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Abstract

The client-server model has been successfully used to
support a wide variety of families of services in the con-
text of distributed systems. However, its server-centric na-
ture makes it insensitive to fast changing client character-
istics like terminal capabilities, network features, user pref-
erences and evolving needs.

To overcome this key limitation, we present an approach
to enabling a server to adapt to different clients by making
it programmable. A service-description language is used
to program server adaptations. This language is designed
as a domain-specific language to offer expressiveness and
conciseness without compromising safety and security. We
show that our approach makes servers adaptable without
requiring the deployment of new protocols or server imple-
mentations.

We illustrate our approach with the Internet Message
Access Protocol (IMAP). An IMAP server is made pro-
grammable and a language, named Pems, is introduced to
program robust variations of e-mail services.

Our approach is uniformly used to develop a platform
for multimedia communication services. This platform is
composed of programmable servers for telephony services,
e-mail processing, remote-document processing and stream
adapters.

1. Introduction

Theclient-servermodel is a software architecture com-
monly used to support a family of services in the context of
a distributed system. A server implements a set of services.
Clients, connected to the server’s system with a network,
send requests to access these services. When the server has
processed a request, it sends a response to the correspond-

ing client.
The rules and conventions used by the server and a client

to interact are defined by aprotocol. A protocol has two
main purposes:

A specification for implementers. It precisely defines
both the formats of data and the requests/responses that can
be exchanged between the server and a client. As such, a
protocol provides guidance for an implementer of the server
or a client to develop all the required functionalities. This
specification is detailed enough so that a client can be im-
plemented independently of a given server. In fact, although
the server has to provide the complete family of services, a
client can only implement a subset of these services.

A definition of a family of services. A protocol defines a
family of services implicitly, in that, determining this fam-
ily requires a careful study of the protocol requests and re-
sponses. Such study allows one to identify the required fam-
ily of services to be provided by the server, and subsets of
the family of services to be implemented by a client.

To illustrate the client-server model, consider a family
of services for a remote access to mailboxes. This family
of services aims to provide a client with access to messages
stored on a server, at some possibly distant location. In fact,
there are many ways in which these services can be realized.
One instance is defined by the Internet Message Access Pro-
tocol (IMAP) [11, 20]. There exist various implementations
of IMAP servers. There is an even greater variety of IMAP
clients, ranging from simple e-mail reading tools targeted
toward embedded systems (e.g., Althea [2]) to integrated In-
ternet environments (e.g., Microsoft Outlook [19], Netscape
Messenger [21]) for workstations. As such, IMAP illus-
trates how much, for a given protocol, clients and servers
can be independently implemented.
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1.1. Why is the Client-Server Model Limited?

Although successful, the client-server model is limited
in that it offers little, if any, sensitivity to the client needs
and requirements. Indeed, in this model, the server consists
of a fixed implementation of a set of services which greatly
limits its ability to adapt to a client. Let us review instances
of this insensitivity and illustrate them with the IMAP case.

• Insensitivity to client terminal capabilities(e.g.,audio,
video, computing power, energy consumption, . . . ).
Insensitivity to the display capabilities of the client ter-
minal may cause the server to deliver inappropriately
formatted data to the client. For example, a colored
message body, sent to a black-and-while display, is a
waste of bandwidth and computing power.

• Insensitivity to network features(e.g.,available band-
width, billing policy, . . . ). Insensitivity to network
bandwidth makes it impossible for the server to ad-
just the volume of information sent to the client when
needed. For example, when the available bandwidth is
low, a high-quality audio file (e.g.,16-bit stereo sam-
pled at 44,1 kHz), attached to a message, should be
degraded to avoid overloading the network.

• Insensitivity to client preferences.This insensitivity
causes all clients, regardless of their client terminal,
to have the same view on their mailbox. For exam-
ple, when a client wants to access the messages of
a mailbox, the server sends an exhaustive summary
of all messages. There is no mechanism to minimize
this summary with respect to some user-defined filters
when this request comes from a client terminal with
limited capabilities (e.g.,a cell phone).

• Insensitivity to rapidly evolving market needs.Fierce
competition among telecommunication companies and
hardware manufacturers, compounded with highly
volatile user trends, should result in rapid service de-
velopment and deployment. However, the services of-
fer by a server are frozen by a protocol and thus cannot
keep pace with market opportunities.

As illustrated by the IMAP case, the insensitivity of the
client-server model can be a major limiting factor for its
applicability to fast changing requirements and needs. This
insensitivity has long been identified and solutions has been
proposed.

The first common approach to remedying this deficiency
consists of customizing an existing protocol with respect to
the requirements of a new usage context. This approach
leads to a proliferation of protocols which causes obvious
compatibility problems. Consequently, it works against

major standardization efforts most notably made by the
telecommunication and networking communities.

Recent protocols, like RTSP [25], and new versions of
traditional ones, like HTTP/1.1 [10] acknowledge the fact
that a protocol should cope with evolving needs and that it
should be sensitive to client requirements. Their strategy
to address this issue mainly consists of offering three pos-
sible extensions: new headers in requests/responses, new
error codes and, new requests. Again, this strategy defeats
the idea of standardizing interactions between a server and,
independently developed, clients. Besides, it is a server-
centric approach whereas adaptability often needs to be de-
fined with respect to the client.

Another approach consists of enabling code to be in-
troduced on the server side in the form of scripts (e.g.,
CGI scripts [4]) parameterized with respect to some client
data. Again, this strategy is server-centric because scripts
can only be introduced by the server administrator. Conse-
quently, it is limited to the scope of adaptability foreseen by
the owner of the server.

An alternative aims to leave the server unchanged but to
rely on the client to adapt its behavior to the needs and re-
quirement of the user. In this strategy the server remains
insensitive to the client, with the drawbacks mentioned ear-
lier; the client devotes computing power and time to adjust
to the user’s needs. This strategy is illustrated by the latest
version of Mozilla (version 1.3 Alpha) [16] where messages
are being processed locally to fit the client preferences.

A related approach consists of introducing a proxy server
that runs client scripts and invokes the unchanged server.
Because the client scripts area priori untrusted by the
server administrator, the proxy needs to run as a different
process, or even, on a different machine. In this context, not
only does a request trigger computations in the server, but
it also requires the proxy to execute the client script to pro-
cess the response. In addition, if the proxy and the server
run on different machine, they consume bandwidth to com-
municate.

None of the above approaches satisfactorily allow client
needs and requirements to be propagated to the server. They
are limited to addressing the needs and requirements ex-
pected by the protocol developer.

1.2. Our Approach

To make the client-server model sensitive to client re-
quirements and needs, we propose to make the set of ser-
vices supported by a server programmable. To do so, our
strategy consists of enabling a client (or a third-party devel-
oper) to provide the server with a specific implementation
for the processing of a request. By varying the implemen-
tation of a request, one can vary the definition of a specific
service. As an example, in the IMAP case, a client could re-
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define the request aimed to list the messages of a mailbox
to only report on the ones coming from a particular domain,
so as to minimize the volume of information.

Yet, providing arbitrary implementations for a request
obviously compromises the robustness of the server: one
could attempt to upload erroneous, inappropriate, or even,
malicious implementations. To alleviate these risks, we pro-
pose to introduce aservice-description languageto specify
new services. Following the generative programming ap-
proach [8], service implementations areautomaticallygen-
erated from their description.

A service-description language is a domain-specific lan-
guage (DSL) in that it offers appropriate abstractions and
notations, and it is restricted such that critical properties
can be checked [6]. Indeed, making specific properties
decidable is a key parameter in the design of most DSLs.
Examples of DSL properties include linear usage of re-
sources [18], termination [6], and deadlock-free sched-
ulers [3]. These properties often go beyond the scope
of general-purpose checking techniques, whether dynamic,
such as sand-boxing [29], or static, such as type checking
[1]. Because such properties are undecidable in general,
in the context of general-purpose languages (GPLs), both
static and dynamic program analysis produce unpredictable
results.

DSLs have been studied in the context of various ap-
plication domains for many years and have shown bene-
fits in terms of expressiveness, conciseness, safety and per-
formance [28]. We argue that, just like DSLs are a well-
recognized solution to address families of programs [6, 28],
they can be uniformly used to model families of services
with similar benefits.

We propose a systematic approach to making servers
programmable. This approach is based on a software archi-
tecture for servers where each request is a potential point
at which programmability can be introduced. The scope
of programmability corresponds to the scope of the services
which can be designated. Some properties, critical to a fam-
ily of services, can be guaranteed by definition of the DSL
(e.g.,termination and predictable resource usage).

1.3. Contributions

Most families of services are bound to evolve, often
rapidly and unpredictably in emerging domains such as
multimedia communications. To address this key issue, our
contributions can be summarized as follows.

• We identify where the client-server model can be made
adaptable, namely, in the treatment of requests. This
choice is motivated and illustrated.

• We demonstrate that making requests programmable
allows a service to adapt to unforeseen needs and

requirements, without deploying new protocols and
server implementations.

• We show that DSLs enable server programmability to
be controlled and disciplined without compromising
robustness.

• We illustrate our approach with the IMAP protocol and
an IMAP server. The server has been modified to make
it programmable; new services are safely defined in a
DSL called Pems.

• Finally, we argue that combining programmable
servers leads to rich, yet robust services. This combi-
nation is illustrated by the IMAP programmable server
combined with a new server aimed to process docu-
ments remotely.

Our approach is uniformly used to develop a platform for
multimedia communication services. This platform, named
Nova, consists of programmable servers to define telephony
services, e-mail services, remote-document processing ser-
vices, and stream adapters.

Overview

Section 2 introduces the notion of a programmable
client-server model. Section 3 describes how to develop
a programmable server from a given protocol. Section 4
shows how it scales up to a complete platform for commu-
nication services. Section 5 assesses our approach based
on some experimental data collected in the context of the
IMAP case. Section 6 gives concluding remarks and dis-
cusses future work.

2. The Programmable Client-Server Model:
What

In this section, we present the main stages of our ap-
proach to introducing the notion of programmability in the
client-server model. In this approach, a developer first de-
termines variations for the family of services underlying a
protocol definition. Then, he studies the mapping of the
identified variations into the protocol by determining where
programmability requires the protocol to be generalized.

2.1. Service Variations

This study of service variations is done from the client’s
viewpoint, to address his needs and requirements. A start-
ing point consists of collecting existing variants of a proto-
col and integrating them as variations of generic services. A
complementary strategy aims to extrapolate on technologi-
cal evolution.

3



Yet, in contrast with protocols, our approach is not aimed
to exhaustively determine potential variations. Rather, it
delimits a scope of variations. Specific points within this
scope will later be designated by particular DSL programs.

In the IMAP case, our goal is to identify a set of vari-
ations characterizing a scope of customized accesses to a
mailbox. We explore these variations systematically by
considering the various levels involved in accessing a mail-
box, namely, an access-point, a mailbox, a message, and
its fields (i.e., message headers and parts). At each level
of this hierarchical schema, we study what programmabil-
ity could be introduced. We refer to the programmability of
each level as aview.

• At the top-level, an access-point view should define
coarse-grained parameters such as the client terminal
features, the characteristics of the link layer, and a
mailbox view.

• A mailbox view should enable one to only consider
messages which go through a user-defined filter. This
should prevent information from flooding a limited
client terminal. Each retained message should be as-
signed a message view for further customization.

• A message view should define the layout of a message,
that is, the fields involved in a message. It should drop
fields that are irrelevant with respect to a given mes-
sage view. Each retained field should be assigned a
field view for specific processing.

• A field view should define the layout of a field value,
that is, the value of a message header, a message at-
tribute or a message part (e.g.,theFrom header, the to-
tal message size, and the message body, respectively).
It should appropriately format field values with respect
to the client needs and requirements. This process
should include such treatments as erasing voluminous
values, condensing values, and converting the format
of field values.

2.2. Mapping Service Variations into a Protocol

Once the variations have been identified, the protocol can
be examined to determine how to map these variations into
the protocol. A protocol defines the requests/responses ex-
changed between the client and the server. Each request is
an abstraction corresponding to a given service (or a part of
it).

The service variations, identified in the previous phase,
need to be associated with specific requests. Different kinds
of association can occur between variations and requests.
Let us illustrate this phase with the IMAP example.

Some requests may be out of scope with regard to the ser-
vice variations previously identified. For example, IMAP

manages multiple mailboxes and thus offers requests (a.k.a.
commands) to create and delete a mailbox. None of the
identified service variations are concerned with these re-
quests.

A service variation may impact several requests. The
number of recent messages, for instance, is part of the
response of three requests (i.e., Select , Status and
Examine ). These requests are thus affected by a mailbox
view since they should now only report on recent messages
according to the current mailbox view (i.e., a user-defined
filter). For another example, consider theSearch request.
It determines which messages in the currently selected mail-
box match a list of criteria. Again, the message list that
matches a search should take into account the mailbox view.

Some service variations can in fact be considered as ex-
tensions in that they open up a new family of services within
the one under study. This is the case for the field view, and
more specifically, views of attachments. Here, our goal is
to allow attached documents to be converted into a different
format to better adapt to needs and requirements. As dis-
cussed in Section 4, this particular functionality is obtained
by composing the programmable IMAP server with another
programmable server dedicated to remote-document pro-
cessing.

After having determined the requests impacted by the
service variations, we need to enable programmers to write
service variations.

3. The Programmable Client-Server Model:
How

Enabling service variations to be introduced in a server
by a client requires addressing two main issues: (1) How to
easily express a variation? (2) How to preserve the integrity
of the server? Both issues are addressed in this section. Ad-
ditionally, the implementation of a programmable server is
discussed.

3.1. DSL Design

Issues (1) and (2) can be addressed by using a DSL ap-
proach. The idea is to design a language targeted toward
specific service variations. The DSL should thus be concise
and easy to use because of the dedicated nature of syntac-
tic constructs and data types. Furthermore, programs in the
DSL should be restricted enough to enable critical proper-
ties to be checked.

In the context of the IMAP case, we have designed a
DSL that enables a client to define views on a mailbox. This
language, called Pems, defines views at four different lev-
els: access-point, mailbox, message, and message field.
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Access-point view. A view can be defined for a type of
access-point. An access-point consists of a set of parame-
ters such as the client terminal features, the characteristics
of the link layer, and a mailbox view.

view accesspointPDA {
Mobility = YES;
Screen = 320 * 240 ;
Color = NO;
Bandwidth = 10MB/s ;
Mailbox_view = nomadic( 1MB);

}

The above example defines an access-point namedPDA.
It declares the features of the link layer and the client ter-
minal. Also, it specifies which mailbox view to use, that
is, nomadic . This mailbox view is invoked with an argu-
ment setting a size limit for filtering purposes. Note that
parameters omitted in an access-point declaration are given
a default value.

Mailbox view. This part aims to select the messages that
belong to a view. A mailbox view consists of a list of pairs
condition-action, sequentially executed for a given mes-
sage. When a condition matches, the corresponding action
is performed. An action can either drop the current mes-
sage (constructignore) or assign it a category of messages
for its processing (constructbind); both actions, when exe-
cuted, terminate the view and are making an implicit return.
The condition-action language is inspired by Sieve [14].

To ease the programming, Pems variables are bound
to the message field values, their name corresponds to a
header name (e.g.,variableFrom), a specific message part,
such as the message body (variableBody ), or some mes-
sage attribute name, such as the total message size (variable
Size ).

view mailbox nomadic(size s) {
if (From == " joe@mail.fr ")

bind boss;
if (Size > s)

ignore;
bind tiny;

}

This simple example defines a view where messages
coming from a given user (joe@mail.fr ) are systemat-
ically retained and further processed by theboss view. If
the message size exceeds the argument value, the message
is dropped. Otherwise, the message is assigned the category
tiny and gets processed accordingly.

Message view. The idea is to define a set of fields, rele-
vant to the client, for a given category of messages. Also,
a view may be assigned to some fields to trigger specific
treatments.

view messageboss {
From as cst(" The Boss! ");
Date;
Subject;
Body;
Attachment[] as bwImages( 30KB);

}

The message view shown above consists of five fields
and assigns a specific treatment to fieldsFrom and
Attachment[] (via constructas); the other field values
are reproduced verbatim. The treatment of the fieldFrom
is defined by the viewcst . It assigns the constant value
" The Boss! " to the fieldFrom; its definition is omit-
ted. The viewbwImages defines the treatment of the field
Attachment[] . It is parameterized with some size, and
is applied to an attachment sequence, as indicated by the
square brackets.

Field view. It aims to convert field values into some repre-
sentation appropriate to the access-point. This conversion is
performed by a library of functions, each taking a value, in
the original format, and producing a value in a target format.
These functions are local to the server and are trusted. The
example shown below includes a call to the library func-
tion blackwhite which converts a colored image into a
black-and-white one.

view field Attachment bwImages(size s) {
if (Attachment.size > s)

return " Attachment too big: " + Attachment.size;
if (Attachment.type in " image/.* ")

return blackwhite(Attachment.value);
ignore;

}

A field view is implicitly passed the value of the field.
This value is accessed using the attributevalue (e.g.,
Attachment.value ). Unlike other field views, the At-
tachment view consists of two additional attributes, namely,
size and type , to access the size and the type of an at-
tachment, respectively. Another specific aspect of the At-
tachment view is that it is applied to each element of an at-
tachment sequence of a message, as illustrated above. The
return construct is invoked to conclude the treatment of this
bottom-level view.

3.2. DSL Verifications

Our approach assumes that service developers may not
be trusted by the server. Furthermore, when the target fam-
ily of services is related to the end-user, as in the IMAP
case, the developer may not be an experienced programmer.
As a consequence, the DSL should guarantee specific prop-
erties so as to both preserve the integrity of the server and
prevent a faulty service to corrupt or destroy user data. No-
tice that, most of these requirements would not be achiev-
able in the context of GPLs because of their unrestricted
expressiveness [6]. This is mainly why untrusted (possi-
bly buggy) services written in a GPL are usually executed
on a remote machine and communicate with the server via
the network. Let us examine the requirements imposed on
a DSL both from the server’s side and from an end-user’s
side.
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The Server Side

Important requirements should be fulfilled from the
server’s viewpoint.

Resource usage. A DSL program should use appropri-
ate amounts of resources like CPU, memory, storage, or
bandwidth. This assumes that a DSL program terminates.
Although, termination is undecidable in general, the DSL
can be designed so that this property be guaranteed, as il-
lustrated by various existing DSLs (e.g., Plan-P [27] and
Devil [23, 22]).

In the case of Pems, programs are guaranteed to termi-
nate because the language does not include an iteration con-
struct; the traversing of a sequence of attachments is per-
formed implicitly. Bandwidth could be an issue because
Pems programs build messages which are then sent by the
server to the client. However, these programs can only drop
message fields or transform them. The latter operation only
invokes trusted primitives.

Non-Interference. A DSL program should not be able to
examine other users’ data or modify arbitrary files on the
server. Non-interference with other aspects of the server is
guaranteed by an appropriate usage of resources as men-
tioned above.

For example, a Pems program is invoked on a specific
mailbox; the only possible operations are those that select
and manipulate messages.

Well-Behaved. As much as possible, the DSL should en-
able verifications to be performed statically, at deployment
time. This is to ensure that (1) programs can be run effi-
ciently because they require a minimum of run-time checks
and (2) the server execution will not be disrupted by repeti-
tive crashes of programs.

The End-User Side

Two main requirements are needed from the end-user’s
viewpoint.

Well-Behaved. Like the server, the end-user needs the
DSL program to be checked statically, as much as possi-
ble. However, the reason is different: an ill-behaving pro-
gram may, in general, corrupt or lose his data. Because a
program cannot be checked against the programmer’s in-
tention, misbehavior may not always be detected. Never-
theless, in designing a DSL, special care can be taken to
appropriately restrict the semantics of some constructs, or
require the programmer to supply extra declarations at some
critical places.

In designing Pems, we have paid attention to expressions
selecting messages and the operations dropping fields. If
misused, these aspects may overly filter out too many mes-
sages or drop too many fields.

Confidentiality. DSL programs may expose user prefer-
ences and possibly other confidential information. Conse-
quently, the deployment process should be secure. Further-
more, it should be ensured that only the end-user (or some
authorized administrator) can modify the services of an end-
user. To do so, standard encryption and authentication tech-
niques can be used.

3.3. Programmable Server Implementation

This section discusses approaches to implementing a
DSL and presents a strategy to deploy services.

DSL Implementation

There are two main approaches to implement a DSL:
interpretation or compilation. As discussed in Consel and
Marlet [6], developing an interpreter is the easiest approach.
Furthermore, it is known to be flexible, which is a key aspect
when prototyping languages. However, interpretation en-
tails a run-time overhead which may be incompatible with
performance requirements of the target domain.

Traditional compilation techniques are applicable to
DSLs. In fact, DSL features can even enable drastic op-
timizations, not possible in a GPL, and lead to better per-
formance than equivalent programs written in a general-
purpose language [9].

An hybrid approach may be used in specific cases, as
advocated by Thibaultet al. [26]. This approach relies on
program specialization to remove the overhead incurred by
the use of an interpreter [17]. The idea is to customize the
interpreter for a given DSL program. Interestingly, special-
ization can occur at both compile time and run time [7].
The latter case is useful in application domains where ser-
vices need to be changed frequently, calling for the use of
an interpreter, at the expense of performance. This con-
flict between flexibility and performance can be solved by
using some sort of just-in-time (JIT) compilers. Thibault
et al. demonstrate that the effect of a JIT compiler can be
achieved by specializing an interpreter at run time.

The implementation of Pems is traditional; it consists of
a compiler and a run-time system. The compiler is a pro-
gram generator that takes a Pems program and performs a
number of verifications to fulfill the requirement on both the
server and client sides, as discussed in Section 3.2. Then, it
generates a C program corresponding to the implementation
of the user-defined services. This code will be loaded in a
server when needed, as explained below.
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This implementation strategy is chosen because it is as-
sumed that users will not define new services frequently.
Consequently, deploying new services may consist of a
thorough static processing.

Service Deployment

Whether interpreted or compiled, new services can be
safely and efficiently executed directly in the programmable
server, provided the DSL has been suitably designed and
implemented.

A remaining key issue is the binding of new services to a
particular context. Indeed, the programmable server should
be sensitive to such contextual aspects as the client terminal
capabilities and the network features. To address this issue
our approach consists of grouping these contextual aspects
under the notion of access-point; a set of services is defined
and tuned for a particular access-point.

Yet, we need a mechanism to bind an access-point to a
particular user context so as to invoke the appropriate set
of services. To do so, we use the Session Initiation Pro-
tocol (SIP) [13]. This protocol is a client-server signaling
protocol, mostly known for Internet telephony. It allows a
user to establish his presence and location via the so-called
registrar server.

In our approach, an extra parameter is added to the reg-
istration process, to indicate the particular access-point to
be considered for each programmable server. When a pro-
grammable server initiates a session with a user, it looks up
its access-point at the location server. Note that this server
was originally limited to storing the current location of a
user.

In the context of the IMAP case, the Pems compiler pro-
duces an implementation of services for each access-point
defined in a Pems program. Each implementation is regis-
tered in the programmable IMAP server under a particular
access-point. To start a session, a wrapper of the IMAP
client first contacts the location server to obtain the user’s
current access-point, in addition to enough information for
the user to log into the server. It communicates this infor-
mation to the programmable IMAP server so that the server
can activate the appropriate set of services for the user’s re-
quests. Finally, the wrapper of the IMAP client invokes a
standard IMAP client to access the mailbox. As discussed
previously, programmability of the server has no impact on
the client: its implementation is unchanged. In the Nova
platform, we use an IMAP client named Althea that is well-
suited for embedded systems.

4. Scaling Up The Programmable Client-
Server Model

An important issue to cover is whether our pro-
grammable client-server model scales up. Let us address
this issue by studying how programmable servers compose
on a concrete case, and by presenting the families of ser-
vices we tackled in the context of the Nova platform.

4.1. Composability

When developing a software system, a programmer typi-
cally delegates some treatments to specific software compo-
nents. Similarly, when developing a programmable server,
one would like to delegate a sub-family of services to the
appropriate programmable server, if there exists one.

One instance of this situation occurred while develop-
ing the Nova platform. We independently developed a pro-
grammable version of the IMAP server and a new pro-
grammable server for remote-document processing (RDP).
The latter server, and its underlying protocol, aim to enable
a user to define a variety of transformations on a remote
document before redirecting it to some physical or virtual
output device, called a sink. Such a server is particularly
useful to adapt the format of remote documents to a lim-
ited access-point. As a simple example, a user can define
a service to transform a Word document into a black-and-
white PDF file so as to display it on a terminal that neither
runs the Word processor nor offers a color screen. Another
example consists of converting a text document into an au-
dio file which is then played on a cell phone. Notice that,
we have developed this last example and actually combined
RDP with yet another server to stream the audio file. This
strategy avoids uploading the audio file in the cell phone
and incurring some latency.

An RDP program consists of conversion rules and sinks.
Conversion rules describe a graph of format conversions,
whose nodes are formats (e.g., PDF and Postscript) and
whose edges are primitives performing conversions. Sinks
are output devices, either physical (e.g.,a Fax machine and
a printer) or virtual (e.g.,a Web site). Sinks are defined by
a number of attributes such as the input format they require.
In the example of audio files mentioned above, the stream-
ing server is defined as a sink.

When developing the programmable version of IMAP,
we realized that it could use the RDP server to process doc-
uments attached to a message, and thus, further adapt e-mail
processing to the access-point. To combine both servers, a
clause devoted to document processing is introduced in the
Pems language. Specifically, the field view of attachments
includes a clause defining conversion rules applicable to the
attached documents.
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To account for this coupling of programmable servers,
we modified the Pems compiler to process the new clause
and to generate an RDP program. Furthermore, we added
to the deployment process of a Pems program, the ability to
deploy a RDP program.

4.2. The Nova Platform

We have developed a programmable platform for multi-
media services, named Nova. This platform enables net-
working and telecommunications experts to quickly de-
velop robust multimedia services. It consists of a pro-
grammable server and a DSL for each target application
area. Four application areas are currently covered by Nova:
e-mail processing (Pems), remote document processing,
telephony services, and stream adapters. Let us briefly
present the last two application areas, not discussed yet.

Telephony services are built upon the SIP signaling plat-
form. We have designed a dialect of C to program call pro-
cessing services. In contrast to the XML-based language
called CPL, developed by Rosenberg et al. [24], our DSL
is a full-fledged programming language based on familiar
syntax and semantics. Yet, it conforms with the features
and requirements of a call processing language as listed in
the RFC 2824 [12]. In fact, our DSL goes even further
because it introduces domain-specific types and constructs
that allow verifications beyond the reach of both CPL and
general-purpose languages. Once a session is initiated, au-
dio communication is ensured by an appropriate tool such
as the Robust Audio Tool (RAT) developed by UCL [15].

The other application area covered by Nova is stream
adaptation. We have developed a language aimed to spec-
ify multimedia stream processing, named Spidle [5]. This
language is used to program a server that adapts a stream to
particular features of a target access-point like terminal fea-
tures and the link reliability. This programmable server is a
useful building block to develop other multimedia services
as illustrated by the RDP server converting a text document
into an audio file and piped to the streaming server to be
played to the user.

The client terminals used in the Nova platform are IPaq
Personal Digital Assistants with a Wi-Fi connection to an
IP network. Various services have been developed for the
four application areas covered by the platform.

5 Assessment

In this section, we consider the programmable version of
the IMAP server to assess our approach. To do so, we stud-
ied both the server and the client side. On the client side,
we assessed the benefits of some scenarios of customized
accesses to a mailbox. We measured a key quantitative ben-
efit, namely, the reduction in size of the messages fetched

by the client (e.g.,to cope with a limited bandwidth). The
choice of these scenarios is obviously subjective, therefore
we tried to cover various situations that introduce differ-
ent degrees of adaptation. Running these scenarios, we ob-
served reduction factors in the server responses that range
from 15 to 40. As such, these Pems programs illustrate how
much can be gained by defining simple adaptation strate-
gies, concisely expressed in a DSL.

On the server side, our assessment aims to determine the
overhead of running Pems programs. To do so, we wrote
Pems programs to implement the following scenarios of
customized accesses to a mailbox.

Trivial . This scenario corresponds to a trivial identity
function: it unconditionally keeps all mailbox mes-
sages. This Pems program makes it possible to mea-
sure the overhead of programmability in our IMAP
server.

Complex . This scenario also keeps all mailbox messages
but, before doing so, it performs 100 operations on
each message. As such it gives us some kind of up-
per bound on the complexity of Pems programs.

Misc . We consider a set of scenarios defining various
adaptation strategies and compute an average of their
execution time.

We measured the total execution time of the pro-
grammable server running the above Pems programs, in-
cluding loading the Pems program, selecting the mailbox
and fetching all message headers in a mailbox. We com-
pared these execution times to those of both the origi-
nal IMAP server and a proxy-based programmable IMAP
server. The latter server is an IMAP programmable server
accessing mailboxes via requests to the original IMAP
server. As such this strategy mimics a situation where pro-
grammability relies on untrusted scripts and thus requires
the server to run in a separate process, or even a separate
machine.

The execution times are showed in Figure 1. As can
be noticed, the execution time of thetrivial scenario is
very close to the performance of the original IMAP server,
indicating that programmability does not introduce much
overhead. The average execution time of the miscellaneous
scenarios (misc ) is also very close to the performance of
the original IMAP server. Thecomplex scenario is about
2.5 slower than the original IMAP server. This may be
seen as the worst possible slowdown considering the exten-
sive number of operations included incomplex . Finally,
the proxy-based programmable server introduces an aver-
age overhead of 25%. It should noticed that this is the most
favorable case. Indeed, user-defined scripts are usually run
on a separate machine, especially if they are untrusted. This

8



0

50

100

150

200

250

300

350

400

450

Original
Server

Triv. Misc

Programmable
Server

Comp. Triv. Misc

Proxy-based
Server

Comp.

CPU

Figure 1. Execution time

separation causes a significant additional overhead because
of the network latency.

6 Conclusions and Future Work

The client-server model is greatly insensitive to client
needs and requirements, in that, a server behaves the same
regardless of the client’s terminal capabilities, network fea-
tures, user preferences and evolving needs. To make the
client-server model sensitive to clients, we have developed
a methodology aimed to introduce programmability in a
server in the form of a DSL. Our approach allows clients
to program service variations in the server and to adapt it to
their characteristics.

We have designed and implemented a platform, named
Nova, uniformly based on programmable servers. Nova
is currently composed of four programmable servers pro-
viding service programming in telephony, e-mail, remote-
document processing and stream adaptation. Nova has suc-
cessfully demonstrated that our approach can capture a wide
spectrum of services variations without compromising ro-
bustness. Furthermore, we showed that, once made pro-
grammable, a server can adapt to a client without requiring
the deployment of a new protocol or a new server imple-
mentation.

We have conducted some experiments to measure the
benefits of programmable servers over existing approaches
to extending servers (e.g.,scripts) in terms of performance
and bandwidth usage. Because DSL programs do not com-
promise robustness, they can be executed on the same ma-
chine as the server. Furthermore, this execution requires
little, if any, run-time checks. As a result, the performance
of a programmable server do not introduce any significant
overhead compared to its original version, as illustrated by

the IMAP case.
This first step in the development of Nova has opened a

number of research tracks we intend to explore. We would
like to develop accurate resource usage models and analyzes
supported by DSL design rules. This would be useful to
introduce some admission control procedure when service
variations are deployed and invoked. Resource usage would
also be a useful input to some cost estimation process for
service variations.

Finally, there are a number of other application areas to
explore in the future, including HTTP and instant messag-
ing. These new application areas should further refine our
methodology to make a server programmable and to design
a DSL to program services.
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