Computation of VaR and CVaR using stochastic approximations and unconstrained importance sampling.

Abstract : Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) are two risk measures which are widely used in the practice of risk management. This paper deals with the problem of computing both VaR and CVaR using stochastic approximation (with decreasing steps): we propose a first Robbins-Monro procedure based on Rockaffelar-Uryasev's identity for the CVaR. The convergence rate of this algorithm to its target satisfies a Gaussian Central Limit Theorem. As a second step, in order to speed up the initial procedure, we propose a recursive importance sampling (I.S.) procedure which induces a significant variance reduction of both VaR and CVaR procedures. This idea, which goes back to the seminal paper of B. Arouna, follows a new approach introduced by V. Lemaire and G. Pagès. Finally, we consider a deterministic moving risk level to speed up the initialization phase of the algorithm. We prove that the convergence rate of the resulting procedure is ruled by a Central Limit Theorem with minimal variance and its efficiency is illustrated by considering several typical energy portfolios.
Type de document :
Article dans une revue
Monte Carlo Methods and Applications, De Gruyter, 2009, 15 (3), pp.173-210. <10.1515/MCMA.2009.011>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00348098
Contributeur : Noufel Frikha <>
Soumis le : vendredi 3 décembre 2010 - 11:57:23
Dernière modification le : mardi 11 octobre 2016 - 14:04:59
Document(s) archivé(s) le : vendredi 4 mars 2011 - 02:41:03

Fichiers

VaRCVaR.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

PMA | INSMI | UPMC | USPC

Citation

Olivier Bardou, Noufel Frikha, G. Pagès. Computation of VaR and CVaR using stochastic approximations and unconstrained importance sampling.. Monte Carlo Methods and Applications, De Gruyter, 2009, 15 (3), pp.173-210. <10.1515/MCMA.2009.011>. <hal-00348098v5>

Partager

Métriques

Consultations de
la notice

288

Téléchargements du document

612