”),ex, <) be the (unique) region R(c,).cx CONAININGY, .

reX

Now let w be a valuation inv. From lemma 4R ..., is compatible withup,, thus, for any clockr,
there exists some valuatian, € up,(w) N «,. We now define the valuation’ by setting

w'(y) = wy(y) for any clocky

From the definition of a local update, it turns out thdtc up(w). We claim thatw’ € o/, too. Indeed, for
any clocky, w'(y) = wy(y) € I?S”) = I,,. It remains to show that the sequeritgc(w’(z)).cx verifies

the conditions given by the preordef. To this purpose, it is sufficient to prove that the preorde(which

is given, a priori, by the valuation') can be defined fronx and the sequende<(™)) ¢ x.

From the constructions given in lemma 3, which can be ext@talprove lemma 4, it is easy to check that
the preorder<’ can be computed as follows.

18

Let X’ be a disjoint copy of the set of clocks. We first define a sequen(ﬂ("))zex of preorders on the
setX U X", Intuitively =) is obtained from< () by simply replacing the clock by its copyz’. Formally

Yy, z € X \ {z}, y=2@ 2 ity <@
vye X\ {2}, y=Wa ify <@ g
Vye X\{z}, o=Wyifz <@ y

We then defin& as the union of all th&€™. It is clear thaf= is still a preorder o U X’. Now, <’ can
be obtained from< by first restricting it toX’ x X’ and then transforming each cloekinto its copyz.
And we thus get that’ € «’'.

We thus have proven that if’ € up(«), then for any valuationv € «, there exists a valuation’ €
up(w) N «’. Condition & x %) is thus satisfied. O

From Theorem 3 and propositions 6 and 7, we get immediatelyéxt theorem which is our main (effec-
tive) result concerning decidability diagonal-free updatable automata.

Theorem 4. Let — C C Cq(X) be afinite set of diagonal-free clock constraints,

— for any clockz, ¢, be an integer constant such that, for any constraint ¢ of C, it
holdsc < ¢,

- U C U, be afinite set of updates.
Then the clas#/ta(C,U) is decidable.

This theorem is not yet sufficient for deciding, given an @aoy (diagonal-free) timed automatos#,
whether its emptiness can be decided using a region autaneatustruction. If we can find constants
(cz)zex such that any update usedihis inl/(.,), ., and any constraint ~ c used inA satisfies: < c,,
then the emptiness of can be checked using a region automaton construction. e/ firav describe a
procedure which gives a sufficient condition for the exisgeaf such constantg.,).c x -

LetC C Cqr(X) be a set of diagonal-free clock constraints and4et /(X) be a set of updates such that

up = /\ up, €U = forall z, up, € {det,,inf,,sup,,int,} where: ar)
zeX
—det, »= z:=c | z:=2+d
with z € X,ce Nandd € Z
—inf, == z:<Qc | z:<z+d | inf, Ainf,
with <€ {<,<},z€ X,ce Nandd € Z
—sup, == xz:>c | x:>z+d | sup, Asup,
with>€ {>,>},z € X,ce Nandd € Z
—int, == z:€(d) | x:€(c;z+d) | z:€(z+5d) | v:€(z+52+d)

where(and) are eitherf or], z is a clock and:, ¢/, d, d’ are inZ

If the Diophantine system of linear inequations on varialle) .c x
{c<ecylz~ceCorz:i~celUtU{c. <cy+c|lzi~y+celd} (Sar)

has a solution, thell C U,), ., andC is compatible witlR ... _. , and therefore, applying Theorem 4,
the clasUta(C,) of updatable timed automata is decidable.

Note that if all the constants appearing in the updates :~ y + ¢ are positive, then the syster§.)
always has a solution. Otherwise, from the results of [Dojnibe existence of a solution is decidable.

19

Remark 5.We have shown in section 4 that updates of the ferm z — 1 lead to an undecidable class of
automata, whatever are the types of constraints used irutbenata. Note that, fortunately, this is not in
contradiction with the results above. Indeed, when deaiitiy such updates, the Diophantine systesyy §
contains inequations of the form < ¢, — 1 and has therefore no solution.

Complexity. As for timed automata (see [AD94]), decidability of empsador a class of updatable timed
automata verifying hypotheses of Theorem 4 isseARCecomplete problem; and the proof is quite similar.

Recall that for classical (untimed) automata (acceptingefiar infinite sequences), decidability of the
emptiness is NbGspACcEcomplete. The non deterministic on-the-fly algorithm dstssin starting from

an initial statey, to guess a new stateand to verify whether there is a transition frggto ¢, which can

be done without any additional space (just looking at themmaton). The algorithm continues by guessing
a new state’ and by verifying the existence of a transition betweemdq’, and so on until a final state is
reached. Therefore, besides the automaton, only two dtatesto be stored. Since a state can be coded in
logarithmic space, we get that the emptiness problem is in&dPACE(the proof of completeness can be
found in any book on Complexity Theory).

Let now.A be an updatable timed automaton in some cldisgC,/) andR be a set of regions satisfying
the hypotheses of Theorem 4. As explained, the emptines§4f can be checked by testing the emptiness
on the untimed region automatdr (A). If we apply the algorithm recalled above and if we want to
compute its complexity, we have to compute the space neededcbde a state dfz (A). Such a state
is a pair(q,) whereq is a (discrete) state ofl and R a region ofR.,), . . For encoding a region, it is
sufficient to store, for each clock, two integers (the bounfathe interval where the clock is supposed to
be) and, for each pair of clocks, a boolean which indicatestiér the first clock is before the second in
the preorder defining the region, or not.

Therefore, a state afz (A) can be encoded in polynomial space and emptiness of updétatad au-
tomata, when belonging to a decidable class as describewpsty, is in PSPACE Since these decidable
classes contain in particular Alur and Dill's timed automate get immediately thed?acehardness and
thus the BPACEcompleteness.

5.3 Decidable Classes of General Updatable Timed Automata

We now investigate classes of updatable timed automataendesreral constraints are used. As we have
noticed just after proposition 6, diagonal constraintsrenecompatible with sets of regions defined in the
previous subsection. For example, if we deal with two cloclksdy, the regionz > 3 A y > 2 is neither
included inz — y < 1, norinxz — y > 1. We have thus to define new sets of regions.

To this purpose we consider for each pair of clo¢isz) in X an integer constarnt, . and we define the
set

The region defined by a tupte = ((I;)zex, (Ja,y)z,yex, <) Where

-Vee X, I, €T,
- Y(y,2) € Xoo, Jy» € Ty, WhereX ., denotes the s€ft(y,) € X? | I, or I, is non bounde}
- <is atotal preorder oiX, = {z € X | I, is an interval of the fornjc; ¢ + 1[}

20

is the following subset o'~ :

Vo € X, v(x) € I,
ve T |V, y € Xo, itholds thatr < y <= frac(v(z)) < frac(v(y)),
‘ V(y, 2) € Xoo, v(y) —v(2) € Jy -
The finite seR (.,), (4, .),..cx Of all such regions forms a partition @f*. By a proof very similar to
the one of lemma 2, it is easy to verify that this set of regials® satisfies conditionk{), i.e. that the
following lemma holds:

Lemma5. The sefR . is a set of regions.

:C)mEXa(dy,Z)y,zex

Example 7.Assume that we have only two clocksandy and Y } } })‘// ///
that the maximal constants arge = 3 andc, = 2, with clocks } } } e : y
constraintst — y ~ 0 andz — y ~ 1. Then, the set of regions R B S AU
associated with those constants is described in the figsiddae } // } // } // }
The gray region is defined b, =|3;+o0[, I, =]2;+oc[and AT S
—l<y—xz<0(.eJyis]—1;0). A R R
v _bk__ L ____
0 1 2 3 x

Once again, the compatibility of this set of regions witrss#tclock constraints is easy and immediate.

Proposition 8. LetC C C(X) be such that for any clock constraint~ ¢ of C, we have: < ¢, and for any
clock constraintr — y ~ cin C, we have-d, , < c < d,,. Then the set of regior8), _
is compatible witlC.

y,z)y,zex

As in the diagonal-free case, we now introduce a set of updaléch depends on the constafts)..c x
and(dy,.)y,-cx . They will be defined in such a way that they will be compatibith the set of regions we
have just defined. Note that from the undecidability resofitsection 4, we have to restrict drastically the
set of updates we use if we want to preserve the decidability.

Example 8.For example, if we consider the incrementation Y 1 } })‘/ R
updatey := y+1 and the set of regions depicted on the figure } } } e :
beside, the images of the regidh are the regions?;, Ro 2 ‘L, 7‘; — 7‘%, o Rs
and R3. But we can not reach regidR, (resp.Rz, resp.R3) | // A
from every point of regiorR; . Thus, this set of regionsisnot 1 ‘Z - 7% - 7% - ;‘% !

tible with th date := 1. L7,
compatible wi e updatg:= y + s

0 1 2 3 T

Definition 2. Let(c;).ex, (dy 2)y,-ex be integer constants. The $ét..,_, (4,..), .~ Of local updates

consists of the updates of the foup = A, . x up, where, for each clock € X, up, is a local update of
one of the following forms:

—z:<dcwith<e {=<,<},z€ X,ceN,c<¢, and, forany clock, ¢, > c+d, »
— z:=ywithy € X, andc, < ¢, and, forany clock,d. , <d.,, ds. <d, .

As claimed by the following proposition, this set of updasesl the set of regions previously defined are
suitable for handling updatable timed automata with gdrmtoak constraints.

Proposition 9. Let(c;).ex, (dy,-)y,-cx b€ integer constants. Then the set of regi@ns), 4
is compatible with the set of updatig.)., (

y,z)y,zeX

dy,z)y,zex"

21

Proof. As in the case of diagonal-free updatable timed automatdirstedeal with the particular case of
simple updates.

Assume thaty = ((I;)zex, (Jo,y)eyex, <) Where< is a total preorder oX, and assume also thap is
a simple update over, then the regiom’ = ((1}).ex, (/5)z yex, <") (Where<' is a total preorder on
Xp)isinup(a) ifand only if I}, = I, forallx # 2, J; , = J., forall z,y # 2 and:

if upisz ~ ¢, I can be any interval af, which intersectdy € T | v ~ ¢} and
— either’ is of the form[d] and thus
o X\ =Xo\{z}
o <'==<N(X{) x XY{)
o XL ={(z,y) € Xoo | (x # 2 Ay # 2) OF (x = 2 N Iy =]ey; 00]) OF (I, =]cz; 00Ny = 2)
andv(z,y) € X.,
* Sy, =Joyifx#zandy # 2
* J;’Z =|dy ;00 .
Note that ifv is a valuation such that, < v(z) andv(z) < ¢ with <€ {=, <, <}, then
¢z —c < v(x)—wv(z). Thus, from the hypothesis > c¢+d, ., we getd, , < v(z)—v(z).
* JL, =] =005 —d. .
Note that ifv is a valuation such that, < v(y) andv(z) < ¢ with <€ {=, <, <}, then
v(z)—v(y) < c—¢y. Thus, from the hypothesig > c+d. ,,, we get(z)—v(y) < —d. .
— either’ is of the form|d; d + 1] and thus
o X\ =XoU{z}
e <’is any total preorder oX{, which coincides with< on X \ {z}
o Xl ={(z,y) e X | (x# 2Ny #z)0r(x=2AI, =|cy;00[) Or (I =|cg; 00[A\y = 2)
andV(z,y) € X.,
% Jp, = Joyifx# zandy # 2
* J;’z =|dy, ;0.

* J;’y =] — 005 —d. .

if upisz ~y, letus first defind’.
—if I, = [d], I, = [d] if d < ¢, I, =]c.; co[otherwise
—if I, =]d; d + 1[, I, =]d; d + 1] if d < ¢, I, =]c,; oo] otherwise
— if I, =]cy; 00[, I, =|c.; oo (since by hypothesis. < ¢,)
Now
— eitherI’, is of the form[d] (and thusl, = [d] from what precedes)
o X|=XoU{z}
o <'==<N(X)x X))
o X! ={(z,2)) e X | (@ # 2N #£2z)0r(x=2AIy =|cy;00[) OF (I, =]cg; 0[Nz’ =
2)}
andv(z,z') € X/,
* J! Jop If ¢ # zanda’ # z
* J;,x/ is the unique interval off. .- which contains/, ..
Note that unicity comes from the hypothesis that < d,, ./

/:
X

* J;vz is the unique interval of7, . which contains/, ..
Note that unicity comes from the hypothesis tiat < d, ,

22

— either] is of the form|d; d + 1] (and thusl,, =]d; d + 1], too)

o X\ =XoU{z}

e <’is any total preorder oX, which coincides with< on X{) \ {z} and such that <’ y and
y =<'z

e The setX and the intervalg’;, ,, are defined as in the previous cdse= [d]

— eitherI] is of the form|c.; oo]

o X)=Xo\{z}
o <'=<N(X} x X))
o X, =XU{(2,2),(2,2) |z € X}andJ, ., = J, . if # zandz’ # z. The computation

of J. , (and.J;, ,) requires to distinguish several cases depending of time &1, and1,

1. I, =[f], I, = [g]. Then
S {]m, [fd.o <g—f
] o035 da:z[Ifg_f< _dz,z
2. I = [f], Iy]9 g+ 1[. Then
{]g _19 f[a?zgg_f_]-<dz,z
J/ -]dza:v [If dz,a: Sg_f_l
] o035 dx,z[ifg_f_1<_d;v,z

3. I, = [f], I, =]ey; 00[. Then

J. . is the unique interval off. . which contains/, .

Note that unicity comes from the hypothesis tiat, < d,, , andd, . < d, ,
4. L, =f; f+ 1], I, = [g].

This case is identical to case 2 above.
5. I =|f; f +1[, I, =]g; g + 1[. Then

If z <y Ay <z then [g— f] when —d, . <g—f<d.,
| 25 00] whend, , < g— f
] 003 _dx,z[Wheng - f < _dx,z
Ifz<yAnyAxthen]g— fig—f+1[when—d,,<g—f<d,s
J .= |d2 2 00] whend, , <g—f
] — 00 dw,z[Wheng - f < _dx,z
fzAyAy<azthen]g—f—1;9g—f[when—d,.<g—f—-1<d,,
Jd o5 00] whend, , <g—f—1
| — 005 —dy | wheng — f — 1< —d,

I, =|f; f + 1], I, =]cy; oo]. This case is identical to case 3 above.
7. I, =|cg; 00[. This case is identical to case 3 above.

From this construction, it is easy to prove, in a similar wiagrt for lemma 3, that condition ¢ x) holds
for simple updates.

The extension to local updates @f C U,), v, (4,.), .cx (Under the hypotheses of the proposition) is

obtained by a technique similar to the one used in propasitio ad

23

/ Example 9.Consider the regions depicted on the left. We want to
7
4

Yy | | 4 compute the updating successors of the redginby the update
: /, y x :< 2. The four updating successors are drawn on the figure. Their
A : .
s % equations are:

2 o _;)\Lf;%iiii

L 7 L/ L/ ‘} — RegionR;: I, = [0] andI} =]2; +-o0]

} /} /} e } — RegionRy: I, =|0; 1], I} =]2; +oo andJy . =|1; +o0]
Ve 7 / .
0 177127757757775 — RegionR;: I}, = [1] andI, =]2; +o0]

RegionRy: I =|1;2[, I =|2; +oc[and J, , =|1; +o0[

Our main effective result concerning the decidability ofigeal updatable automata is given by the follow-
ing theorem. Its proof follows immediately from Theorem 3gamopositions 8 and 9.

Theorem 5. LetC C C(X) be a finite set of general clock constraints such that:
— for every clockr, a constant:,. such that for any constraint ~ cin C, ¢ < ¢,
— for every pair of clockgz, y), a constantl, , such that for any constraint —y ~ cinC, ¢ < d ,,

andletd CU,),c . be a set of updates. The clagga(C, i) is then decidable.

w~y)m,y€X

Like for Theorem 4, if we want to apply the previous theorera tgiven updatable timed automatdnwe
need to find (if they exist) some constafits),c x and(d,). yex for which the updates and constraints
of A satisfy the hypothesis of this theorem. Let us now descripeeedure which ensures the existence
of such constraints.

LetC C C(X) be afinite set of arbitrary constraints andletC /(X)) be a finite set of updates such that:

up = Nyexupz €U = Ve € X, up, € {r:=c,v:<czx:<c|ceN}

If the Diophantine system of linear inequations on the \@€és(c,),c x and(dy)z yex
{c<max, |z ~ceC}
U {c<max,,|z—y~ce(C} (Soen)
U {c¢<max,, max, > c+max,, |z:<corz:<corz:=c €U, andz € X} gen
U {max, < max,, max,, > max, ,, max, , < max, . |z:=y el andz € X}
has a solution, thetd C U,), x.(ds.,)..,cx @NAC is compatible WithR), . (d..,)..,cx - ANd thus,

from Theorem 5, the claddta(C, i) is decidable.

Itis easy to verify that the syster§{.,,) always has a solution. We thus get the following theorem:

Theorem 6. LetC C C(X) be a finite set of arbitrary constraints and &t be a finite set of updates
defined as in¢.,,). Then the clas$/ta(C, /) of updatable timed automata is decidable.

Remark 6.From the undecidability results of the previous sectioig theorem is the most general we
can expect when dealing with general clock constraintselbeless, under precise conditions, we could
refine the results and exhibit decidable subclasses whielipdates not of the forn{).,,). For instance,
let (cz)zex, (dy,2)y,- € X be constants. The set of regioRs..,). .4, ..),.cx IS compatible with, for
examples, updates like:

— z:=y+ cassoonas, < ¢, + cand for each clock, d, . < d,, —candd, , < d,,+c
— z:> cassoon as < ¢, and for each clock;, c, — ¢, > d, ,

However, we will not give details of these refinements, if aneeeded for a special model, then the
previous proof can be extended.

24

Complexity. As in the diagonal-free case (see the end of section 5.2)tieasg for decidable classes
of updatable timed automata with arbitrary clock constsias characterized in Theorem 5, iSPRCE
complete. Indeed, a region from a set of the fofm), _ (4, ..),.cx can still be encoded in polynomial
space.

5.4 Conclusion and Discussion

Table 2 summarizes the undecidability and decidabilityltesobtained in the two previous sections. In
order to have a global and readable picture, we do not rédzlbtecise conditions on the constants given
in the hypotheses of our two main theorems 4 and 5, under vagcldability is ensured.

Us(X) U ... Diagonal-free constraints General constraints
1 ri=c, =y Pspacecomplete
2 r:=xz+1 PspAaceEcomplete
3 Ti=y+c Undecidable
4 r:=x—1 Undecidable
5 r:<c PspACEcomplete
6 r:>c
Pspacecomplete
7 T:i~y+c .
Undecidable
8 lyt+c<iz:<y+d
9 lyt+cec<ix:<z+d Undecidable

with ~ € {<, <, >, >} andc, d € Q*
Table 2. Decidability results

It is worth to notice that, contrary to the case of Alur and’Biimed automata, considering diagonal-free
clock constraints or arbitrary clock constraints do notlleasimilar decidability results.

Note also that differences between decidable and unddeidisses are sometimes tricky. Among these
differences, let us mention for instance the following $act

— when only diagonal-free clock constraints are used, deentation leads to undecidable classes whereas
incrementation leads to decidable classes (see lines 2)and 4

— when arbitrary clock constraints are used, both decrertientaand incrementations lead to undecid-
able classes (see also lines 2 and 4)

— non-deterministic updates of the form:< ¢ always lead to decidable classes whereas updates of the
form x :> clead to decidable classes only when diagonal-free clocktcaints are used (see lines 5
and 6)

— non-deterministic updates of the formt- ¢ :< 2z :< y 4 d always lead to undecidable classes whereas
updates of the formp + ¢ <: z :< y + d lead to decidable classes if diagonal-free clock congsaire
used (see lines 8 and 9)

6 Expressiveness of Updatable Timed Automata

Now that we have described precisely the frontier betweetecidability and decidability, it becomes
natural and interesting to study the expressiveness of ¢éo@lable subclasses and compare them with
the expressiveness of timed automata and timed automata-wiansitions (or silent actions), as defined
originally by Alur and Dill ([AD90,AD94], see section 3.1).

25

We start by defining some criteria to compare automata inase6t1. We then prove thattransitions are
unavoidable if we want to express the languages recognigegbthatable timed automata using classical
timed automata, see section 6.2. We then study the easeptapdatable automata using deterministic
updates in section 6.3 and the general case in section 6.4.

6.1 Several Equivalence Relations

We recall in this section several known criteria to compartemata.

Language equivalence.The simplest criterium to compare automata is the equalithe@accepted lan-
guages. Two timed automata are saidlguage equivalenvhenever they accept the same timed language.
We extend this definition to families of timed automata ; tamflies of timed automata, s#@yut; andAut;,
are language equivalent whenever every timed automatom dree of the families is language equivalent
to an automaton of the other family. We then writet, =, Aut,.
For example, it is well known that diagonal constraints cenrémoved from timed automata without
changing the expressiveness of the model (see Remark 1).théitformalism presented above, it can be
written as

Uta(Cqp (X)), U (X)) =¢ Uta(C(X), U (X)) .

Transition systems and similarity. Language equivalence does not provide any information tatheu
internal structure of the automata, contrary to similarily define similarity, we first need to recall the
notion of transition systems.

Definition 3. A transition systenis a tuple7 = (S, I, sy, —) whereS is a set of stated] is a finite or
infinite alphabetgs, € S is the initial state and—C S x I" x S is a set of transitions.

If 7 is such a transition system, arecutiorin 7 is a sequence of consecutive transitions
[e5] (6]
Sop ——> 81 ——> S2...

where for every > 0, s;_; —— s, is a transition of7 .

The similarity [Par81,Mil89] defines step to step a correspondance betiveerransition systems. A
transition systen? = (5, I, s9, —) simulatesa transition systerd’ = (S’, I, s{,, —"') if there exists a
relation:= C S x S’ such that:

INITIALIZATION : Vsg € Sp, 3s(, € 5§ S.t.s0 = s,

PROPAGATION: if 51 3= s} ands; — s, then there exists), € S’
(TRANSFER) s.t.s) /s andsy = s)

Such a relation is calledsimulation relation If the relation:="* defined by
rE'Yy = yrx
is also a simulation relation, theais abisimulation relation

Timed transition systems are particular transition systeinere the alphabet contains actions correspond-
ing to time elapsing.

Definition 4. A timed transition systeron the alphabet’ and the time domaiff is a transition system
T(S,T,s9,—)wherel"isthe setC U {e} U{e(d) | d € T} and the transition— satisfies the following
properties:

26

. d
— TeEmPORAL DETERMINISM: for all the statess, s’, s” of S and for everyd € T, if s D, ¢ and

d
s @, s"”, thens’ = s".
. dy+d
— Time appITIVITY : for all the statess, s” of S and for alldy,ds € T, if s (dr+da)

E(dl) 5(d2) 1
—_— — s

s”, then there

existss’ € S such thats s’ and s’O .
— 0-DELAY: for all the statess, s’ € S, s <O, ifand only ifs = ¢'.

The three conditions that we just described are classicahwie consider process algebra like TCCS [Yi90,Yi91].

If 7 is such a timed transition systemdelay executioiis an execution of the form

Qi a2 [a72%%
S0 S1 So... Sn

such that, > 0, for everyl < i <n, a; = ¢ ora; = ¢(d;) for somed; € T.

If 7 = (S, T,s9,—) is atimed transition system, we define #i#stract transition systemssociated with
T by Taps= (S, I, so, =) where

. . *
s== ¢ if a+#candthereexists’ € S, s — s’ — g
there exists a delay execution
€(d . 1 n
s sif Ss=s50 5 2 gy s, =5

such thatl = > {d; | «; = €(d;)}

where the relation=" represents the reflexive and transitive closure’ef. The transition systerfiys

abstracts silent actions @f. The relation-— " thus corresponds 62 Note also that the relation®-
only abstracts silent actions that can be done before agtion

As a timed transition system is a particular transitioneystthe notion of similarity defined before can be
applied.

Strong and weak (bi)similarity. An updatable timed automatoA(Q, X, Y., I, F, R, T) defines in a
natural way two timed transition systems:

— the transition systenT (A) = (Q x TX,X., T, (qo,0), —) where the transition relation— is
defined by:
e(d)
(q,'U) I ((],’U + d)
(q,v) = (¢',v) if there exists) =22 ¢/ € T's.t.v = ¢ andv’ € up(v)

— the abstract transition systefa,s(.A) defined as previously frorfi (A).

Of course, ifA is a timed automaton without silent actions(.4) and7,,<(A) are identical.

An updatable timed automato# strongly simulatesin other updatable timed automatBnand we will
note A =, B, wheneverT (A) simulatesT (B). We say thatd and B arestrongly bisimilar and we will
note A =, B, whenever there exists a bisimulation relatiesuch thatZ (A) = 7(5).

An updatable timed automato# weakly simulat€sanother updatable timed automatBnand we will
note A =, B, wheneverZyng(A) simulatesZ,B). We say thatd and B areweakly bisimilay and we
noteA =,, B, whenever there exists a bisimulation relatisrsuch thatZapg(A) = Taps(B).

" Note that this definition of weak simulation is quite different from the usual leecause, as said before, the tran-
sition relation==> only abstracts silent actions that can be done before the other actiomgashin the classical
definition, the transition relation abstracts all the silent actioesthose that can be done before or after the real
actions.

27

Remark 7.0f course, two strongly bisimilar updatable timed autometa also weakly bisimilar. If a
bisimulation relation preserves the final and repeatedstawo strongly or weakly bisimilar automata are
language equivalent.

We close these preliminaries by a technical result enstinisigve can restrict our study to updatable timed
automata where all constants appearing in the constraimsloe updates are integer.

Let A be an updatable timed automaton aké constant. We denote by4 the timed automaton in
which all the constants appearing in the constraints or guates ofd are multiplied by\. The proof of
the following lemma follows the one of lemma 4.1 page 15 in P¥Dwhich claims a similar result for
language equivalence within timed automata.

Lemma 6. Let.4 and B be two timed automata ande Q** a constant. Then
A=y B < M=, B and A=,B < M =, \B

Hence, in the rest of this section, we may assume that ordgémntconstants are used.

We have now all the comparison tools that will be useful inroext study of the expressiveness of decidable
subclasses of updatable timed automata.

6.2 e-Transitions are Necessary

We first prove that-transitions are necessary to express the decidable fragoheipdatable timed au-
tomata described in section 5. Let us consider the timed@attin.4 with silent actions described by the
following picture:

There is no classical timed automaton without silent acicrepting the same timed languageld8DGP98].
We will prove that there exists an updatable timed automafitim general constraints and updates of the
formz := c or z :< ¢ (c integer) which recognizes the timed langudged). This timed language can be
described by:

t, =1 andai =a
(ai7ti)i21 el <= Vi>1, or
t; €li — 1;¢ anda; = b

An execution in this automaton can thus be represented bipllbe/ing scheme:

oT e
NSRS

expressing that actions can be performed each time unit, but notiihas been performed during the last
unit of time.

This timed language is recognized by the updatable timezhzatons3 on the following picture:

28

where the clock: is set tol when first entering staig.
By considering for example the bisimulation relation

R= {((qo,v% (2,0 +1)) |ve ']I‘{‘”}} U {((qhv), (g2,0)) | v € T{w}}

it is easy to see thad and3 are weakly bisimilar, and thus(.A) = L(B).

In section 4, we noticed that adding the decrementationaaksl to the classical model leads in general to
undecidability. However, in this precise case, cladk bounded by, we will thus be able to transform au-
tomaton5 into an updatable timed automaton belonging to some dedeid#dss as described in section 5.
Let us indeed consider the following automafon

l<az<2 b y:<l

Il<y<2, b x:<1
Claim: D recognizes precisely the timed langudged) = L(B).

Proof. We start by describing in an informal manner hdvbehaves. A statg, or p3 can be reached only
if an a has just been performed and a stat®r p, can be reached only ifiahas just been performed. The
values ofr andy are bothl when reaching statg, or p; (an easy verification can be done by analyzing
the transitions arriving in these states). From any of thesestates, a sequence @§, one at each time
unit, can be performed. Moreover, stateor p, can be reached when an actiois performed, before one
time unit has passed.

To prove thatZ(B) = L(D), we transform the automatdsi in the following way. We first add a “hole”

(stategs) with a unique transition leading @, namely the transitions O<esl b q3. We denote bys,,

the resulting automaton. It can be depicted as:

We then define the relatioR’ by:

R'= {(q2,0),(po, (@ + La+1)) [0<a<1}U{(g2,0) (ps; (a+1,a+1) [0 <a <1}
U {((g2, @), (p2; (@ + 1,))) [0 < < 1} U {((g2, @), (p1, (,a +1))) | 0 <a < 1}
U {((gs, @), (p2, (B,))) | > 0ands # o + 1} U{((g3, @), (p2, (. §))) | @ > 0 andf # a + 1}

The transfer property is satisfied in a trivial way. The rielatR’ is thus a bisimulation relation and the
automateD ands,,, are bisimilar. Moreoveri3 and’3,,, obviously recognize the same timed language.

We thus get the following theorem:

Theorem 7. The decidable subclass of updatable timed automata whielyeseral clock constraints (as
described in Section 5.3) is strictly more expressive tierlanguage equivalence,) than classical timed
automata without-transitions.

6.3 Expressiveness of Deterministic Updates

We start our expressiveness study by considering detesticinipdates only. Recall that these updates,
defined in section 2.3, are built using simple updates of dtieecfollowing form:

1. z:=cwithz € X andce N
2. z:=ywithz,ye X
3. z:=y+cwithz,y € X andc € Z \ {0}

Recall that thanks to Lemma 6, we assume, without loss ofrgétyethat constants are i¥ andZ (we do

not need to consider constantsQi.

In a first step, we consider simple updates of one of the forros2. The fact that updatable timed au-
tomata using such updates and classical timed automataragedge equivalent is often considered as a
"folklore" result. However, we did not find any proof of this result in therature. Hence, and for the
sake of completeness, we propose a complete proof.

If U is a set of simple deterministic updates, we denoté) the set of updates which can be written
as/\,c x up. Whereup, € U for everyr € X.

Theorem 8. Let!d C Lu ({z:=d |z € X andd e NfU{z:=y |z, y € X}) be a set of updates. Let
A e Uta(C(X),U) (resp.A € Uta.(C(X),U)). There exists a timed automatBne Uta(C(X), Uest(X))
(resp.B € Uta.(C(X),Ucst(X))) such thatd =, B.

Remind (see section 2.3) tHd¢s(X) denotes updates to constants, that is updates of theaforsa.

Proof. Let A = (Q, X, X, I, F,R,T) be a timed automaton iblta(C(X),U). We construct a timed au-
tomatonB = (Q', X, X, I', F', R, T") in Uta(C(X),Ucs(X)) such thatd =, B.

Assume thatX = {z1,...,z,}. We set:

- Q' =Qx Xx¥,
— I' =TI x {ld} whereld is the identity ofX,
- F'=Fx XX
- R =RxX*¥.

Intuitively, in a statg(q, o) (with ¢ € Q ando € X), the value of clock: is stored in the clock (z). We
now just have to define the set of transitidisof 3.

Let us consider a transitiop —~““*- ¢ of A and a statdq, o) of B. We associate the functionp :
X — X UNtoup, whereup(z) is:

30

— dwheneverr := d is part of the updatep,
— y whenever: := y is part of the updatep,
— x in all other cases (the update is thus implicitely= x).

In B, there will be a transition

(q,0) _poaup (q/, 0/)
such that:

— If up(x) € X, theno'(z) = o oup(zx). If up(x) ¢ X, itis a bit more complicated. Some clocks
are not used (it means that they do not correspond to any of'the already defined). We choose
some of these clocks in order to define #Hér:) which are not already defineide. theos’(z) such that
up(z) ¢ X. More formally, we have:

#{z € X | Wp(x) € X} > #{up(x) | = € X andup(x) € X}

and thus
#{r € X |up(z) ¢ X} < # (X \{up(z) | € X andup(z) € X})

We can thus consider an injective applicatiotefined on the seftx € X | up(x) ¢ X} onto the set
X\ {up(z) | z € X andup(z) € X} and we can set’(x) = v(z) if up(z) & X.
- ¢’ is defined byp[z « o(z)]®
— up' is defined by, c x angup(a)gx o' (¢) = up()
We define the relatio® on (Q x TX) x ((Q x XX) x TX) by
{({q, D), {(q,0),v)) | €Q, 0 € X¥, veT*, v T¥ andv =voo}

The construction has been done preciselyRaio be a bisimulation relation.
Note that the same construction can be done for timed autonaaing:-transitions as well (in which case
they are taken as normal actions) because autonthtines not have propertransitions. O

We illustrate the previous construction on the followingueple.

Example 10.Consider the automaton on the left of the figure below.

A=A Ay o
[y~c—z~(
) “‘* oo b o, a0
@ ® U@ D
0, a, T:=1yY N U by =00 o \\‘~~____,—"/,,//
OO T
1/), b7 Yy = 0 T @7 a ” '\'j'\'\\’*..z . ////S;7 a”
; : ¥, b P
A O @0 @
S by =0
A%y ‘Ay@

8 The notationp[x «— o(x)] is for the formulay in which the variabler is replaced byr ().

31

The construction described in the proof of the previous téoapplies tad and leads to the automaton
drawn in the figure above, on the right (which consists of foopies of the original automaton, one for
each application from the sét, y} onto the se{z, y}). In the copyA,, », of A, the value ofx is stored in
the clockh; whereas the value afis stored in the clocks. A constraintz ~ ¢ must thus to be replaced by
a constraint; ~ ¢, as indicated on the figure. To illustrate the use ofitimection: in state; of automaton
A, 4, y has to be reset to zero, bytis the reference for clock (o(z) = y), we thus need to store the
new value ofy in a clock which plays no role, thus in In this case((y) = «, and thuss’(x) = y and
o'(y) = =. That's why the transition goes to stat®f automatonA4, ,. These two automata are strongly
bisimilar.

We now pursue the study of updatable timed automata withrmétestic updates by looking at the case
wheresimple updates are of the form= d.

Theorem 9. Let A € Uta(C(X),Uest(X)) (resp. A € Uta.(C(X),Ucs(X))). There exists a timed au-
tomatonB € Uta(C(X),Uy (X)) (resp.B € Uta.(C(X),Uy(X))) such thatd =, B.

Proof. Let A be a timed automaton itta(C(X), Ucs(X)). Recall that from lemma 6, we assume without
loss of generality that any updateiafis in fact of the form{z :=d | z € X andd € Z}.

We construct an automatdhin Uta(C(X), Uy (X)), strongly bisimilar taA. For every tuplex = (a;)zex

in ZX such that for every clock, = := o is a clock constraint appearing i, we construct a copy of the
automaton4, that we denote by, . Intuitively, in the automatotd,,, the value of the clock is what the
value should be id decremented by, (o corresponds to a shift of the clocks, comparing with whait the
values should be in the initial automaton).

If ¢ 24" ¢ is a transition ofA, for everya, there will be a transition,, —~“""* ¢/, where:

— up,, = uplzr = 0 instead ofr := (],
— o, = cif x := cis part of the updatep, o/, = a, otherwise.

There are finitely many tuples = («..).c x, we thus only build finitely many copies of the initial automa
ton. We denote bjs the union of all these automath, . The automato is obviously inUta(C (X)), Uy (X)).

We define the relatio® between the states of the transition system associated4natid the states of the
transition system associated wiffas:

(%U)R(QmUQ) = V=10, + «
The relationR is trivially a bisimulation relation, which concludes theopf.

Like above, automatofs has no propeg-transition, hence the same construction also holds famaata
in Uta. (C(X),Ues(X)). O

We now illustrate the construction of the proof on the follogvexample.

Example 11.Let us consider the automatofidrawn below, on the left. The previous construction gives
the automaton on the right: here, we only need two copiessohtitiomaton because the maximal constant
for x is 1 whereas the maximal constant fipis 0.

32

y>0,a, z:=1

(7 OB
x:=0

r—y<2 ¢ y:=0

If we consider now an updatable timed automaton which ustésupmlates of the forms := y andx := d,
we can apply first the construction described in the proofraddrem 8 and then the construction described
in the proof of Theorem 9 to get a bisimilar classical timetbawaton. We thus get the following result.

Corollary 2. LetC C C(X) be a set of clock constraints, and let
UCLu({z:=d|zeXanddcQ}U{zx:=y |z, ye X})

LetA € Uta(C,U) (resp.A € Uta.(C,U)). There exists a timed automatBne Uta(C(X),Uy(X)) (resp.
B e Uta.(C(X),Up(X))) such thatd =, B.

We now consider the whole set of deterministic udpates andilgeneralize the previous results. From
the decidability results of section 5, we know that for gah@pdatable timed automata, deterministic
updates of the form: := y + ¢ can not always be replaced by resets. We thus need to resirgglves to
diagonal-free timed automata with particular classes dbigs. Note that the proof of the next theorem is
much more involved than the proofs of the two previous thesrand that its results can not be considered
any more asfolfklore" .

Recall that the systens(y) of linear inequations associated with a set of constraintsa set of updates
has been defined at the end of section 5.2, page 19.

Theorem 10. LetC C Cq4 (X)) be a set of diagonal-free clock constraints and
UCLu{z:=d|zeXandde N} U{z:=y+d|x, y€ X andd € Z})

a set of deterministic updates such that the syst&gy) (of linear inequations associated withand ¢/
has at least a solution. Letl € Uta(C,U) (resp. A € Uta.(C,U)). There exists an automatdf <
Uta(Cyp (X)), Uy (X)) (resp.B € Uta. (Car(X),Up(X))) such thatd =, B.

Proof. Let A be a timed automaton ibita(C, /). We build a timed automato8i in Uta(C(X),U") where
U C Llu({z:=d|ze Xandd e N} U{z:=y |z, y € X}) which will be strongly bisimilar taA.
Applying Corollary 2 will give the proof.

We consider integer constaritsiax,).c x, solutions of the systens(y) (see page 19) for the automaton
A. For everya = (a,).ex € ZX such that for every clock, o, < max, + 1, for every statey of A,
we consider a copy,, of ¢. Intuitively, in the statey,, the value of the clock will be the value this clock
should have i, minusc,, (o can be seen as a shift of the clocks w.r.t. their values imtialiautomaton).

»,a,up Pa,@,UPo
_ _

¢’ is a transition of4, we add a transition,, q.,, for everya with:

If ¢

33

_SOOL:@Q[:L'HI‘FOZm]v
— up, = uplz := yinstead ofr := y + ¢,
/ _{ay+cifm;:y+cupdateofup

% T\ if 2 := c update ofup
If the value ofa/, computed in this way satisfies tha} > max,, then we update’, to
max, + 1.

We say thaty’ is obtained fron in an elementary waythanks to the updatep.

The number of tuples: = (o,).cx € Z* such that for every clock, a, < max, +1 is infinite. We did
thus construct, for every stagean infinite number of copies. However, we will prove thabnfrthe initial
states indexed b§0, . .., 0), only a finite number of such states are reachable.

It is of course sufficient to prove that the set of tuphesuch that a state, is reachable, is lower bounded.
Assume that it is not the case. There exists a sequence ebupl));>, such than®) = (0,...,0), and
for everyi, a't1) is obtained fromy(¥) in an elementary way thanks to an updage, and moreover, the
sequencéagi))izo tends to—oo (for a given clockz). By definition ofi/, everyup; can be written in the

form:
/\x::dm/\ /\ T =Yg+ Cp A /\ T =Yy +
z€Xy TE€Xs TEX;3
€2 <0 2 >0

with X7, X and X3 disjoint sets. We thus set

U —
wi= N o=pte
r€Xo
c. <0

and we define the sequen@&?), with:

BO = 0

30+1) is obtained in an elementary way fro) thanks toup,
It is easy to verify that the sequen(;é(i))izo is decreasing, and non-stationary (for the natural order on
the tuples of integers) becau@ﬁ(ﬂ)izo tends to—oo for some clocke.

Let z; be a clock such that the sequer@ﬁé?)izo tends to—oo. There exists at least an update of the form
21 := 23 + ¢ belonging td/{ (thus withe; < 0) such that the sequen(;/égg))izo also tends te-co. In this
way, we can construct a sequence of clockg,, > such that:

— there exists an updatg := 2,1 + ¢, inU (with ¢, < 0),
— for everyp > 1, the sequenc@@é?)izo tends to—oc.

The set of clocks is finite, there exists thus< ¢ such that:, = z,. However, the constantsnax;).cx
are solutions of the syster§4;), page 19 and this system contains in particular the in@must

max,, <max, , +¢, Withe, <0

max. , <max, +c¢,1 Withe, 1 <0
In particular the constamhax., = max., has to satisfynax., < max. , which is not possible.

Thus we have proven that the set of stagesvhich are reachable is finite. We denote/®yhe automaton
we just constructed. This automaton belong&/ta(C(X),U").

34

We define the relatiofR as follows, between the states of the transition systencagsd with.A, and the
states of the transition system associated With

reX

v andv,, + o are equivalent for the region equivalergeg,, .,)

(6 0)R{da; va) {v(x) <max, = v(z) =va(x)+ a, foreveryz € X

We will prove thatR is a bisimulation relation.

Let us assume thdly, v)R(qa, vo) and that(¢,v) —— (¢’,’). It means that there exists a transition
2P, ¢'in A such that |= ¢ andv’ = up(v). In B, there is a transitio,, —“""* ¢/ ,. We set
vl = upa(v,) and we will prove thatq’, v')R(q.,, v').

e if xis aclock such that := ¢ belongs taup, thenz := ¢ also belongs tap,,.
Thus,v), (z) = ¢ = v'(z) anda, = 0.
e if zis a clock such that := y + ¢ belongs toup, thenz := y also belongs tap,,,
e Assume that'(z) € I, with I, < max, (i.e.thatl, =]d — 1;d[or [d] with d < max_).
We want to show that’(x) = v/, (z) + /.. To this aim, we compute

vl (z) + o, = va(y) + o, because: := y belongs taup,,

We distinguish two cases:
1. If o/, < max,, we then get that

o (@) + oy = va(y) + oy + ¢

However, we have that, v)R(¢a, va) anduv(y) < max, (because’(z) = v(y)+c < max,
andmax, < max, + c), thus

v (z) + o, =v(y) +c='(x)
2. If o/, > max,, it means thaty, + ¢ > max,. However,
v'(z) = v(y) + ¢ = va(y) + ay + ¢ > max,

It is of course not possible because we did assumevtiial < max,.
e Assume that’(x) > max,. We distinguish two cases:
1. If &, > max,, thenv, (z) + o/, > max,.
2. If o/, < max,, thenv), (z) + ol va(y) + o, + c. There are also two cases:
(i) if vo(y) + oy < max,, then

vh(x) + o, =v(y) + ¢ ='(x) > max,
(i) if va(y) + ay > max,, then agnax, < max, +c, we getthav!,(z) + o/, > max,.

In all cases, we have seen thit(z) + o/, > max,, and that is precisely what we wanted.
e the change betweearp andup,, keeps the relative order of the fractional parts.

We thus get thatq’, v)R(q,,, v.,.). The reverse is very similar.

o’

We did thus exhibit a bisimulation relation betwedrand . O

Remark 8.Up to the (un)decidability resultgfsection 4), we cannot extend the previous result to timed
automata that also use diagonal clock constraints, bethisdeads to an undecidable model. It is interest-
ing to understand why the previous proof cannot be extendddraus where the diagonal-free hypothesis
is fundamental. In order to have a finite number of copies ohesdate, we set the valugax, +1 to o,
whenever the computed value is greater tharx, +1. This change does not disturb the truth or the falsity
of diagonal-free clock constraints, but can change thé wuthe falsity of diagonal clock constraints.

Example 12.In this case also, we consider a simple example. The two aitodrawn on figure 2 are
strongly bisimilar. The one on the right results from the stomction described above, taking as initial
automaton the one on the left. The maximal constantsmase, = 0 andmax, = 1.

35

y>1,a, z:=y

Fig. 2. Two strongly bisimilar automata

6.4 Expressiveness of Non-Deterministic Updates

We now study the general case of non-deterministic updates the example of section 6.2, it is false to
say that any updatable timed automaton with non-detertignipdates is strongly equivalent to a classical
timed automaton. We will thus concentrate our efforts onknganilarity. We will prove that any updatable
timed automaton with non-deterministic updates, from dd#dae class, is weakly bisimilar to a timed
automaton withe-transitions. But, as it will appear, the constructionsratech more technical than in the
case of deterministic updates. We first deal with diagores-automata.

Construction for diagonal-free clock constraints. We propose a normal form for diagonal-free updatable
timed automata. Letmax,).cx be a family of integer constants. In what follows we only ddes clock
constraintse ~ ¢ with ¢ < max,. As defined in section 5.2, we set:

T, ={[c] | 0 < ¢ <max, } U{]¢;c+ 1[] 0 < ¢ < max, } U {Jmax,; co[}

A clock constrainty is said to beotal if ¢ is a conjunctior}/\xex(x € I,) where for each clock, I, is
an element of,.. Any diagonal-free clock constraint bounded by the constanax,).cx is equivalent
to a disjunction of total clock constraints.

We also define
7! ={lc;c+ 1] 0 < ¢ < max, } U {Jmax,; oo[}
An updateup,. is saidelementaryf it is of one of the following forms:

r:€el,withl, € 7.,
—x:=y+cAz:€ I with I/ € 7/ andmax, < max, +c,
- (/\yeHm:<y+c/\x:€ Ig’c) with H C X, I, € 7!, andVy € H, max, < max, + ¢,

_ (/\yeH:c:>y+c/\x:€ Ig’g) with H C X, I, € 7/, andVy € H, max, < max, + c.

An elementary updatep, is compatiblewith a total constrainf\ . y (z € 1) if:

— I, +c¢ C I, wheneveup, isz :=y+cAz:€ I,
— foranyy € H, I, + ¢ C I} whenevewp, is (A c g = i~y +c) ANa € I;) and]; = I,.

Definition 5. Let(max,).cx be integer constants and lgtbe a timed automaton ifta(Cqr (X), U (X)).
We say that is in normal formfor the constant$max,),cx whenever for every transition —~““* ¢/
of A, the following holds:

36

— pis a total clock constraint,
- up = A\, x up. Where for every clock, up, is an elementary update, compatible wjth

Applying classical rules of propositional calculus andtiph the transitions, we easily obtain the normal
form for diagonal-free updatable timed automata (recait the restrict here our work to updates defined
by (Car), page 19):

Proposition 10. Let C be a set of diagonal-free clock constraints aidoe a set of updates defined by
the grammar (> 4r). We assume that the systefiy{) has a solution(max,). x. Any timed automaton of
Uta(C,U) is strongly bisimilar to a timed automaton ofta(Cq (X),U (X)) which is in normal form for
the constant$max,,),.c x-

Before stating our main result about the expressivenesmgbdal-free updatable timed automata, let us
try to illustrate the difficulties and the techniques thatwitt use on two toy examples.

Example 13.Consider the following automaton:

@ r<25 a, x:<1 m x=1,b ©—>
AN

The timed language recognized by this automatditdst)(b,¢’') | 0 <t < 2and0 < ¢’ — ¢ < 1}.
The previous automaton can be weakly simulated by the falig@utomaton, which only has deterministic
updates:

The non-deterministic update of the first automaton has bg@aced by a silent action. The clogkwhich
has been added represents the fractional partaofd thus checks whether it does not become bigger than
1.

Example 14.Let us consider the following automaton:

@ y<l a 2 =20 @
z:<yNy:=0 U

The timed language recognized by this automatdridst)(b,t') | t < 1 andt’ > 2}.
A first (wrong) idea is to perform the transformation above:

@ y<1l, a N Zr <1, € m r=2,b @
zz ' =0AYy:=0 U rz:=1Nz,:=0 U

However the transformation is not correct. This automatmepts for example the timed wofd, 0.5) (b, 1.8),
which is not recognized by the initial automaton.

To avoid this problem, we can add a new clogk,, which aims at keeping in mind that, wherhas been
updated, the value af was less than the value ¢f This leeds to the following automaton:

37

y<1l,a mww,y>1/\zw<175m37=2,b
2z ::OAwm,y::Zy/\yZZOU z:=1MAz:=0 _/

When the second transition is taken, the value @& set tol (this transition is chosen at a non-determinisc
date), and to ensure that the valugjafas greater tham, we add the constraint, , > 1. The clockw, ,
thus stores the value gfwhen an update :< y is done in the original automaton. Clogkcan then be
reset safely, information on the old valuexofind thus on the difference— y is stored inw, . It is easy

to verify that this automaton recognizes the same timeduagg as the initial automaton.

We will generalize the constructions of these two exampgsdve the next theorem on the expressiveness
of updatable automata with non-deterministic updates gmgbdal-free clock constraints.

Theorem 11. Let C be a set of diagonal-free clock constraints dde a set of updates defined by the
grammar € q¢). We assume in addition that the systefzy§ has a solution fo€ andi/. Let A € Uta(C,U)
(resp.A € Uta.(C,U)). There exists an automatdh € Uta.(Cq(X), Uy (X)) such thatB =, A and

.A =/ B.

Proof. Thanks to lemma 6 and proposition 10, we assume that all @etssappearing itd are integers
and thatA is in normal form for some constanisiax,)¢ x.

A clock z is saidfixedif the last update for: was either of the formx: := cor (x := y+cAz :€ I)
where the clocky was itself fixed. A clock which is not fixed is saftibating The terminology “floating”
comes from the fact that the value of a floating clock is notisedy known, we only know the interval of
the form]d; d + 1] to which it belongs.

The transformation algorithm constructs (a lot of) copiéthe original automator4, by adding suitable
clocks, transforming the transitions and adding sileribastin order to go from one copy to another.

Adding clocks.
For any clockz in X, we define a clock, which intuitively represents the fractional partaaf
For any pair of clock¢z, y), we also define two clocksy. , andwy, ,, which will compare the fractional

parts ofr andy. Let X be the set of thesy X |? additional clocks. We will explain their precise roles ajon
the construction.

Duplication of the original automaton.

Let us consider a subsgt of X, that corresponds intuitively to the floating clocks, andagtipl order<
defined onY’, which represents the relative order of the fractionalgpafthe clocks iry".

Moreover, for any clocly of Y, we define an interval,, of the form|d; d + 1[with 0 < d < max,. The
clocky will be supposed to be in the interva).

Finally, we consider a subsg&tof X, whose role will be explained below.

For any tupler = ((I)yev, <, Z), we construct a copyl, of the automatood. On each transition of .,
we add the clock constraint
/\ yel, A /\ ze <1

yey zeX

Some such constraints are trivially equivalent to “Falgelyhich case the corresponding transition can be
erased.
We denote byl" the set of all the tuples described above.

Fixed clocks.

When the fractional part of a fixed clock reaches the valuge stay in the same copy of the automaton.
To ensure this, in every copy, with 7 = ((I,),ecv, <, Z), we add on each state and for every clock
x € X \Y,alooplabelled byz, =1, ¢, z, :=0).

38

Floating clocks.

We can fix some floating clocks withs a silent action. Of cousselock can be fixed only by reaching
an integer value. Among the floating clocks, the first onesctviwill reach first the upper bound of their
interval are those maximal for the preorder. Formally, Aetwith = = ((I,)yecv, <, Z) and letM be the
set of maximal elements fet. For any state of .4, we construct as-transition leading to the copy qf
in the automatomd,- such that’ = ((I,),ev’, <', Z’) where:

Y =Y\ M
<'=< N’ xY’)
7' = Z\ {wy oy, | x € M}

This e-transition is labelled by the clock constraint

N (wey=DA N\ (W, <A N(z <)

TEM, wy yEZ xeM, ’uJ;,yEZ yey
and the update
/\ y = sup(ly)
yeM

wheresup(1,) represents the upper boundigfi.e.d + 1 if I, =|d;d + 1].

The existence of a clock;, , (respaw;,) shows that an update of the form< y+c (resp.x :> y+c) has
been used previously. The clock constraint, > 1 (resp.w; , < 1) ensures that we did really simulate
such an update.

Modification of the transitions.

We consider a copy. with 7 = ((I,)ycvy, <, Z) and a transition(¢,, ¢, a, up, ¢..) of this copy. This
transition will be replaced by a transitidn, , ¢, a, up, ¢~) whereg is the state, corresponding¢f in an
other copyA; with ?(E/)yei}, 2, 2) which will be made precise below.

The componenty’, (IAy)

updates appearing ip.

The new updat@p will only be defined thanks to deterministic updates (of @tz := corz := y +).

Initially, we setY =, IAy =I,foreveryy €Y, =<, up=0 andZ = Z.

yev < andup will be built inductively by considering one after the othae

Before listing all the possible updates, we explain the oflthe setZ, which has not been precised yet.
Assume that the clock has been updated thanksio:< y + ¢ wherey is a fixed clock. The clock:
becomes floating. We use the clogkin order to store the fractional part of we reset this clock to zero.
We also need to keep in mind the current value of the fractipag of y, stored until now “in” the clock
zy. As z, must stay less thag,, z, mustreachl beforez, does. Of course, if the clockis not updated,
this can be checked using the clogk but if the clocky is also updated, or is updated befogereached,
the old value of;, will be forgotten. We thus add the cloek, , to the setZ and we setv, , := z,. The
clock w, , will keep in mind the old value of,,, whatever the clock becomes. The property that we now
need to check is that,. , > 1. The role of the clocksv;, , is similar, but they are used for the updates of
the formz :> y + ¢, wherey is a fixed clock. The conditionz’, reaches the valuebeforez,” is checked
thanks to the clock constraint, , < 1. Example 14 illustrates the use of these clocks.

As said before, we now list all the possible values for theatigst
e if up, isx := ¢, we just need to consideras a fixed clock:
?H?\{x},ZHZ\{wguy,w;y lye X}up—upAaz:=cAzy:=0

o if up, isx:€ I,

39

1. if I =]cy; o0, then
f’%f’\{x},?%?\{wm’y,w;’y|y€X},1/L]\)HuAp/\x::cz+l/\zz =0
2. if I, =]e; e+ 1], then
Y —YU{a}, Z — 2\{wx,y,w;,y | y € X}, < is a total preorder compatible with
Zonthe set \ {z}, up «— up A zp =0
—ifupyisz:=y+cAhx:€l,
1 ifygy,
oV — Y\ {a},
o Z — Z\{wyy,w,, |y€ X}
©UP —UP AT =Y+ CAzg =2y
2. ifyey,
e if I’ is bounded,
LY — Y U{a},
7~ 2\{wx7yaw;,y |y € X},
- 2y andy =,
L =1,,
S UP — UP N Zg 1= Ty
o if I is not boundedie. I, =]c,; +0o0],
Y Y\ {a},
7 Z\{wx,va;p?y |y e X},
CUp —Up AT =g+ 1Az =2y
° ifupmis(/\yeH;z::<y+c)Az:eI;,wesetHl:HﬂYandHQ:H\Yand
e if I/ is bounded,
LY =Y u{a},
7= (Z\{way,wly |y € X}) U{wyy |y € Ha},
-z 3y andy%x if y € Hy,
SUp — UP N zg = 0NN e, Wy = 2y
o if I is]cy;+o0],
Y =Y\ {z},
2= (Z\{way |y € XD),
SUP — UPAT i=cp + 1A 2, = 0.
° ifupxis(/\yeHa;:>y+c)Ax:eI;,wesetHl:HﬂYandHQ:H\Yand
e if I/ is bounded,

LY =Y u{z},
- Z=(Z\{way,)y |y € X} U{u,, |y € Ha},
S y=a andx%y if y € Hy,

40

S UDP — UP N 2y = 0A Nyen, Wey = 2y-
o if I/ iS]cy; +o0,

V=V \ s},

7= (Z\ {wey |y € XY),

CUPp —UPp AT i=cp + 1A 2z, :=0.

It remains to prove that the resulting automaton weakly faes the initial automaton and that, in addition,
it recognizes the same timed language.

We now define a relatioR, which will be a simulation relation. Roughly, a state of drgginal automaton
will be in relation with all the copies of this state in the @epof the automaton. The set of states of the
timed transition system associated withis @ x TX, whereas the set of states of the transition system
associated witl8 is:

{¢- | ¢ € Qandr € T} x TXV{zlzeX}uz

We define the relatiot: by

‘ Vy eY, v(y) € I, and0 < v'(z,) <1,
’ Yy € X\ Y, eitherv(y) = v'(y) or (v(y) > ¢, andv’(y) > ¢,),
(g, "), (g,) ‘ y1 < y2 = frac(v(y1)) < frac(v(y2)),
‘ Wyy € Z = frac(v(z)) < v'(wa,y)
| andw, , € Z = frac(v(z)) > v'(w} ,)-

N
\

It is easy but tiresome to prove thatis a simulation relation and that the automatbrecognizes the same
timed language as the initial automaton.

The automaton which has been constructed only has detstminpdates and diagonal-free clock con-
straints. We finally use Corollary 2 to conclude the proofhafdrem 11. O

Example 15.Consider the timed automaton below:

(p7 a7x:>c

v, b, z:=d

The transformation of the proof builds the automaton degian figure 3 (in this case, no cloak; , or
w;, ,, is needed). This construction suffers from an importantlioatorics explosion, we thus only draw
a small part of the resulting automaton, it should be sufiicier understanding the construction.

Let us describe this automaton. There is only one cloclone copy for each intervady; o + 1] (with

¢ < a < max,) is needed. The transition going up on the right of the figepresents the fact that clock
2 has reached the upper bound of intefvala + 1] where it was floating. This transition can be taken in a
non-deterministic way, it thus fia posteriorithe value clocke had after the update :> c. Loops on the
upper automaton represent when the valuesftrrough the update :> cis taken as an integer value or a
value greater than the maximal constant (in which case,risgg® value is not important, we just need to
know that it is bigger thamax,., thus we set it arbitrarly tmax, +1.

41

¢, a, T :=max, + 1 p, a, r:=awitha > ¢

A
Zz < 1A, zz < 1, €,
’ sa, 2z :=0
b, x:=d v ri=a+1
// \\
I \
| |
| |
| |
| |
|
; @ @ |
| |
|
§ Inv(ze < 1) i Azclaza+i]
B e -7 with ¢ < a < max,

[x ~ e < True/False]

Fig. 3. Removing the non-deterministic updates

Construction for general clock constraints. We consider now updatable timed automata with general
clock constraints. As in the previous section, we define anabform for these automata. We consider
again the set§,, 7/, J,., defined in sections 5.2 and 5.3. We will say that a clock cairgtr

/\ r el A /\ =Y € Jpy
rzeX z,yeX

is total whenever for every clock, I, € Z, and for all clockse,y € X, J,,, € J.,. We will say that an
updateup,. for the clockz is strictly elementaryhenever it is of one of the following forms:

— = cWith 0 < ¢ < max,,
— x:€ IV with I/ € T/ (Z/ is the sef{]¢; ¢ + 1]| 0 < ¢ < max, }),
—(z=yAzx:el)withI, €.

A strictly elementary updatep,. is compatiblewith a total clock constraint

/\.’EEII/\ /\x_yejz,y

rzeX z,yeX
if I, C I/, as soon agp, isz :=y Ax :€ I,.

Definition 6. Let ((max,).cx, (max,)z yex) be a tuple of constants and let be a timed automaton
in Uta(C(X),U(X)). Ais said to be imormal formfor the constant§(max,),c x, (max, y)z, yex) if for
every transitiony 2", ¢/ of A:

42

— (is a total clock constraint, and
— up = A\, cx up, With for every clocke, up, is a strictly elementary update, compatible wjth

Applying the classical rules of the propositional calcudusl splitting the transitions, we obtain the nor-
mal form for the timed automata with general clock constm{necall that updates are restricted to the
definition$4er,, page 24).

Proposition 11. LetC be a set of general clock constraints andilebe a set of updates generated by the
grammar €>,.,,). We assume that the systefiy{,) has a solution((max,).cx, (max, y)z yex). Every
automaton inUta(C,U) is strongly bisimilar to an automaton itVta(C(X),U (X)) which is in normal
form for the constant§(max;) e x, (Maxy)z yex)-

When we are interested in decidable subclasses of timed atdamith general clock constraints, we must
restrict the set of updates which we consider. As will betdistiaed in the following theorem, the decidable
timed automata can be weakly simulated by classical timézhaata with silent actions.

Theorem 12. LetC be a set of general clock constraints adde a set of updates generated by the gram-
mar ({gen). Let A be an automaton irta(C,U). There exists an automatdh in Uta. (C(X),Uy(X))
such thatB =, Aand A =, B.

The proof is similar to the one of theorem 11, and is even smgihce we do not have updates of the form
x i~y +c(with ~ € {<, <>, >1).
6.5 Summary of the Expressiveness Results

In this section, we proved the expressiveness results wdrielsummarized in Table 3 (TA represents
the classUta(C(X),Uy (X)) whereas TA represents the cladsta. (C(X),Uy(X)). The sign>, means
“strictly more expressive” (from a language point of view).

Up(X) U ... Diagonal-free constraints General constraints

1 Ti=cr:=y =, TA
2 ri=x+1 =, TA
3 r=y+c Turing
4 ri=xz—1 Turing
5 z:<c >0 TA, TA:
6 :

x:i>c TAE
7 ri~y+c .

Turing

8 ly+ec<iz:<y+d
9 lyt+ce<ixz:<z+d Turing

with ~ € {<, <, >, >}andc, d € Q"
Table 3. Expressiveness results

The updatable timed automata model is thus not much moressipe than classical timed automata. The
transformation of a (decidable) updatable timed automattma classical timed automaton with silent
actions suffers from a big combinatorics blow-up, thus t@slappear to provide synthetic way to rep-
resent timed behaviours. We do not know whether some sirtralesformation exists, but the preliminary
examples 13, 14 and 15 let us think that it is rather imprab#imt it exists.

43

7 Conclusion

In this paper, we studied a natural extension of Alur and$ilmed automata, based on the possibility to
update clocks in a more elaborate way than simply reset tbe@rd. Our results concern both decidability
results (summarized in table 2, page 25) and expressivenggsrties (summarized in table 3, page 43).

Our work lets open some mostly theoretical questions abpdatable timed automata. For example, one
could be interested in the following questions:

— Is it possible to transform an updatable timed automatanantequivalent traditional timed automaton
in a simpler way than the one presented in section 67

— Is it sometimes unavoidable to useransitions when transforming updatable timed automatia i
equivalent timed automata? If so, when can we do so?

However, from our point of view, the main interest of this was to provide a sound theoretical framework
for the use of updatable timed automata as a model in reabtadies (if that was necessary, a recent paper
[Bou03] has recalled how much these theoretical framewars® necessary to tools). Indeed, updatable
timed automata allow to represent in a concise way systenchvelan not be modelled in a natural way
by timed automata. We also proved that analyzing these rmadel be done in a complexity not higher
than the one of classical timed automata. Subclasses ofalpddimed automata have been implemented
in the tool UPPAAL. Their implementation uses a technique inspired by our Baogine inequations sys-
tems [BBFLO3].

Acknowledgements:We would like to thank Béatrice Bérard for her careful regdf the paper and her
comments.

References

[ACD192] Rajeev Alur, Costas Courcoubetis, David Dill, Nicolas Halbwachs, otard Wong-Toi. An imple-
mentation of three algorithms for timing verification based on automata ersptinaProc. 13th IEEE
Real-Time Systems Symposium (RTSS{E#)es 157-166. IEEE Computer Society Press, 1992.

[ACH94] Rajeev Alur, Costas Courcoubetis, and Thomas A. Henzindée observational power of clocks. In
Proc. 5th International Conference on Concurrency Theory (CORE®UY), volume 836 ofLecture Notes
in Computer Scien¢c@ages 162—177. Springer, 1994.

[AD90] Rajeev Alur and David Dill. Automata for modeling real-time systeinsProc. 17th International Collo-
quium on Automata, Languages and Programming (ICALR’9@ume 443 oLecture Notes in Computer
Sciencepages 322-335. Springer, 1990.

[AD94] Rajeev Alur and David Dill. A theory of timed automataTheoretical Computer Science (TCS)
126(2):183-235, 1994.

[AFH94] Rajeev Alur, Limor Fix, and Thomas A. Henzinger. A determatile class of timed automata. Rroc.
6th International Conference on Computer Aided Verification (CAV'9dlume 818 ofLecture Notes in
Computer Sciencgages 1-13. Springer, 1994.

[AHV93] Rajeev Alur, Thomas A. Henzinger, and Moshe Vardi. Pagtio real-time reasoning. IRroc. 25th
Annual ACM Symposium on the Theory of Computing (STOQ®8)es 592—601. ACM, 1993.

[BBFLO3] Gerd Behrmann, Patricia Bouyer, Emmanuel Fleury, aind &. Larsen. Static guard analysis in timed
automata verification. IRroc. 9th International Conference on Tools and Algorithms for the Canstn
and Analysis of Systems (TACAS'2Q08)Jume 2619 ol ecture Notes in Computer Scienpages 254—
277. Springer, 2003.

[BBP02] Beéatrice Bérard, Patricia Bouyer, and Antoine Petit. Analysied®BM protocol withupPAAL. In Proc.
2nd Workshop on Real-Time Tools (RT-TOOLS'@RP2. Proc. published as Technical Report 2002-025,
Uppsala University, Sweden.

44

[BDOO] Beéatrice Bérard and Catherine Dufourd. Timed automata addiel clock constraints. Information
Processing Letters (IPL.yY5(1-2):1-7, 2000.

[BDFPOOa] Patricia Bouyer, Catherine Dufourd, Emmanuel Fleurg, Antoine Petit. Are timed automata updat-
able? InProc. 12th International Conference on Computer Aided Verificatio(@@00), volume 1855
of Lecture Notes in Computer Scienpages 464-479. Springer, 2000.

[BDFPOODb] Patricia Bouyer, Catherine Dufourd, Emmanuel Fleurg, Antoine Petit. Expressiveness of updatable
timed automata. IfProc. 25th International Symposium on Mathematical Foundations ofpDten Sci-
ence (MFCS’2000)volume 1893 of_ecture Notes in Computer Scienpages 232—-242. Springer, 2000.

[BDGP98] Béatrice Bérard, Volker Diekert, Paul Gastin, and Antoirtét. Réharacterization of the expressive power
of silent transitions in timed automatBundamenta Informatica®6(2—3):145-182, 1998.

[BF99] Béatrice Bérard and Laurent Fribourg. Automated verificadfoamparametric real-time program: the ABR
conformance protocol. IRroc. 11th International Conference on Computer Aided Verification/(@%),
volume 1633 oLecture Notes in Computer Sciengages 96-107. Springer, 1999.

[BFKMO3] Béatrice Bérard, Laurent Fribourg, Francis Klay, andn}&rancois Monin. A compared study of two
correctness proofs for the standardized algorithm of abr confarea&ormal Methods in System Design
22(1):59-86, 2003.

[BGP96] Béatrice Bérard, Paul Gastin, and Antoine Petit. On the powenrebbservable actions in timed automata.
In Proc. 13th Annual Symposium on Theoretical Aspects of ComputercBqi8 TACS'96)volume 1046
of Lecture Notes in Computer Scienpages 257-268. Springer, 1996.

[BLL 798] Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Paiteré/ang Yi, and Carsten Weise. New gen-
eration ofuPPAAL. In Proc. International Workshop on Software Tools for Technology TeartSTTT'98)
BRICS Notes Series, pages 43-52, 1998.

[Bou03] Patricia Bouyer. Untameable timed automata!Ptoc. 20th Annual Symposium on Theoretical Aspects
of Computer Science (STACS'08plume 2607 ofLecture Notes in Computer Sciengages 620-631.
Springer, 2003.

[CGO0] Christian Choffrut and Massimiliano Goldwurm. Timed automata méthiodic clock constraintslournal
of Automata, Languages and Combinatorics (JALS(Y):371-404, 2000.

[DGP97] \olker Diekert, Paul Gastin, and Antoine Petit. Removwvirtgansitions in timed automata. Proc. 14th
Annual Symposium on Theoretical Aspects of Computer Science $®7AG/olume 1200 ofLecture
Notes in Computer Sciengeages 583-594. Springer, 1997.

[Dom91] Eric Domenjoud. Solving systems of linear diophantine equatinslgebraic approach. IRroc. 16th
International Symposium on Mathematical Foundations of Computer Gci@hFCS’91) volume 520 of
Lecture Notes in Computer Scienpages 141-150. Springer, 1991.

[DOTY96] Conrado Daws, Alfredo Olivero, Stavros Tripakis, andgse Yovine. The tookRONOS. In Proc. Hybrid
Systems llI: Verification and Control (1995)olume 1066 of_ecture Notes in Computer Sciengages
208-219. Springer, 1996.

[DOY94] Conrado Daws, Alfredo Olivero, and Sergio Yovine. Veirfy et-lotos programs witkRONOS. In Proc.
7th International Conference on Formal Description Techniques (FE®4), pages 227-242. Chapman
& Hall, 1994.

[Duf97] Catherine Dufourd. Une extension d’un résultat d’indécilitétpour les automates temporisés. Rroc.
9th Rencontres Francophones du Parallélisme (RenPay’B397.

[DZz98] Francgois Demichelis and Wieslaw Zielonka. Controlled timed autormatRroc. 9th International Con-
ference on Concurrency Theory (CONCUR’98)lume 1466 ofecture Notes in Computer Scienpages
455-469. Springer, 1998.

[HHWT95] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Fouser guide taHYTECH. In Proc. 1st Inter-
national Conference on Tools and Algorithms for the Construction and Bisady Systems (TACAS’'95)
volume 1019 oL ecture Notes in Computer Scienpages 41-71. Springer, 1995.

[HHWT97] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Tély TECH: A model-checker for hybrid
systems.Journal on Software Tools for Technology Transfer (STI{)-2):110-122, 1997.

[HKWT95] Thomas A. Henzinger, Peter W. Kopke, and Howard Wadng-The expressive power of clocks. Rroc.
22nd International Colloquium on Automata, Languages and Progragfi®ALP’95), volume 944 of
Lecture Notes in Computer Scienpages 417-428. Springer, 1995.

[HSLL97] Klaus Havelund, Arne Skou, Kim G. Larsen, and Kristian dunFormal modeling and analysis of an
audio/video protocol: An industrial case study usingPAAL. In Proc. 18th IEEE Real-Time Systems
Symposium (RTSS'9Pages 2—-13. IEEE Computer Society Press, 1997.

45

[HU79]

[JLS96]

[LLOS]

[LPY97]

[Mil89]

[Min67]
[Par81]

[Wil94]

[Yi90]

[Yio1]

[Yov97]

John E. Hopcroft and Jeffrey D. Ullmamtroduction to Automata Theory, Languages and Computation
Addison-Wesley, 1979.

Henrik E. Jensen, Kim G. Larsen, and Arne Skou. Modellimjanalysis of a collision avoidance protocol
usingspINanduPPAAL. In Proc. 2nd SPIN Verification Workshop on Algorithms, Applications, Use,
Theory American Mathematical Society, 1996.

Francois Laroussinie and Kim G. Larsen. Cmc: A tool for carsitional model-checking of real-time
systems. InProc. IFIP Joint International Conference on Formal Description fieiques & Protocol
Specification, Testing, and Verification (FORTE-PSTV,'@8pes 439-456. Kluwer Academic, 1998.

Kim G. Larsen, Paul Pettersson, and Wang YirPR4AL in a nutshell. Journal of Software Tools for
Technology Transfer (STT,T)(1-2):134-152, 1997.

Robert Milner. Communication and ConcurrenciPrentice Hall International, 1989.

Marvin Minsky. Computation: Finite and Infinite Machine®rentice Hall International, 1967.

David Park. Concurrency and automata on infinite sequeroeBroc. 5th Conference on Theoretical
Computer Science (TCS’81plume 104 oL ecture Notes in Computer Scienpages 167—-183. Springer,
1981.

Thomas Wilke. Specifying timed state sequences in powerful @dbbdidlogics and timed automata.
In Proc. 3rd International Symposium on Formal Techniques in Real-HEnteFault-Tolerant Systems
(FTRTFT’94) volume 863 ofLecture Notes in Computer Scienpages 694—715. Springer, 1994.
Wang Yi. Real-time behaviour of asynchronous agent®rbit. 1st International Conference on Theory of
Concurrency (CONCUR’90yolume 458 of_ecture Notes in Computer Scienpages 502—-520. Springer,
1990.
Wang Yi. A Calculus of Real-Time Systen8hD thesis, Chalmers University of Technology, Géteborg,
Sweden, 1991.

Sergio Yovine. RONOS A verification tool for real-time systemsournal of Software Tools for Technol-
ogy Transfer (STTT)L(1-2):123-133, 1997.

46

