Digital Mathematics Libraries: The Good, the Bad, the Ugly
Thierry Bouche

To cite this version:

HAL Id: hal-00347705
https://hal.archives-ouvertes.fr/hal-00347705
Submitted on 16 Dec 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Digital mathematics libraries:
The good, the bad, the ugly

Thierry Bouche
Université de Grenoble I & CNRS,
Institut Fourier (UMR 5582) & Cellule Mathdoc (UMS 5638),
BP 74, 38402 St-Martin-d’Hères Cedex, France
thierry.bouche@ujf-grenoble.fr,
http://www-fourier.ujf-grenoble.fr/~bouche/

Abstract. The mathematicians’ Digital mathematics library (DML),
which is not to be confused with libraries of mathematical objects repre-
sented in some digital format, is the generous idea that all mathematics
ever published should end up in digital form so that it would be more
easily referenced, accessible, usable. This concept was formulated at the
very beginning of this century, and yielded a lot of international activ-
ity that culminated around years 2002–2005. While it is estimated that
a substantial part of the existing math literature is already available
in some digital format, nothing looking like one digital mathematics li-
brary has emerged, but a multiplicity of competing electronic offers, with
unique standards, features, business models, access policies, etc.—even
though the contents themselves overlap somewhat, while leaving wide ar-
eas untouched. The millenium’s appealing idea has become a new Tower
of Babel.

It is not obvious how much of the traditional library functions we should
give up while going digital. The point of view shared by many mathe-
maticians is that we should be able to find a reasonable archiving policy
fitting all stakeholders, allowing to translate the essential features of the
past library system—which is the central infrastructure of all math de-
partments worldwide—in the digital paradigm, while enhancing overall
performances thanks to dedicated information technology.

The vision of this library is rather straightforward: a third party to the
academic publishing system, preserving, indexing, and keeping current
its digital collections through a distributed network of partners curating
the physical holdings, and a centralised access facility making use of
innovative mining and interlinking techniques for easy navigation and
discovery.

However, the fragmentation level is so high that the hope of a unique
portal providing seamless access to everything relevant to mathemati-
cal research seems now completely out of reach. Nevertheless, we have
lessons to learn from each one of the already numerous projects running.
One of them is that there are too many items to deal with, and too many
different initial choices over metadata sets and formats: it won’t be pos-
sible to find a nontrivial greatest common divisor coping with everything
already available, and manual upgrading is highly improbable.
This is where future management techniques for loosely formalised mathematical knowledge could provide a new impetus by at last enabling a minimum set of features across projects borders through automated procedures. We can imagine e.g. math-aware OCR on scanned pages, concurrently with interpreters of electronic sources of born digital texts, both producing searchable full texts in a compatible semistructured format. The challenge is ultimately to take advantage of the high formalisation of mathematical texts rather than merely ignoring it!

With these considerations in mind, the talk will focus on achievements, limitations, and failures of existing digital mathematics libraries, taking the NUMDAM\(^1\) and CEDRAM\(^2\) programs as principal examples, hence the speaker himself as principal target…

\(^1\) http://www.numdam.org

\(^2\) http://www.cedram.org