Including systematic faults into fault-tree analysis

Israel BARRAGAN SANTIAGO*
Jean-Marc FAURE
Yiannis PAPADOPoulos**

* The Mexican Council of Technology CONACYT finances Israel BARRAGAN
** University of Hull, UK
Outline

- Objective of the work
- Extending FTA to address systematic faults
- A vocabulary of gates for systematic faults
- Example
- Conclusion and prospects
Safety analysis of automated systems

Modern automated systems include an increasing number of programmable logic controllers (embedded controllers)

Safety analysis of these systems using for instance Fault tree analysis (FTA), a widespread technique for critical systems, must take into account:

- the physical failures of the components of the process,
- but also the faults caused by the controllers.

SYSTEM SAFETY ANALYSIS = PROCESS SAFETY ANALYSIS ∧ CONTROLLER(S) SAFETY ANALYSIS
Safety analysis of logic controllers

Three categories of controllers faults:

• Hardware failures of the controller components
• Unhanded deviations of controller inputs caused by failures of sensors connected to the controller
• Design flaws in the logic (software) of the controller, either a result of coding errors or misinterpretation of control requirements.

The latter ones are systematic faults because they can be reproduced every time the conditions that trigger the error in the control logic are present.

But classical FTA relies upon stochastic models ...
Classical template for FTA

- **Primary fault**: physical failure of the component due to its internal defects
- **Secondary fault**: fault due to excessive environmental or operational stress
- **Command fault**: describes a situation in which the component has not physically failed but produces wrong outputs (or no output) in response to inappropriate or misleading inputs received from sensors or controllers that control its operation.

Wrong Input → Wrong Output

New FT general template

- Physical component failure
- Classical Command Fault (WI → WO)
- Systematic fault (RI → WO)
- Combination of physical, classical, command and systematic fault (and always faults due to the environment)

Classical Command Fault

Inadvertent operation due to incorrect signals coming from sensor failures

Classical command fault

Inadvertent operation due to design flaws in controller logic

Systematic fault

Primary Fault

Secondary fault

Component fault
Requirements

Systematic faults of logic controllers cannot be described only by combinatory expressions using Boolean connectors (AND, OR, ...); they are often featured by erroneous sequences of events or inappropriate delays

• The fault occurs when A is set before B is reset or when signal C is set less than (more than) n seconds.

Hence there is a need for gates enabling us to express event ordering and physical time.

These gates shall be formally defined thanks to a formalism of DES (Discrete Event Systems) such as a temporal logic or state automata.
Temporal and timed gates

Temporal gates [FT Handbook, 1981] enable to express event ordering

Priority AND

Priority OR

Timed gates [Palshikar, Information and software technology, 2003] enable to express physical time

FORPAST n

WITHIN n

A stays TRUE during n time units

A stays TRUE at least one time unit within a n time units interval
Formalizing temporal gates behaviour

Priority AND

In CTL

\[AG \neg (A \Rightarrow EF (A.B \Rightarrow EF ABC)) \]

Observer automaton

Priority OR

In CTL

\[A (\neg B W A) \]

Observer automaton
Formalizing timed gates behaviour

FORPAST n

WITHIN n

A vocabulary of gates for systematic faults
Example: safety analysis of a pick and place manipulator

CONTROLLER INPUTS
- Leftmost Position: I1
- Rightmost Position: I2
- Upper Position: I3
- Lower Position: I4

CONTROLLER OUTPUTS
- Move to the Right: O1
- Move Down: O2
- Suction: O3
- Move to the left: O4

Picking station

Placing station

Without suction

With suction
FT analysis: part falling down during the transfer

Example

SYSTEM SAFETY ANALYSIS

The part falls down

Suction device is broken

Collision with the environment

Inadvertent commission of stop suction command due to failures of both sensors that detect the rightmost and lower positions that provide erroneous information

Suction is stopped before the placing station is reached

SYSTEMATIC FAULT ANALYSIS

Suction is stopped before the placing station

Manipulator at the placing station

If /O3 appears

Commission of interrupting the suction (/O3)

Lower position (I4)

Rightmost position (I2)
FT analysis: part not picked up

The vertical cylinder stays less than 1 second at the picking station

Physical failure

Fault due to environment

The controller stops the command of the vertical movement before the 1 second waiting delay is elapsed

Example

If /O2 appears

Manipulator at the picking station

Commission of resetting O2

FORPAST 1

Lower position (I4)

Leftmost position (I1)
Conclusions

• To avoid dangerous and/or costly failures, fault tree analysis of complex automated systems must include systematic faults of controllers
• Temporal and timed gates are to be used; the operational semantics of these gates has been formally defined
• Coupling fault forecasting and systematic fault removal, by using for instance model-checking techniques, has been achieved (Barragan and Faure, IFAC WC 2005; Barragan et al, IFAC INCOM 2006)
On-going works and prospects

• Consistency checking and simplification of FT containing temporal and timed gates

 Rules to combine gates have been developed

 Automatic generation of minimal sequences sets described in the form of untimed or timed automata

• Integration of these results (New FT template and temporal and timed gates) within a tool for automatic generation of FT (Hip-Hops, Papadopoulos, Y. and M. Maruhn, 2001).
Including systematic faults into fault-tree analysis

Thank you for attention

Any questions?