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Abstract

We consider here estimation of an unknown probability density s belonging
to L2(µ) where µ is a probability measure. We have at hand n i.i.d. observations
with density s and use the squared L2-norm as our loss function. The purpose of
this paper is to provide an abstract but completely general method for estimating
s by model selection, allowing to handle arbitrary families of finite-dimensional
(possibly non-linear) models and any s ∈ L2(µ). We shall, in particular, consider
the cases of unbounded densities and bounded densities with unknown L∞-norm
and investigate how the L∞-norm of s may influence the risk. We shall also
provide applications to adaptive estimation and aggregation of preliminary es-
timators. Although of a purely theoretical nature, our method leads to results
that cannot presently be reached by more concrete ones.

1 Introduction

1.1 Histograms and partition selection

Suppose we have at hand n i.i.d. observations X1, . . . ,Xn with values in the mea-
surable space (X ,W) and they have an unknown density s with respect to some
probability measure µ on X . The simplest method for finding an estimator of s is to
build an histogram. Given a finite partition I = {I1, . . . , Ik} of X with µ(Ij) = lj > 0
for 1 ≤ j ≤ k, the histogram ŝI based on this partition is defined by

ŝI(X1, . . . ,Xn) =
1

nlj

k∑

j=1

Nj1lIj
, with Nj =

n∑

i=1

1lIj
(Xi). (1.1)
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Let

pj =

∫

Ij

s dµ, sI =

k∑

j=1

pj

lj
1lIj

and SI =






k∑

j=1

βj1lIj

∣∣∣∣∣∣
βj ∈ R for 1 ≤ j ≤ k




 .

If s ∈ L2(µ), then sI is the orthogonal projection of s onto the k-dimensional linear
space SI spanned by the functions 1lIj

. Choosing the squared L2-distance induced
by the norm ‖ · ‖ of L2(µ) as our loss function leads to the following quadratic risk
for the estimator ŝI :

E
[
‖ŝI − s‖2

]
= ‖sI − s‖2 +

1

n

k∑

j=1

pj(1 − pj)

lj
. (1.2)

Hence, if s ∈ L∞(µ), with norm ‖s‖∞, the quadratic risk of ŝI can be bounded by

E

[
‖ŝI − s‖2

]
≤ ‖sI − s‖2 +

(k − 1)‖s‖∞
n

, (1.3)

and, as we shall see below, this bound is essentially unimprovable without additional
assumptions.

The histogram estimator ŝI is probably the simplest example of a model-based
estimator with model SI , i.e. an estimator of s with values in SI . It may acually be
viewed as the empirical counterpart of the projection sI of s onto SI .

Suppose now that we are given a finite (although possibly very large) family
{Im,m ∈ M} of finite partitions of X with respective cardinalities |Im|, hence the
corresponding families of models {SIm,m ∈ M} and histogram estimators {ŝIm ,m ∈
M}. It is natural to try to find one estimator in the family which leads, at least ap-
proximately, to the minimal risk infm∈M E

[
‖ŝIm − s‖2

]
. But one cannot select such

an estimator from (1.2) or (1.3) since the risk depends on the unknown density s via
sIm . Methods of model or estimator selection base the choice of a suitable partition
Im̂ with m̂ = m̂(X1, . . . ,Xn) on the observations. When s ∈ L∞(µ) one would like
to know whether it is possible to design a selection procedure m̂(X1, . . . ,Xn) leading
(at least approximately), in view of (1.3), to a risk bound of the form

E

[
‖ŝIm̂

− s‖2
]
≤ C inf

m∈M

{
‖sIm − s‖2 + n−1‖s‖∞|Im|

}
,

for some universal constant C, even when ‖s‖∞ is unknown.

1.2 What is presently known

There exists a considerable amount of litterature dealing with problems of model or
estimator selection. Most of it is actually devoted to the analysis of Gaussian prob-
lems, or regression problems, or density estimation with either Hellinger or Kullback
loss and it is not our aim here to review this litterature. Only a few papers are
actually devoted to our subject, namely model or estimator selection for estimating
densities with L2-loss, and we shall therefore concentrate on these only. These papers
can roughly be divided into three groups: the ones dealing with penalized projection
estimators, the ones that study aggregation by selection of preliminary estimators
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and the ones which use methods based on the thresholding of empirical coefficients
within a given basis. The last ones are typically not advertised as dealing with model
selection but, as explained for instance in Section 5.1.2 of Birgé and Massart (2001),
they can be viewed as special instances of model selection methods for models that
are spanned by some finite subsets of an orthonormal basis. All these papers have in
common the fact that they require more or less severe restrictions on the families of
models and, apart from some special cases, typically assume that s ∈ L∞(µ) with a
known or estimated bound for ‖s‖∞.

In order to see how such methods apply to our problem of partition selection,
let us be more specific and assume that X = [0, 1], µ is the Lebesgue measure and
N = {j/(N + 1), 1 ≤ j ≤ N} for some (possibly very large) positive integer N .
For any subset m of N , we denote by Im the partition of X generated by the in-
tervals with set of endpoints m ∪ {0, 1} and we set Sm = SIm and ŝm = ŝIm. This
leads to a set M with cardinality 2N and the corresponding families of linear models{
Sm,m ∈ M

}
and related histogram estimators {ŝm,m ∈ M}. Then all models Sm

are linear subspaces of the largest one SN . Of particular interest is the dyadic case
with N = 2K − 1 for which SN is the linear span of the 2K first coefficients of the
Haar basis. There is, nevertheless, a difference between expansions in the Haar basis
and projections on our family of models. Let us, for instance, consider the function
1l[0,2−K). It belongs to the two-dimensional model S{1} but its expansion in the Haar
basis has K non-zero coefficients.

Given a sample X1, . . . ,Xn with unknown density s, which partition Im should we
choose to estimate s and what bound could we derive for the resulting estimator?
Penalized projection estimators have been considered by Birgé and Massart (1997)
and an improved version is to be found in Chapter 7 of Massart (2007). The method
either deals with polynomial collections of models (which does not apply to our case)
or with subset selection within a given basis which applies here only when N = 2K −1
and we use the Haar basis. Moreover, it requires that N < n/ log n and a bound on
‖sIN ‖∞ be known or estimated, as in Section 4.4.4 of Birgé and Massart (1997), since
the penalty depends on it.

Methods based on wavelet thresholding, as described in Donoho, Johnstone, Kerky-
acharian and Picard (1996) or Kerkyacharian and Picard (2000) (see also the numer-
ous references therein) require the same type of restrictions and, in particular, a
control on ‖s‖∞ in order to properly calibrate the threshold. Also, as mentioned
above, restricting to subsets of the Haar basis may result in expansions that use
many more coefficients (K instead of 2, for instance) than needed with the partition
selection approach.

Aggregation of estimators by selection assumes that preliminary estimators (one
for each model in our case) are given in advance (we should here use the histograms)
and typically leads to a risk bound including a term of the form n−1‖s‖∞ log |M| =
n−1N‖s‖∞ log 2 so that all such results are useless for N ≥ n. Moreover, most of them
also require that an upper bound for ‖s‖∞ be known since it enters the construction
of the aggregate estimator. This is the case in Rigollet (2006) (see for instance his
Corollary 2.7) and Juditsky, Rigollet and Tsybakov (2007, Corollary 5.7) since the
parameter β that governs their mirror averaging method depends crucially on an
upper bound for ‖s‖∞. As to Samarov and Tsybakov (2005), their Assumption 1
requires that N be not larger than C log n. Similar restrictions are to be found in
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Yang (2000) in his developments for mixing strategies and in Rigollet and Tsybakov
(2007) for linear aggregation of estimators. Lounici (2008) does not assume that
s ∈ L∞ but, instead, that all preliminary estimators are uniformly bounded. One can
always truncate the estimators to get this, but to be efficient, the truncation should
be adapted to the unknown parameter s, and therefore chosen from the data in a
suitable way. We do not know of any paper that allows such a data driven choice.

Consequently, none of these results can solve our partition selection problem in a
satisfactory way when N is at least of size n and ‖s‖∞ is unknown. This fact was
one motivation for our study of model selection for density estimation with L2-loss.
Results about partition selection will be a consequence of our general treatment of
model selection. This treatment allows to consider arbitrary countable families of
finite-dimensional models (possibly nonlinear) and does not put any assumption on
the density s, apart from the fact that it belongs to L2(µ); it may, in particular, be
unbounded. We do not know of any result that applies to such a situation. There is
a counterpart to this level of generality: our procedure is of a purely abstract nature
and not constructive, only indicating what is theoretically feasible. Unfortunately,
we are unable to design a practical procedure with similar properties.

2 Model based estimation and model selection

To begin with, let us fix our framework and notations. We want to estimate an
unknown density s, with respect to some probability measure µ on the measurable
space (X ,W), from an i.i.d. sample X = (X1, . . . ,Xn) of random variables Xi ∈ X
with distribution Ps = s · µ. Throughout the paper we denote by Ps the probability
that gives X the distribution P⊗n

s , by Es the corresponding expectation operator and
by ‖ · ‖q the norm in Lq(µ), omitting the subscript when q = 2 for simplicity. We
denote by d2 the distance in L2(µ): d2(t, u) = ‖t− u‖. For 1 ≤ q ≤ +∞ and Γ > 1,
we set

Lq =

{
t ∈ Lq(µ)

∣∣∣∣ t ≥ 0 and

∫
t dµ = 1

}
; L

Γ
∞ =

{
t ∈ L∞

∣∣ ‖t‖∞ ≤ Γ
}
. (2.1)

We measure the performance at s ∈ L2 of an estimator ŝ(X) ∈ L2 by its quadratic risk
Es

[
d2
2 (ŝ(X), s)

]
. More generally, if (M,d) is a metric space of measurable functions

on X such that M ∩L1 6= ∅, the quadratic risk of some estimator ŝ ∈M at s ∈M∩L1

is defined as Es

[
d2 (ŝ(X), s)

]
. We denote by |I| the cardinality of the set I and set

a∨b and a∧b for the maximum and the minimum of a and b, respectively. Throughout
the paper C (or C ′, . . . ) will denote a universal (numerical) constant and C(a, b, . . .)
or Cq a fonction of the parameters a, b, . . . or q. Both may vary from line to line.
Finally, from now on, countable will always mean “finite or countable”.

2.1 Model based estimation

A common method for estimating s consists in choosing a particular subset S of
(M,d) that we shall call a model for s and design an estimator with values in S. Of
this type are the maximum likelihood estimator over S or the projection estimator
onto S. Let us set M = L1 and choose for d either the Hellinger distance h or the
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variation distance v given respectively by

h2(t, u) =
1

2

∫ (√
t−√

u
)2

dµ and v(t, u) =
1

2

∫
|t− u| dµ.

It follows from Le Cam (1973, 1975, 1986) and subsequent results by Birgé (1983,
2006a) that the risk of suitably designed estimators with values in S is the sum of
two terms, an approximation term depending on the distance from s to S and an
estimation term depending on the dimension of the model S which can be defined as
follows.

Definition 1 Let S be a subset of some metric space (M,d) and let Bd(t, r) denote
the open ball of center t and radius r with respect to the metric d. Given η > 0, a
subset Sη of M is called an η-net for S if, for each t ∈ S, one can find t′ ∈ Sη with
d(t, t′) ≤ η.

We say that S has a metric dimension bounded by D ≥ 0 if, for every η > 0, there
exists an η-net Sη for S such that

|Sη ∩ Bd(t, xη)| ≤ exp
[
Dx2

]
for all x ≥ 2 and t ∈M. (2.2)

Remark: One can always assume that Sη ⊂ S at the price of replacing D by 25D/4
according to Proposition 7 of Birgé (2006a).

Typical examples of sets with metric dimension bounded by D when (M,d) is a
normed linear space are subsets of 2D-dimensional linear subspaces of M as shown
in Birgé (2006a). If d is either h or v and S ⊂ L1 has a metric dimension bounded
by D ≥ 1/2, there exists a universal constant C and an estimator ŝ(X) with values
in S such that, for any s ∈ L1,

Es

[
d2 (ŝ(X), s)

]
≤ C

[
inf
t∈S

d2(s, t) + n−1D

]
. (2.3)

In particular, sups∈S Es

[
d2 (ŝ(X), s)

]
≤ Cn−1D. This results from the following

theorem about model selection of Birgé (2006a) by setting M = {0}, S0 = S, D0 = D
and ∆0 = 1/2.

Theorem 1 Let X1, . . . ,Xn be an i.i.d. sample with unknown density s belonging
to L1 and

{
Sm,m ∈ M

}
a finite or countable family of subsets of L1 with metric

dimensions bounded by Dm ≥ 1/2 respectively. Let the nonegative weights ∆m,m ∈
M satisfy ∑

m∈M

exp[−∆m] = Σ < +∞. (2.4)

Then there exists a universal constant C and an estimator s̃(X1, . . . ,Xn) such that,
for any s ∈ L1,

Es

[
d2 (s̃, s)

]
≤ C(1 + Σ) inf

m∈M

[
inf

t∈Sm

d2(s, t) + n−1(Dm ∨ ∆m)

]
. (2.5)
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Unfortunately, as we shall see below, (2.3) does not hold in general when (M,d) =
(L2(µ), d2). In particular, whatever the estimator ŝ, sups∈S Es

[
d2 (ŝ(X), s)

]
may

be infinite even if S ⊂ L2(µ) has a bounded metric dimension. This difference is
due to the following fact: h and v are actually distances defined on the set of all
probabilities on (X ,W) and h(s, t) = h(Ps, Pt) is independent of the choice of the
underlying dominating measure, the same property holding for the variation distance
v. This is not the case for d2 which is a distance in L2(µ) depending on the choice of
µ and definitely not a distance between probabilities. Even the fact that s = dPs/dµ
belong or not to L2(µ) depends on µ. Further remarks on this subject can be found
in Devroye and Györfi (1985) and Devroye (1987).

Nevertheless, the L2-distance has been much more popular in the past than either
the Hellinger or variation distances, mainly because of its simplicity due to the clas-
sical “squared bias plus variance” decomposition of the risk. Although hundreds of
papers have been devoted to the derivation of risk bounds for various specific esti-
mators, we do not know of any general bound for the risk similar to (2.3) based on
purely metric considerations for the distance d2.

2.2 Projection and histogram estimators

To illustrate the specificity of the L2-risk, let us turn to a quite classical family of
model-based estimators for densities, the projection estimators of Cencov (1962).
To estimate a density s ∈ L2 from an i.i.d. sample X1, . . . ,Xn, we chose some k-
dimensional linear subspace S of L2(µ) together with an orthonormal basis (ϕ1, . . . , ϕk)
so that the projection s of s onto S can be written s =

∑k
j=1 βjϕj . Then we

estimate each coefficient βj =
∫
ϕjs dµ in this expansion by its empirical version

β̂j = n−1
∑n

i=1 ϕj(Xi). This results in the projection estimator ŝ =
∑k

j=1 β̂jϕj

(which in general does not belong to L1) with risk

Es

[
‖ŝ− s‖2

]
= ‖s − s‖2 + n−1

k∑

j=1

Vars

(
ϕj(X1)

)

≤ ‖s − s‖2 + n−1

∫ 


k∑

j=1

ϕ2
j (x)



 s(x) dµ(x)

≤ ‖s − s‖2 + n−1 min






∥∥∥∥∥∥

k∑

j=1

ϕ2
j

∥∥∥∥∥∥
∞

; k‖s‖∞




 . (2.6)

A particular case occurs with the histogram ŝI given by (1.1) which corresponds to

choosing ϕj = l
−1/2
j 1lIj

, S = SI and s = sI . If lj = k−1 for all j, we get a regular
histogram and derive from (1.2) and a convexity argument that

Es

[
‖s− ŝI‖2

]
≤ ‖s− sI‖2 + (k − 1)/n.

But, for general partitions, the bound (1.3) clearly emphasizes the difference with the
risk bound of the form (2.3) obtained in Birgé and Rozenholc (2006) for the Hellinger
loss:

Es

[
h2(s, ŝI)

]
≤ h2(s, sI) + (k − 1)/(2n).
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Moreover, (1.3) is essentially unimprovable without further assumptions on s if the
partition I is arbitrary, as shown by the following example. Define the partition
I on X = [0, 1] by Ij = [(j − 1)α, jα) for 1 ≤ j < k and Ik = [(k − 1)α, 1] with
0 < α < (k − 1)−1. Set s = sI = [(k − 1)α]−1 [1 − 1lIk

]. Then pj = (k − 1)−1 for
1 ≤ j < k, s = sI and it follows from (1.2) that

Es

[
‖s− ŝI‖2

]
=

k − 2

(k − 1)αn
=

(k − 2)‖s‖∞
n

,

which shows that there is little space for improvement in (1.3).

2.3 Some negative results

The fact that the L∞-norm of s comes into the risk is not due to the use of his-
tograms or projection estimators as shown by another negative result provided by
Proposition 4 of Birgé (2006b) that we recall below for the sake of completeness.

Proposition 1 For each L > 0 and each integer D with 1 ≤ D ≤ 3n, one can find
a finite set S of densities with the following properties:

i) it is a subset of some D-dimensional affine subspace of L2([0, 1], dx) with a metric
dimension bounded by D/2;

ii) sups∈S ‖s‖∞ ≤ L+ 1;
iii) for any estimator ŝ(X1, . . . ,Xn) belonging to L2([0, 1], dx) and based on an i.i.d.

sample with density s ∈ S,

sup
s∈S

Es

[
‖ŝ− s‖2

]
> 0.0139DLn−1. (2.7)

It follows that there is no hope to get an analogue of (2.3), under the same assump-
tions, when d = d2 and the best one can expect in full generality, when S is a model
with metric dimension bounded by D and s ∈ L∞, is to design an estimator ŝ with a
risk bounded by

Es

[
d2
2 (ŝ, s)

]
≤ C

[
inf
t∈S

d2
2(s, t) + n−1D‖s‖∞

]
. (2.8)

The situation becomes worse when s 6∈ L∞(µ) or if sups∈S ‖s‖∞ = +∞ as shown by
the following lower bound to be proved in Section 7.1.

Proposition 2 Let S = {sθ, 0 < θ ≤ 1/3} be the set of densities with respect to
Lebesgue measure on [0, 1] given by

sθ = θ−21l[0,θ3] +
(
θ2 + θ + 1

)−1
1l(θ3,1].

If we have at disposal n i.i.d. observations with density sθ ∈ S, we can build an
estimator ŝn such that sup0<θ≤1/3 Esθ

[
nh2(sθ, ŝn)

]
≤ C for some C independent of

n. On the other hand, although the metric dimension of S with respect to the distance
d2 is bounded by 2, sup0<θ≤1/3 Esθ

[
‖sθ − s̃n‖2

]
= +∞, whatever n and the estimator

s̃n.
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2.4 About this paper

Our purpose here is twofold. We first want to derive estimators achieving a risk bound
which generalizes (2.8) in the sense that it could also apply to the case of s 6∈ L∞. We
know from (2.6) that projection estimators do satisfy (2.8) when S is a D-dimensional
linear space, but do not have any result for non-linear models. Our second goal is to
handle many models simultaneously and design an estimator which performs as well
(or almost as well) as the estimator based on the “best model”, i.e. one leading to
the smallest risk bound (up to some universal constant). This is possible when the
distance d is either the Hellinger distance h or the variation distance v, as shown by
Theorem 1. As compared to the bound (2.3), we simply pay the price of replacing Dm

by ∆m when ∆m > Dm. This price is due to the complexity of the family of models
we use (there is nothing to pay in the simplest case of one model per dimension) and
this price is essentially unavoidable, as shown in a specific case by Birgé and Massart
(2006).

It follows from the previous section that it is impossible to get an analogue of
Theorem 1 when d = d2. We shall explain what kind of (necessarily weaker) results
can be obtained in this context and to what extent Theorem 1 can be rescued. For
this, we shall proceed in several steps. In the next section we shall explain how
to build estimators based on families of special models Sm, following the method

explained in Birgé (2006a). These models need to be discrete subsets of L
Γ
∞ (for

some given Γ) with bounded metric dimension while there is no reason that our
initial models Sm be of this type (think of linear models). Section 4 will therefore
be devoted to the construction of such special models Sm from ordinary ones. This

construction will finally lead to an estimator ŝΓ belonging to L
Γ
∞, the performance

of which strongly depends on our choice of Γ. In Section 5, we shall explain how,
given a geometrically increasing sequence (Γi)i≥1 of values of Γ and the corresponding
sequence of estimators ŝΓi , we can use the observations to choose a suitable value for
Γ. Since we have a single sample X to build the estimators ŝΓi and to choose Γ, we
shall proceed by sample splitting using one half of the sample for the construction of
the estimators and the second half to select a value of Γ. In particular, for the case
of a single model, this will lead to a generalized version of (2.8) that can also handle
the case of s 6∈ L∞. When s ∈ L∞ (with an unknown value of ‖s‖∞), the risk bounds
we get completely parallel (apart from some constants depending on ‖s‖∞) those
obtained for estimating s in the white noise model. We shall give a few applications
of these results, in particular to aggregation of preliminary estimators, in Section 6,
while the last section will be devoted to the most technical proofs.

3 T-estimators for L2-loss

In order to define estimators based on families of models with bounded metric dimen-
sions, we shall follow the approach of Birgé (2006a) based on what we have called
T-estimators. We refer to this paper for the definition of these estimators, recalling
that it relies on the existence of suitable tests between balls of the underlying metric
space

(
L2, d2

)
. To derive such tests, we need a few specific technical tools to deal

with the L2-distance.
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3.1 Tests between L2-balls

3.1.1 Randomizing our sample

In the sequel we shall make use of randomized tests based on a randomization trick
due to Yang and Barron (1998, page 106) which has the effect of replacing all densities
involved in our problem by new ones which are uniformly bounded away from zero.
For this, we choose some number λ ∈ (0, 1) and consider the mapping τ from L2 to
L2 given by τ(u) = λu+1−λ. Note that τ is one-to-one and isometric, up to a factor

λ, i.e. d2(τ(u), τ(v)) = λd2(u, v). If u ∈ L
Γ
∞, then τ(u) ∈ L

Γ′

∞ with Γ′ = λΓ + 1 − λ.
Let s′ = τ(s). Given our initial i.i.d. sample X, we want to build new i.i.d. vari-

ables X ′
1, . . . ,X

′
n with density s′. For this, we consider two independent n-samples,

Z1, . . . , Zn and ε1, . . . , εn with respective distributions µ and Bernoulli with parame-
ter λ. Both samples are independent of X. We then set X ′

i = εiXi + (1 − εi)Zi for
1 ≤ i ≤ n. It follows that X ′

i has density s′ as required. We shall still denote by Ps

the probability on Ω that gives X
′ = (X ′

1, . . . ,X
′
n) the distribution P⊗n

s′ . Given two
distinct points t, u ∈ L2 we define a (randomized) test function ψ(X ′) between t and
u as a measurable function with values in {t, u}, ψ(X ′) = t meaning deciding t and
ψ(X ′) = u meaning deciding u.

Once we have used the randomization trick of Yang and Barron, for instance with
λ = 1/2, we deal with an i.i.d. sample X

′ with a density s′ which is bounded from
below by 1/2 and we may therefore work within the set of densities that satisfy this
property.

3.1.2 Some minimax results

The main tool for the design of tests between L2-balls of densities is the following
proposition which derives from the results of Birgé (1984) (keeping here the notations
of that paper) and in particular from Corollary 3.2, specialized to the case of I = {t}
and c = 0.

Proposition 3 Let M be some linear space of finite measures on some measurable
space (Ω,A) with a topology of a locally convex separated linear space. Let P,Q be
two disjoint sets of probabilities in M and F a set of positive measurable functions
on Ω with the following properties (with respect to the given topology on M):

i) P and Q are convex and compact;
ii) for any f ∈ F and 0 < z < 1 the function P 7→

∫
f z dP is well-defined and

upper semi-continuous on P ∪Q;
iii) for any P ∈ P, Q ∈ Q, t ∈ (0, 1) and ε > 0, there exists an f ∈ F such that

(1 − t)

∫
f t dP + t

∫
f1−t dQ <

∫
(dP )1−t(dQ)t + ε;

iv) all probabilities in P (respectively in Q) are mutually absolutely continuous.
Then one can find P ∈ P and Q ∈ Q such that

sup
P∈P

∫ (
Q

P

)t

dP = sup
Q∈Q

∫ (
P

Q

)1−t

dQ = sup
P∈P,Q∈Q

∫
(dP )1−t(dQ)t

=

∫ (
dP
)1−t (

dQ
)t
.

9



In Birgé (1984) we assumed that M was the set of all finite measures on (Ω,A) but
the proof actually only uses the fact that P and Q are subsets of M. Recalling that
the Hellinger affinity between two densities u and v is defined by ρ(u, v) =

∫ √
uv dµ =

1 − h2(u, v), we get the following corollary.

Corollary 1 Let µ be a probability measure on (X ,W) and, for 1 ≤ i ≤ n, let
(Pi,Qi) be a pair of disjoint convex and weakly compact subsets of L2(µ) such that

s > 0 µ-a.s. and

∫
s dµ = 1 for all s ∈

n⋃

i=1

(Pi ∪ Qi) . (3.1)

For each i, one can find pi ∈ Pi and qi ∈ Qi such that

sup
u∈Pi

∫ √
qi/pi u dµ = sup

v∈Qi

∫ √
pi/qi v dµ = sup

u∈Pi,v∈Qi

ρ(u, v) = ρ(pi, qi).

Let X = (X1, . . . ,Xn) be a random vector on X n with distribution
⊗n

i=1(si · µ) with
si ∈ Pi for 1 ≤ i ≤ n and let x ∈ R. Then

P

[
n∑

i=1

log(qi/pi)(Xi) ≥ 2x

]

≤ e−x
n∏

i=1

ρ(pi, qi) ≤ exp

[

−x−
n∑

i=1

h2(pi, qi)

]

.

If X has distribution
⊗n

i=1(ui · µ) with ui ∈ Qi for 1 ≤ i ≤ n, then

P

[
n∑

i=1

log(qi/pi)(Xi) ≤ 2x

]
≤ ex

n∏

i=1

ρ(pi, qi) ≤ exp

[
x−

n∑

i=1

h2(pi, qi)

]
.

Proof: We apply the previous proposition with t = 1/2, (X ,W) = (Ω,A) and M
the set of measures of the form u · µ, u ∈ L2(µ) endowed with the weak L2-topology.
In view of (3.1), Pi and Qi can be identified with two sets of probabilities and we
can take for F the set of all positive functions such that log f is bounded. As a
consequence, all four assumptions of Proposition 3 are satisfied. In order to get iii)
we simply take for f a suitably truncated version of s/u when P = s ·µ and Q = u ·µ.
As to the probability bounds they derive from classical exponential inequalities, as
for Lemma 7 of Birgé (2006a).

3.1.3 Abstract tests between L2-balls

The purpose of this section is to prove the following result.

Theorem 2 Let t, u ∈ L
Γ
∞ for some Γ < +∞. For any x ∈ R, there exists a test

ψt,u,x between t and u, based on the randomized sample X
′ defined in Section 3.1.1

with a suitable value of λ, which satisfies

sup
{s∈L2 | d2(s,t)≤d2(t,u)/4}

Ps[ψt,u,x(X ′) = u] ≤ exp

[

−n
(
‖t− u‖2 + x

)

65Γ

]

, (3.2)

sup
{s∈L2 | d2(s,u)≤d2(t,u)/4}

Ps[ψt,u,x(X ′) = t] ≤ exp

[

−n
(
‖t− u‖2 − x

)

65Γ

]

. (3.3)

10



Proof: It requires several steps. To begin with, we use the randomization trick of
Yang and Barron described in Section 3.1.1, replacing our original sample X by the
randomized sample X

′ = (X ′
1, . . . ,X

′
n) for some convenient value of λ to be chosen

later. Each X ′
i has density s′ ≥ 1 − λ when Xi has density s. Then we build a test

between t′ = τ(t) and u′ = τ(u) based on X
′ and Corollary 1. To do this, we set

∆ = ‖t− u‖,

P = τ
(
Bd2

(t,∆/4) ∩ L2

)
and Q = τ

(
Bd2

(u,∆/4) ∩ L2

)
.

Then P is the subset of the ball Bd2
(t′, λ∆/4) of those densities bounded from below

by 1 − λ, hence d2(P,Q) ≥ λ∆/2 and P is convex and weakly closed since any
indicator function belongs to L2(µ) because µ is a probability. Since Bd2

(t′, λ∆/4)
is weakly compact, it is also the case for P and the same argument shows that Q is
also convex and weakly compact. It then follows from Corollary 1 that one can find
t̄ ∈ P and ū ∈ Q such that

Ps

[
n∑

i=1

log
(
ū(X ′

i)/t̄(X
′
i)
)
≥ 2y

]

≤ exp
[
−nh2 (t̄, ū) − y

]
if s ∈ P, (3.4)

while

Ps

[
n∑

i=1

log
(
ū(X ′

i)/t̄(X
′
i)
)
≤ 2y

]
≤ exp

[
−nh2 (t̄, ū) + y

]
if s ∈ Q. (3.5)

Fixing y = nx/(65Γ), we finally define ψt,u,x(X ′) by setting ψt,u,x(X
′) = u if and

only if
∑n

i=1 log (ū(X ′
i)/t̄(X

′
i)) ≥ 2y. Since s′ ∈ P is equivalent to s ∈ Bd2

(t,∆/4) or
d2(s, t) ≤ ∆/4 and similarily s ∈ Q is equivalent to d2(s, u) ≤ ∆/4, to derive (3.2)
and (3.3) from (3.4) and (3.5), we just have to show that h2 (t̄, ū) ≥ (65Γ)−1∆2. We
start from the fact, to be proved below, that

‖t̄ ∨ ū‖∞ ≤ 2(λΓ + 1 − λ). (3.6)

It implies that

h2 (t̄, ū) =
1

2

∫ (√
t̄−

√
ū
)2

dµ =
1

2

∫
(t̄− ū)2

(√
t̄+

√
ū
)2 dµ

≥ ‖t̄− ū‖2

16(λΓ + 1 − λ)
≥ (λ∆)2

64(λΓ + 1 − λ)
.

Choosing λ close enough to one leads to the required bound h2 (t̄, ū) ≥ (65Γ)−1∆2.
As to (3.6), it is a consequence of the next lemma to be proved in Section 7.2. We
apply this lemma to the pair t′, u′ which satisfies ‖t′ ∨ u′‖∞ ≤ λΓ + 1 − λ. If (3.6)
were wrong, we could find t̄′ ∈ P and ū′ ∈ Q with h (t̄′, ū′) < h (t̄, ū), which, by
Corollary 1, is impossible.

Lemma 1 Let us consider four elements t, u, v1, v2 in L2 with t 6= u, v1 6= v2 and
‖t ∨ u‖∞ = B. If ‖v1 ∨ v2‖∞ > 2B, there exists v′1, v

′
2 ∈ L2 with d2(v

′
1, t) ≤ d2(v1, t),

d2(v
′
2, u) ≤ d2(v2, u) and h(v′1, v

′
2) < h(v1, v2).

11



3.2 The performance of T-estimators

We are now in a position to prove an analogue of Corollary 6 of Birgé (2006a).

Theorem 3 Assume that we observe n i.i.d. random variables with unknown den-
sity s ∈

(
L2, d2

)
and that we have at disposal a countable family of discrete subsets

{Sm}m∈M of L
Γ
∞ for some given Γ > 1. Let each set Sm satisfy

|Sm ∩ Bd2
(t, xηm)| ≤ exp

[
Dmx

2
]

for all x ≥ 2 and t ∈ L2, (3.7)

with ηm > 0, Dm ≥ 1/2,

η2
m ≥ 273ΓDm

n
for all m ∈ M,

∑

m∈M

exp

[
− nη2

m

1365Γ

]
= Σ < +∞. (3.8)

Then one can build a T-estimator ŝ such that, for all s ∈ L2,

Es

[
dq
2(s, ŝ)

]
≤ Cq(Σ + 1) inf

m∈M

{
d2(s, Sm) ∨ ηm

}q
, for all q ≥ 1. (3.9)

Proof: Since (3.9) is merely a version of (7.6) of Birgé (2006a) with d = d2, we
just have to show that Theorem 5 of this paper applies to our situation. It relies
on Assumptions 1 and 3 of the paper. Assumption 3 follows from (3.7). As to
Assumption 1 (with a = n/(65Γ), B = B′ = 1 and δ = 4d2, hence κ = 4), it is a
consequence of our Theorem 2. The conditions (7.2) and (7.4) of Birgé (2006a) on
ηm and Dm follow from (3.8).

In the case of a single D-dimensional model S ⊂ L
Γ
∞ we get the following corollary:

Corollary 2 Assume that we observe n i.i.d. random variables with unknown distri-

bution Ps, s ∈
(
L2, d2

)
and that we have at disposal a D-dimensional model S ⊂ L

Γ
∞

for some given Γ > 1. One can build a T-estimator ŝ such that, for all s ∈ L2,

Es

[
‖s − ŝ‖2

]
≤ C

[
inf
t∈S

d2
2(s, t) + n−1DΓ

]
.

Proof: By Definition 1 and the remark following it, for each η0 > 0, one can find an

η0-net S0 ⊂ S for S, hence S0 ⊂ L
Γ
∞, satisfying (3.7) with D0 = 25D/4. Moreover

d(s, S0) ≤ η0 + d
(
s, S

)
. Choosing η2

0 = 273 × 25ΓD/4, we may apply Theorem 3.
The result then follows from (3.9) with q = 2.

Theorem 3 applies in particular to the special situation of each model Sm being
reduced to a single point {tm} so that we can take Dm = 1/2 for each m. We then
get the following useful corollary.

Corollary 3 Assume that we observe n i.i.d. random variables with unknown distri-
bution Ps, s ∈

(
L2, d2

)
and that we have at disposal a countable subset S = {tm}m∈M

of L
Γ
∞ for some given Γ > 1. Let {∆m}m∈M be a family of weights such that

∆m ≥ 1/10 for all m ∈ M and

1 ≤
∑

m∈M

exp[−∆m] = Σ < +∞. (3.10)

12



We can build a T-estimator ŝ such that, for all s ∈ L2,

Es

[
dq
2(s, ŝ)

]
≤ CqΣ inf

m∈M

{
d2(s, tm) ∨

√
Γ∆m/n

}q
for all q ≥ 1.

Proof: Let us set here Sm = {tm}, Dm = 1/2 and ηm = 37
√

Γ∆m/n for m ∈ M. One
can then check that (3.7) and (3.8) are satified so that (3.9) holds. Our risk bound
follows.

At this stage, there are two main difficulties to apply Theorem 3 or Corollary 3. The

first problem is to build suitable subsets Sm (or S) of L
Γ
∞ from classical approximating

sets (models), finite dimensional linear spaces for instance, that belong to L2(µ). We
shall address this problem in the next section while we shall solve the second problem,
namely choosing a convenient value for Γ from the data, in Section 5.

4 Model selection with uniformly bounded models

4.1 The projection operator onto L
Γ

∞

Our first task is to define a projection operator πΓ from L2(µ) onto L
Γ
∞ (Γ > 1) and

to study its properties. In the sequel, we systematically identify a real number a with
the function a1lX for the sake of simplicity. The following proposition is the corrected
version, by Yannick Baraud, of the initial mistaken result of the author.

Proposition 4 For t ∈ L2(µ) and 1 < Γ < +∞ we set πΓ(t) = [(t+γ)∨0]∧Γ where
γ is defined by

∫
[(t + γ) ∨ 0] ∧ Γ dµ = 1. Then πΓ is the projection operator from

L2(µ) onto the convex set L
Γ
∞. Moreover, if s ∈ L2 and Γ > 2, then

‖s− πΓ(s)‖2 ≤ Γ2 − Γ − 1

Γ(Γ − 2)
Qs(Γ) with Qs(z) =

∫

s>z
(s − z)2 dµ. (4.1)

Proof: First note that the existence of γ follows from the continuity and monotonicity

of the mapping z 7→
∫

[(t+ z) ∨ 0] ∧ Γ dµ and that πΓ(t) ∈ L
Γ
∞. Since L

Γ
∞ is a closed

convex subset of a Hilbert space, the projection operator π onto L
Γ
∞ exists and is

characterized by the fact that

〈t− π(t), u− π(t)〉 ≤ 0 for all u ∈ L
Γ
∞. (4.2)

Since
∫

[u − π(t)] dµ = 0 for u ∈ L
Γ
∞, (4.2) implies that 〈t + z − π(t), u − π(t)〉 ≤ 0

for z ∈ R, hence π(t) = π(t + z). Since πΓ(t) = πΓ(t + z) as well, we may assume
that

∫
[t ∨ 0] ∧ Γ dµ = 1, hence πΓ(t) = [t ∨ 0] ∧ Γ and πΓ(t) = t on the set 0 ≤ t ≤ Γ.

Then, for u ∈ L
Γ
∞,

〈t− πΓ(t), u− πΓ(t)〉 =

∫

t<0
tu dµ+

∫

t>Γ
(t− Γ)(u− Γ) dµ ≤ 0,

since 0 ≤ u ≤ Γ. This concludes the proof that π = πΓ.
Let us now bound ‖s− πΓ(s)‖ when s ∈ L2, setting s = s ∧ Γ + v with v = (s −

Γ)1ls>Γ. Since there is nothing to prove when ‖s‖∞ ≤ Γ, we assume that
∫
v dµ > 0.

By Cauchy-Schwarz Inequality,
(∫

v dµ

)2

≤ µ({s > Γ})
∫
v2 dµ ≤ Γ−1‖v‖2. (4.3)
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Moreover, since
∫
s ∧ Γ dµ < 1, πΓ(s) = (s+ γ) ∧ Γ with 0 < γ ≤ 1. Hence

1 =

∫
[(s+ γ) ∧ Γ] dµ ≥

∫
(s ∧ Γ) dµ + γµ({s ≤ Γ − γ})

≥ 1 −
∫
v dµ+ γ

(
1 − 1

Γ − γ

)
> 1 −

∫
v dµ+ γ

Γ − 2

Γ − 1

and γ < (Γ − 1)/(Γ − 2)
∫
v dµ. Now, since 0 ≤ πΓ(s) − s ≤ γ for s ≤ Γ,

‖s − πΓ(s)‖2 =

∫

s≤Γ
[πΓ(s) − s]2 dµ+ ‖v‖2 ≤ γ

∫

s≤Γ
[πΓ(s) − s] dµ + ‖v‖2

<
Γ − 1

Γ − 2

(∫
v dµ

)∫

s>Γ
[s− πΓ(s)] dµ + ‖v‖2

≤ Γ − 1

Γ − 2

(∫
v dµ

)2

+ ‖v‖2 ≤
(

1 +
Γ − 1

Γ(Γ − 2)

)
‖v‖2,

where we used (4.3). This concludes our proof.

4.2 Selection for uniformly bounded countable sets

We consider here the situation mentioned in Corollary 3 but without the assumption

that S ⊂ L
Γ
∞. For S = {tm}m∈M an arbitrary countable subset of L

2(µ) we may

always replace it by its projection πΓ(S) onto L
Γ
∞ and apply Corollary 3. The resulting

risk bound involves

d2

(
s, πΓ(tm)

)
≤ d2

(
s, πΓ(s)

)
+ d2

(
πΓ(s), πΓ(tm)

)

≤
(

Γ2 − Γ − 1

Γ(Γ − 2)
Qs(Γ)

)1/2

+ d2(s, tm)

by Proposition 4. We finally get:

Corollary 4 Assume that we observe n i.i.d. random variables with unknown density
s ∈

(
L2, d2

)
and that we have at disposal a countable subset S = {tm}m∈M of L

2(µ)
and a family of weights {∆m}m∈M such that ∆m ≥ 1/10 for all m ∈ M and (3.10)
holds. Given Γ ≥ 3 we can build a T-estimator ŝΓ with values in πΓ(S) such that, for
all s ∈ L2,

Es

[∥∥s− ŝΓ
∥∥q
]
≤ CqΣ inf

m∈M

{[
d2(s, tm) +

√
Qs(Γ)

]
∨
√

Γ∆m/n
}q

for q ≥ 1.

4.3 Selection with uniformly bounded models

Typical models S for density estimation in L2(µ) are finite-dimensional linear spaces

which are not subsets of L
Γ
∞ but merely spaces of functions with nice approximation

properties. To apply Theorem 3 we have to replace them by discrete subsets of L
Γ
∞

that satisfy (3.7). Unfortunately, they cannot simply be derived by a discretization
of S followed by a projection πΓ or a discretization of πΓ

(
S
)
. A more complicated

construction is required to preserve both the metric and approximation properties of
S. It is provided by the following preliminary result.
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Proposition 5 Let S be a subset of L2(µ) with metric dimension bounded by D. For

Γ > 2 and η > 0, one can find a discrete subset S′ of L
Γ
∞ with the following properties:

|S′ ∩ Bd2
(t, xη)| ≤ exp

[
9Dx2

]
for all x ≥ 2 and t ∈ L2(µ); (4.4)

for any s ∈ L2, one can find some s′ ∈ S′ such that

‖s− s′‖ ≤ 3.1

[
η + inf

t∈S
‖s− t‖

]
+ 4.1

(
Γ2 − Γ − 1

Γ(Γ − 2)
Qs(Γ)

)1/2

. (4.5)

Proof: According to Definition 1, we choose some η-net Sη for S such that (2.2) holds

for all t ∈ L2(µ). Since, by Proposition 4, the operator πΓ from L2(µ) to L
Γ
∞ satisfies

‖u− πΓ(t)‖ ≤ ‖u− t‖ for all u ∈ L
Γ
∞, we may apply Proposition 12 of Birgé (2006a)

with M ′ = L2(µ), d = d2, M0 = L
Γ
∞, T = Sη, π = πΓ and λ = 1. It shows that one

can find a subset S′ of πΓ(Sη) such that (4.4) holds and d2(u, S
′) ≤ 3.1d2(u, Sη) for

all u ∈ L
Γ
∞. If s is an arbitrary element of L2, then

d2

(
πΓ(s), S′

)
≤ 3.1d2 (πΓ(s), Sη) ≤ 3.1

[
d2 (πΓ(s), s) + d2

(
s, S

)
+ η
]
,

hence
d2

(
s, S′

)
≤ 3.1

[
d2

(
s, S

)
+ η
]
+ 4.1d2 (πΓ(s), s) . (4.6)

The conclusion follows from Proposition 4.

We are now in a position to derive our main result about bounded model selection.
We start with a countable collection {Sm,m ∈ M} of models in L2(µ) with metric
dimensions bounded respectively by Dm ≥ 1/2 and a family of weights ∆m satisfying
(3.10). We fix some Γ ≥ 3 and, for each m ∈ M, we set

ηm =

[(
50

√
Dm

)
∨
(
37
√

∆m

)]√
Γ/n.

By Proposition 5 (with η = ηm), each Sm gives rise to a subset SΓ
m which satisfies

(3.7) with Dm = 9Dm. It follows from our choice of ηm that (3.8) is also satisfied so
that we may apply Theorem 3 to the family of sets

{
SΓ

m,m ∈ M
}
. This results in a

T-estimator ŝΓ such that, for all s ∈ L2,

Es

[
dq
2

(
s, ŝΓ

)]
≤ CqΣ inf

m∈M

{
d2

(
s, SΓ

m

)
∨ ηm

}q
for q ≥ 1.

We also derive from Proposition 5 that

d2

(
s, SΓ

m

)
≤ 3.1

[
ηm + inf

t∈Sm

‖s− t‖
]

+ 4.1
√

(5/3)Qs(Γ).

Putting the bounds together and rearranging the terms leads to the following theorem.

Theorem 4 Given a countable collection {Sm,m ∈ M} of models in L2(µ) with
metric dimensions bounded respectively by Dm ≥ 1/2 and a family of weights ∆m
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satisfying (3.10), one can build, for each Γ ≥ 3, a T-estimator ŝΓ which satisfies, for
all s ∈ L2 and q ≥ 1,

Es

[∥∥s− ŝΓ
∥∥q
]
≤ CqΣ



 inf
m∈M




d2

(
s, Sm

)
+

√
Γ
(
Dm ∨ ∆m

)

n




+
√
Qs(Γ)




q

, (4.7)

with Qs given by (4.1) and Cq some constant depending only on q. If ‖s‖∞ ≤ Γ, then

Es

[∥∥s− ŝΓ
∥∥2
]
≤ CΣ inf

m∈M

{
d2
2

(
s, Sm

)
+ n−1Γ

(
Dm ∨ ∆m

)}
. (4.8)

5 A selection theorem

Now that we are able to build models which are bounded by Γ for each Γ ≥ 3 and to
select one of these models, which results in an estimator ŝΓ, we need a way to choose
Γ from the data in order to optimize the bound in (4.7). The idea is to use one half
of our sample to build a sequence of estimators ŝ2

i

and select a convenient value of i
from the other half of our sample. This requires to select an element from a sequence
of densities which is not uniformly bounded.

5.1 A preliminary selection result

We start with a general selection result, to be proved in Section 7.3, that we state
for an arbitrary statistical framework since it may apply to other situations than
density estimation from an i.i.d. sample. We observe some random object X with
distribution Ps on X where s belongs to a metric space M (carrying a distance d)
which indexes a family P = {Pt, t ∈M} of probabilities on X .

Theorem 5 Let (tp)p≥1 be a sequence in M such that the following assumption holds:
for all pairs (n, p) with 1 ≤ n < p and all x ∈ R, one can find a test ψtn,tp,x based on
the observation X and satisfying

sup
{s∈M | d(s,tn)≤d(tn,tp)/4}

Ps[ψtn,tp,x(X) = tp] ≤ B exp
[
−a2−pd2(tn, tp) − x

]
; (5.1)

sup
{s∈M | d(s,tp)≤d(tn,tp)/4}

Ps[ψtn,tp,x(X) = tn] ≤ B exp
[
−a2−pd2(tn, tp) + x

]
; (5.2)

with positive constants a and B independent of n, p and x. For each A ≥ 1, one can
design an estimator ŝA such that, for all s ∈M ,

Es [dq (ŝA, s)] ≤ BC(A, q) inf
p≥1

[
d(s, tp) ∨

√
a−1p2p

]q
for 1 ≤ q < 2A/ log 2. (5.3)

This general result applies to our specific framework of density estimation based on
an observation X with distribution Ps, s ∈ L2, provided that the sequence (tp)p≥1

be suitably chosen. We shall simply assume here that tp ∈ L2 with ‖tp‖∞ ≤ 2p+1

for each p ≥ 1. This implies that, for 1 ≤ i < j, ti and tj belong to L
2j+1

∞ so that
Theorem 2 applies with X replaced by the randomized sample X

′ and the assumption
of Theorem 5 is therefore satisfied with d = d2, B = 1 and a = n/65, leading to the
following corollary.
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Corollary 5 Let (ti)i≥1 be a sequence of densities such that ti ∈ L
2i+1

∞ for each i,
A ≥ 1 and X be an n-sample with density s ∈ L2. One can design an estimator ŝA

such that

Es [dq
2(ŝA, s)] ≤ C(A, q) inf

i≥1

[
d2(s, ti) ∨

√
n−1i2i

]q
for 1 ≤ q < 2A/ log 2.

5.2 General model selection in L2

We now consider the general situation where we observe n = 2n′ i.i.d. random vari-
ables X1, . . . ,Xn with an unknown density s ∈ L2, not necessarily bounded, and
have at disposal a countable collection {Sm,m ∈ M} of models in L2(µ) with metric
dimensions bounded respectively by Dm ≥ 1/2 and a family of weights ∆m which
satisfy (3.10). We split our sample X = (X1, . . . ,Xn) into two subsamples X1 and
X2 of size n′. With the sample X1 we build the T-estimators ŝi(X1) = ŝ2

i+1

(X1),
i ≥ 1 which are provided by Theorem 3. It then follows from (4.7) that each such
estimator satisfies, for q ≥ 1,

Es [‖s− ŝi(X1)‖q]

≤ CqΣ




 inf
m∈M



d2

(
s, Sm

)
+

(
2i
(
Dm ∨ ∆m

)

n

)1/2


+
√
Qs(2i+1)






q

,

with Qs given by (4.1). We now work conditionally on X1, fix a convenient value
of A ≥ 1 (for instance A = 1 if we just want to bound the quadratic risk) and use
the second half of the sample X2 to select one estimator among the previous family
according to the procedure described in Section 5.1. By Corollary 5 this results in a
new estimator s̃A(X) which satisfies

Es

[
dq
2(s̃A(X), s)

∣∣ X1

]
≤ C(A, q) inf

i≥1

[
d2(s, ŝi(X1)) ∨

√
n−1i2i

]q
,

provided that q < 2A/ log 2. Integrating with respect to X1 and using our previous
risk bound gives

Es [‖s− s̃A(X)‖q]

≤ C(A, q) inf
i≥1

{
Es [‖s− ŝi(X1)‖q] +

(
n−1i2i

)q/2
}

≤ C ′(A, q)Σ inf
i≥1




 inf
m∈M



dq
2

(
s, Sm

)
+

(
2i
(
Dm ∨ ∆m ∨ i

)

n

)q/2


+ [Qs(2
i+1)]q/2




 .

For 2i ≤ z < 2i+1, log z ≥ i log 2 and Qs(z) ≥ Qs(2
i+1) since Qs is nonincreasing.

Modifying accordingly the constants in our bounds, we get the main result of this
paper which provides adaptation to both the models and the truncation constant.

Theorem 6 Let X = (X1, . . . ,Xn) with n ≥ 2 be an i.i.d. sample with unknown
density s ∈ L2 and {Sm,m ∈ M} be a countable collection of models in L2(µ) with
metric dimensions bounded respectively by Dm ≥ 1/2. Let {∆m,m ∈ M} be a family
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of weights which satisfy (3.10) and Qs(z) be given by (4.1). For each A ≥ 1, there
exists an estimator s̃A(X) such that, whatever s ∈ L2 and 1 ≤ q < (2A/ log 2),

Es [‖s− s̃A(X)‖q]

≤ C(A, q)Σ inf
z≥2

inf
m∈M



dq
2

(
s, Sm

)
+

(
z
(
Dm ∨ ∆m ∨ log z

)

n

)q/2

+ [Qs(z)]
q/2



. (5.4)

In particular, for s̃ = s̃1 and s ∈ L∞(µ),

Es

[
‖s− s̃(X)‖2

]
≤ CΣ inf

m∈M

[
d2
2

(
s, Sm

)
+ n−1‖s‖∞

(
Dm ∨ ∆m ∨ log ‖s‖∞

)]
. (5.5)

5.3 Some remarks

We see that (5.4) is a generalization of (4.7) and (5.5) of (4.8) at the modest price
of the extra log z (or log ‖s‖∞). We do not know whether this log z is necessary or
not but, in a typical model selection problem, when s belongs to L∞(µ) but not to
∪m∈MSm, the optimal value of Dm goes to +∞ with n, so that, for this optimal
value, asymptotically Dm ∨ ∆m ∨ log ‖s‖∞ = Dm ∨ ∆m.

Up to constants depending on ‖s‖∞, (5.5) is the exact analogue of (2.5) which
shows that, when s ∈ L∞(µ), all the results about model selection obtained for the
Hellinger distance can be translated in terms of the L2-distance.

Note that Theorem 6 applies to a single model S with metric dimension bounded
by D, in which case one can use a weight ∆ = 1/2 ≤ D which results, if A = 1, in
the risk bound

Es

[
‖s− s̃(X)‖2

]
≤ C

[
d2
2

(
s, S

)
+ inf

z≥2

{
z
(
D ∨ log z

)

n
+Qs(z)

}]
, (5.6)

and, if s ∈ L∞(µ),

Es

[
‖s− s̃(X)‖2

]
≤ C

[
d2
2

(
s, S

)
+ n−1‖s‖∞

(
D ∨ log ‖s‖∞

)]
. (5.7)

Apart from the extra log ‖s‖∞, which is harmless when it is smaller than D, we
recover what we expected, namely the bound (2.8).

Even if s ∈ L∞(µ) the bound (5.4) may be much better than (5.5). This is actually
already visible with one single model, comparing (5.6) with (5.7). It is indeed easy
to find an example of a very spiky density s for which (5.6) is much better than (5.7)
or the classical bound (2.6) obtained for projection estimators. Of course, this is just
a comparison of universal bounds, not of the real risk of estimators for a given s.

More surprising is the fact that our estimator can actually dominate a histogram
based on the same model, although our counter-example is rather caricatural and
more an advertising against the use of the L2-loss than against the use of histogram
estimators. Let us consider a partition I of [0, 1] into 2D intervals Ij, 1 ≤ j ≤ 2D with

the integer D satisfying 2 ≤ D ≤ n and fix some γ ≥ 10. We then set α =
(
γ2n

)−1
.

For 1 ≤ j ≤ D, the intervals I2j−1 have length α while the intervals I2j have length
β with D(α + β) = 1. We denote by S the 2D-dimensional linear space spanned by
the indicator functions of the Ij . It is a model with metric dimension bounded by D.
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We assume that the underlying density s with respect to Lebesgue measure belongs
to S and is defined as

s = pα−1
D∑

j=1

1lI2j−1
+ qβ−1

D∑

j=1

1lI2j
with p = γα and D(p+ q) = 1,

so that β > q since α < p. We consider two estimators of s derived from the same
model S: the histogram ŝI based on the partition I and the estimator s̃ based on S
and provided by Theorem 6. According to (1.2) the risk of ŝI is

Dn−1
[
α−1p(1 − p) + β−1q(1 − q)

]
≥ 0.9Dn−1α−1p = 0.9Dγn−1,

since p ≤ 1/10. The risk of s̃ can be bounded by (5.4) with z = 4 which gives

Es

[
‖s− s̃(X)‖2

]
≤ C

[
4Dn−1 +D

∫

I1

(p/α)2 dµ

]
= CD

[
4n−1 + p2α−1

]
= 5CDn−1.

For large enough values of γ our estimator is better than the histogram. The problem
actually comes from the observations falling in some of the intervals I2j−1 which will
lead to a very bad estimation of s on those intervals. Note that this fact will happen
with a small probability since Dp = D(γn)−1 ≤ γ−1. Nevertheless, this event of small
probability is important enough to lead to a large risk when we use the L2-loss.

6 Some applications

6.1 Aggregation of preliminary estimators

Theorem 6 applies in particular to the problem of aggregating preliminary estimators,
built from an independent sample, either by selecting one of them or by combining
them linearily.

6.1.1 Aggregation by selection

Let us begin with the problem, that we already considered in Section 4.2, of selecting
a point among a countable family {tm,m ∈ M}. Typically, as in Rigollet (2006), the
tm are preliminary estimators based on an independent sample (derived by sample
splitting if necessary) and we want to choose the best one in the family. This is a
situation for which one can choose Dm = 1/2 and A = 1 which leads to the following
corollary

Corollary 6 Let X = (X1, . . . ,Xn) with n ≥ 2 be an i.i.d. sample with unknown
density s ∈ L2 and {tm,m ∈ M} be a countable collection of points in L2(µ). Let
{∆m,m ∈ M} be a family of weights which satisfy (3.10) and Qs(z) be given by (4.1).
There exists an estimator s̃(X) such that, whatever s ∈ L2,

Es

[
‖s− s̃(X)‖2

]
≤ CΣ inf

z≥2

{
inf

m∈M

[
d2
2(s, tm) +

z(∆m ∨ log z)

n

]
+Qs(z)

}
.
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6.1.2 Linear aggregation

Rigollet and Tsybakov (2007) have considered the problem of linear aggregation.
Given a finite set {t1, . . . , tN} of preliminary estimators of s, they use the observations
to build a linear combination of the tj in order to get a new and potentially better

estimator of s. For λ = (λ1, . . . , λN ) ∈ R
N , let us set tλ =

∑N
j=1 λjtj . Rigollet

and Tsybakov build a selector λ̂(X1, . . . ,Xn) such that the corresponding estimator
ŝ(X) = tb

λ
satisfies, for all s ∈ L∞,

Es

[
‖s− ŝ(X)‖2

]
≤ inf

λ∈RN

d2
2

(
s, tλ

)
+ n−1‖s‖∞N. (6.1)

Unfortunately, this bound, which is shown to be sharp for such an estimator, can
be really poor, as compared to the minimal risk inf1≤j≤N d2

2(s, tj) of the preliminary
estimators when one of those is already quite good and n−1‖s‖∞N is large, which
is likely to happen when N is quite large. Moreover, this result tells nothing when
s 6∈ L∞. In Birgé (2006a, Section 9.3) we proposed an alternative way of selecting
a linear combination of the tj based on T-estimators. In the particular situation of
densities belonging to L2, we proceed as follows: we choose for M the collection of
all nonvoid subsets m of {1, . . . , N} and, for m ∈ M, we take for Sm the linear span
of the tj with j ∈ m so that the dimension of Sm is bounded by |m| and its metric
dimension Dm by |m|/2. Since the number of elements of M with cardinality j is(
N
j

)
< (eN/j)j , we may set ∆m = |m|[2 + log(N/|m|)] so that (3.10) is satisfied

with Σ < 1. An application of Theorem 6 leads to the following corollary.

Corollary 7 Let X = (X1, . . . ,Xn) with n ≥ 2 be an i.i.d. sample with unknown
density s ∈ L2 and {t1, . . . , tN} be a finite set of points in L2(µ). Let M be the
collection of all nonvoid subsets m of {1, . . . , N} and, for m ∈ M,

Λm =
{

λ ∈ R
N
∣∣ λj = 0 for j 6∈ m

}
.

For each A ≥ 1, there exists an estimator s̃A(X) such that, whatever s ∈ L2 and
1 ≤ q < (2A/ log 2),

Es [‖s− s̃A(X)‖q] ≤ C(A, q) inf
z≥2

inf
m∈M

R(q, s, z,m),

where

R(q, s, z,m) = inf
λ∈Λm

dq
2

(
s, tλ

)
+

(
z
[
|m|

(
1 + log(N/|m|)

)
∨ log z

]

n

)q/2

+ [Qs(z)]
q/2

and Qs(z) is given by (4.1).

There are many differences between this bound and (6.1), apart from the nasty con-
stant C(A, q). Firstly, it applies to densities s that do not belong to L∞ and handles
the case of q > 2 for a convenient choice of A. Also, when s ∈ L∞ and one of the
preliminary estimators is already close to s, it may very well happen, when N is large,
that

R (2, s, ‖s‖∞,m) ≤ inf
λ∈Λm

d2
2

(
s, tλ

)
+ n−1‖s‖∞

[
|m|

(
1 + log(N/|m|)

)
∨ log ‖s‖∞

]

be much smaller than the right-hand side of (6.1) for some m of small cardinality.
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6.2 Selection of projection estimators

In this section, we assume that s ∈ L∞(µ). This assumption is not needed for the
design of the estimator but only to derive suitable risk bounds. We have at hand a
countable family

{
Sm,m ∈ M

}
of linear subspaces of L2(µ) with respective dimen-

sions Dm and we choose corresponding weights ∆m satisfying (3.10). For each m, we
consider the projection estimator ŝm defined in Section 2.2. Each such estimator has
a risk bounded by (2.6), i.e.

Es

[
‖ŝm − s‖2

]
≤ ‖sm − s‖2 + n−1Dm‖s‖∞,

where sm denotes the orthogonal projection of s onto Sm. If we apply Corollary 6 to
this family of estimators, we get an estimator s̃(X) satisfying, for all s ∈ L∞,

Es

[
‖s− s̃(X)‖2

]
≤ CΣ inf

m∈M

[
‖sm − s‖2 + n−1‖s‖∞ (Dm ∨ ∆m ∨ log ‖s‖∞)

]
.

With this bound at hand, we can now return to the problem we considered in Sec-
tion 1.1, starting with an arbitrary countable family {Im,m ∈ M} of finite partitions
of X and weights ∆m satisfying (3.10). To each partition Im we associate the linear
space Sm of piecewise constant fonctions of the form

∑
I∈Im

βI1lI . The dimension
of this linear space is the cardinality of Im and its metric dimension is bounded by
|Im|/2. If we know that s ∈ L∞(µ), we can proceed as we just explained, building the
family of histograms ŝIm(X1) corresponding to our partitions and using Corollary 6
to get

Es

[
‖s− s̃(X)‖2

]
≤ CΣ inf

m∈M

[
‖sIm − s‖2 + n−1‖s‖∞ (|Im| ∨ ∆m ∨ log ‖s‖∞)

]
,

(6.2)
which should be compared with (1.3). Apart from the unavoidable complexity term
∆m due to model selection, we have only lost (up to the universal constant C) the
replacement of |Im| by |Im|∨ log ‖s‖∞. Examples of families of partitions that satisfy
(3.10) are given in Section 9 of Birgé (2006a).

In the general case of s ∈ L2(µ), we may apply Theorem 6 to the family of linear
models

{
Sm,m ∈ M

}
derived from these partitions, getting an estimator s̃ with a

risk satisfying

Es

[
‖s− s̃(X)‖2

]
≤ CΣ inf

z≥2

{
inf

m∈M

[
‖sIm − s‖2 +

z(|Im| ∨ ∆m ∨ log z)

n

]
+Qs(z)

}
.

6.3 A comparison with Gaussian model selection

A benchmark for model selection in general is the particular (simpler) situation of
model selection for the so-called white noise framework in which we observe a Gaussian
process X = {Xz , z ∈ [0, 1]} with Xz =

∫ z
0 s(x) dx + σWz, where s is an unknown

element of L2([0, 1], dx), σ > 0 a known parameter and Wz a Wiener process. For
such a problem, an analogue of Theorem 1 has been proved in Birgé (2006a), namely

Theorem 7 Let X be the Gaussian process given by

Xz =

∫ z

0
s(x) dx+ n−1/2Wz, 0 ≤ z ≤ 1,
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where s is an unknown element of L2([0, 1], dx) to be estimated and Wz a Wiener
process. Let {Sm,m ∈ M} be a countable collection of models in L2(µ) with metric
dimensions bounded respectively by Dm ≥ 1/2. Let {∆m,m ∈ M} be a family of
weights which satisfy (3.10). There exists an estimator s̃(X) such that, whatever
s ∈ L2([0, 1], dx),

Es

[
‖s− s̃(X)‖2

]
≤ C inf

m∈M

[
d2
2

(
s, Sm

)
+ n−1

(
Dm ∨ ∆m

)]
.

Comparing this bound with (5.5) shows that, when s ∈ L∞(µ), we get a similar
risk bound for estimating the density s from n i.i.d. random variables, apart from
an additional factor depending on ‖s‖∞. Similar analogies are valid with bounds
obtained for estimating densities with squared Hellinger loss or for estimating the
intensity of a Poisson process as shown in Birgé (2006a and 2007). Therefore, all the
many examples that have been treated in these papers could be transferred to the case
of density estimation with L2-loss with minor modifications due to the appearence of
‖s‖∞ in the bounds. We leave all these translations as exercices for the concerned
reader.

6.4 Estimation in Besov spaces

The Besov space Bα
p,∞([0, 1]) with α, p > 0 is defined in DeVore and Lorentz (1993)

and it is known that a necessary and sufficient condition forBα
p,∞([0, 1]) ⊂ L2([0, 1], dx)

is δ = α+1/2−1/p > 0, which we shall assume in the sequel. The problem of estimat-
ing adaptively densities that belong to some Besov space Bα

p,∞([0, 1]) with unknown
values of α and p has been solved for a long time when α > 1/p which is a necessary
and sufficient condition for Bα

p,∞([0, 1]) ⊂ L∞([0, 1], dx). See for instance Donoho,
Johnstone, Kerkyacharian and Picard (1996), Delyon and Juditsky (1996) or Birgé
and Massart (1997). It can be treated in the usual way (with an estimation of ‖s‖∞)
leading to the minimax rate of convergence n−2α/(2α+1) for the quadratic risk.

6.4.1 Wavelet expansions

It is known from analysis that functions s ∈ L2 ([0, 1], dx) can be represented by their
expansion with respect to some orthonormal wavelet basis {ϕj,k, j ≥ −1, k ∈ Λ(j)}
with |Λ(−1)| ≤ K and 2j ≤ |Λ(j)| ≤ K2j for all j ≥ 0. Such a wavelet basis satisfies

∥∥∥∥∥∥

∑

k∈Λ(j)

ϕj,k

∥∥∥∥∥∥
∞

≤ K ′2j/2 for j ≥ −1, (6.3)

and we can write

s =
∞∑

j=−1

∑

k∈Λ(j)

βj,kϕj,k, with βj,k =

∫
ϕj,k(x)s(x) dx. (6.4)

Moreover, for a convenient choice of the wavelet basis (depending on α), the fact that
s belongs to the Besov space Bα

p,∞([0, 1]) is equivalent to

sup
j≥0

2j(α+1/2−1/p)




∑

k∈Λ(j)

|βj,k|p



1/p

= |s|α,p,∞ < +∞, (6.5)
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where |s|α,p,∞ < +∞ is equivalent to the Besov semi-norm |s|αp .
Moreover, it follows from Birgé and Massart (1997 and 2000), as summarized in

Birgé (2006a, Proposition 13), that, given the integer r, one can find a wavelet basis
(depending on r) and a universal family of linear models {Sm,m ∈ M = ∪J≥0MJ}
with respective dimensionsDm, and weights {∆m,m ∈ M} satisfying (3.10), with the
following properties. Each Sm is the linear span of {ϕ−1,k, k ∈ Λ(−1)}∪{ϕj,k , (j, k) ∈
m} with m ⊂ ∪j≥0Λ(j); Dm ∨ ∆m ≤ c2J for m ∈ MJ and

inf
m∈MJ

inf
t∈Sm

‖s− t‖ ≤ C(α, p)2−Jα|s|α,p,∞ for s ∈ Bα
p,∞([0, 1]), α < r. (6.6)

6.4.2 The bounded case

Actually, only the assumption that s ∈ Bα
p,∞([0, 1]) ∩ L∞(µ), rather than α > 1/p,

is needed to get the optimal rate of convergence n−2α/(2α+1). Indeed, we may apply
the results of Section 6.2 to the family of models which satisfies (6.6) and derive an
estimator s̃ with a risk bounded by

Es

[
‖s− s̃(X)‖2

]
≤ C(α, p) inf

J≥0

[
2−2Jα (|s|α,p,∞)2 + n−1‖s‖∞

(
2J ∨ log ‖s‖∞

)]
.

Choosing 2J of the order of n1/(2α+1) leads to the bound

Es

[
‖s− s̃(X)‖2

]
≤ C (α, p, |s|α,p,∞, ‖s‖∞)n−2α/(2α+1),

which is valid for all s ∈ Bα
p,∞([0, 1])∩L∞(µ), whatever α < r and p and although α,

p, |s|αp and ‖s‖∞ are unknown.

6.4.3 Further upper bounds for the risk

When α ≤ 1/p, i.e. 0 < δ ≤ 1/2, s may be unbounded and the classical theory does
not apply any more. As a consequence the minimax risk over balls in Bα

p,∞([0, 1]) is
presently unknown. Our study will not, unfortunely, solve this problem but, at least,
provide some partial information. In this section we assume that α ≤ 1/p and, as
usual, restrict ourselves to the case p ≤ 2 so that δ ≤ α. We consider the wavelet
expansion of s which has been described in Section 6.4.1 and, to avoid unnecessary
complications, we also assume that |s|α,p,∞ ≥ 1. In what follows, the generic constant
C (changing from line to line) depends on the choice of the basis and δ.

Since p ≤ 2,




∑

k∈Λ(j)

β2
j,k




1/2

≤




∑

k∈Λ(j)

|βj,k|p



1/p

≤ |s|α,p,∞2−j(α+1/2−1/p) = |s|α,p,∞2−jδ,

hence, for q ≥ −1 an integer,

∥∥∥∥∥∥

∑

j>q

∑

k∈Λ(j)

βj,kϕj,k

∥∥∥∥∥∥
≤ C2−qδ|s|α,p,∞. (6.7)
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The simplest estimators of s are the projection estimators ŝq over the linear spaces

S
′
q where S

′
q is spanned by {ϕj,k,−1 ≤ j ≤ q, k ∈ Λ(j)}

ŝq(X) =

q∑

j=−1

∑

k∈Λ(j)

β̂j,k(X)ϕj,k, with β̂j,k(X) = n−1
n∑

i=1

ϕj,k(Xi),

The risk of these estimators can be bounded using (2.6) and (6.7) by

Es

[
‖s− ŝq(X)‖2

]
≤ d2

2

(
s, S

′
q

)
+ C2q/n ≤ C ′

[
2−2qδ|s|2α,p,∞ + 2q/n

]
.

A convenient choice of q, depending on δ, then leads to

Es

[
‖s− ŝq(X)‖2

]
≤ C|s|2α,p,∞n

−2δ/(2δ+1).

One can actually choose q from the data using a penalized least squares estimator
and get a similar risk bound without knowing δ as shown by Theorem 7.5 of Massart
(2007). This is the only adaptation result we know for the case α ≤ 1/p without the
restriction s ∈ L∞([0, 1]).

Let us now see what our method can do. Since s is a density, it follows from (6.4)
and (6.3) that |β−1,k| ≤ ‖ϕ−1,k‖∞ ≤ K ′/

√
2, hence

∥∥∥∥∥∥

∑

k∈Λ(−1)

β−1,kϕ−1,k

∥∥∥∥∥∥
∞

≤
(
K ′/

√
2
)
∥∥∥∥∥∥

∑

k∈Λ(−1)

ϕ−1,k

∥∥∥∥∥∥
∞

≤ K ′2/2.

Moreover, for j ≥ 0, (6.5) implies that sup k∈Λ(j) |βj,k| ≤ 2−jδ|s|α,p,∞. Therefore, by
(6.3), ∥∥∥∥∥∥

∑

k∈Λ(j)

βj,kϕj,k

∥∥∥∥∥∥
∞

≤ C2−j(α−1/p)|s|α,p,∞,

and, for J ≥ 0,
∥∥∥∥∥∥

J∑

j=0

∑

k∈Λ(j)

βj,kϕj,k

∥∥∥∥∥∥
∞

≤






C|s|α,p,∞ if α > 1/p;
C(J + 1)|s|α,p,∞ if α = 1/p;

C2J(1/p−α)|s|α,p,∞ if α < 1/p.

Finally,
∥∥∥∥∥∥

J∑

j=−1

∑

k∈Λ(j)

βj,kϕj,k

∥∥∥∥∥∥
∞

≤ C0LJ |s|α,p,∞ with LJ =






1 if α > 1/p;
(J + 1) if α = 1/p;

2J(1/p−α) if α < 1/p.

Observing that if s = u+v with ‖u‖∞ ≤ z, then Qs(z) ≤ ‖v‖2, we can conclude from
(6.7) that

Qs (C0LJ |s|α,p,∞) ≤ C ′2−2Jδ|s|2α,p,∞.

Let us now turn back to the family of linear models described in Section 6.4.1 that
satisfy (6.6). Theorem 6 asserts the existence of an estimator s̃(X) based on this
family of models and satisfying

Es

[
‖s− s̃(X)‖2

]
≤ C inf

z≥2
inf

m∈M

[

d2
2

(
s, Sm

)
+
z
(
Dm ∨ ∆m ∨ log z

)

n
+Qs(z)

]

.

24



Given the integers J, J ′, we may set z = zJ ′ = C0LJ ′ |s|α,p,∞ and restrict the mini-
mization to m ∈ MJ which leads to

Es

[
‖s− s̃(X)‖2

]
≤ C

[
|s|2α,p,∞

(
2−2Jα + 2−2J ′δ

)
+ n−1LJ ′ |s|α,p,∞

(
2J ∨ log zJ ′

)]
.

Since LJ ′

(
2J ∨ log zJ ′

)
is a nondecreasing function of both J and J ′, this last bound

is optimized when Jα and J ′δ are approximately equal which leads to choosing the
integer J ′ so that Jα/δ ≤ J ′ < Jα/δ+1, hence 2−2J ′δ ≤ 2−2Jα. Assuming, moreover,
that 2J ≥ log |s|α,p,∞, which implies that 2J ≥ C ′ log zJ ′ , we get

Es

[
‖s− s̃(X)‖2

]
≤ C|s|2α,p,∞

[
2−2Jα + 2J (n|s|α,p,∞)−1 LJ ′

]
.

We finally fix J so that 2J ≥ G > 2J−1, where G is defined below. This choice ensures
that G ≥ log |s|α,p,∞ for n large enough (depending on |s|α,p,∞), which we assume
here.
— If α > 1/p we set G = (n|s|α,p,∞)1/(2α+1) which leads to a risk bound of the form

Cn−2α/(2α+1) (|s|α,p,∞)(2α+2)/(2α+1) .

— If α = 1/p, L′
J < Jα/δ + 2 and we take G = (n|s|α,p,∞/ log n)1/(2α+1) which leads

to the risk bound

C(n/ log n)−2α/(2α+1) (|s|α,p,∞)(2α+2)/(2α+1) .

— Finally, for α < 1/p, LJ ′ <
√

2 2(Jα/δ)(1/p−α) and we setG = (n|s|α,p,∞)1/[α+1+α/(2δ)]

which leads to the bound

Cn−2α/[α+1+α/(2δ)] (|s|α,p,∞)(2+(α/δ)/[α+1+α/(2δ)] .

6.4.4 Some lower bounds

Lower bounds of the form n−2α/(1+2α) for the minimax risk on Besov balls are well-
known (deriving from lower bounds for Hölder spaces) and they are sharp for α >
1/p, as shown in Donoho, Johnstone, Kerkyacharian and Picard (1996). To derive
new lower bounds for the case α < 1/p we introduce some probability density f ∈
Bα

p,∞([0, 1]) with compact support included in (0, 1) and Besov semi-norm |f |αp . Then
we set g(x) = af(2anx) for some a > (2n)−1 to be fixed later. Then g(x) = 0 for
x 6∈

(
0, (2an)−1

)
,

‖g‖q = a(2an)−1/q‖f‖q and |g|αp = a(2an)α−1/p|f |αp .

Let us now set t = g+
[
1 − (2n)−1

]
1l[0,1], so that t is a density belonging to Bα

p,∞([0, 1])
with Besov semi-norm

|t|αp = |g|αp = Ka1+α−1/pnα−1/p with K = 2α−1/p|f |αp .

For a given value of the constant K ′ > 0, the choice a =
[
K ′n1/p−α

]1/(1+α−1/p)
>

(2n)−1 (at least for n large) leads to |t|αp = KK ′ so that K ′ determines |t|αp . We also
consider the density u(x) = t(1 − x) which has the same Besov semi-norm. Then

h2(t, u) =

∫ (2an)−1

0

(√
g + [1 − (2n)−1] −

√
1 − (2n)−1

)2
<

∫ (2an)−1

0
g = (2n)−1,
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and it follows from Le Cam (1973) that any estimator ŝ based on n i.i.d. observations
satisfies

max
{
Et

[
‖t− ŝ‖2

]
,Eu

[
‖u− ŝ‖2

]}
≥ C‖t− u‖2 = 2C‖g‖2 = Can−1‖f‖2.

Since an−1 = K ′1/(δ+1/2)n−2δ/(δ+1/2), we finally get

max
{
Et

[
‖t− ŝ‖2

]
,Eu

[
‖u− ŝ‖2

]}
≥ C

(
|t|αp
)2/(2δ+1)

n−4δ/(2δ+1),

where C depends on K ′, ‖f‖, |f |αp and δ. One can check that this rate is slower than

n−2α/(1+2α), when 0 < δ < α[2(α+1)]−1 or, equivalently, when α+[2(α+1)]−1 < 1/p.

6.4.5 Conclusion

In the case α > 1/p, the estimator that we built in Section 6.4.3 has the usual rate
of convergence with respect to n, namely n−2α/(2α+1), which is known to be optimal,
and we can extend the result to the borderline case α = 1/p with only a logarithmic
loss. The situation is different when α < 1/p for which, to our knowledge, the value
of the minimax risk is still unknown. The rate n−2α/[α+1+α/(2δ)] that we get is worse
than the one valid for α > 1/p and also than the lower bound n−4δ/(2δ+1) that we
derived in the previous section. It can be compared with the risk of the penalized least
squares estimators based on the nested models S

′
q, which is, as we have seen, bounded

by Cn−2δ/(2δ+1). Our rate is better when α > 2δ/(2δ + 1), which is always true for
α ≥ 1/2 since δ < 1/2. When α < 1/2, hence p > 2/(2α + 1) > 1, it also holds for
p < 2(1−α)/

(
1 − 2α2

)
< α−1. We are convinced that our rate is always suboptimal

in the range α ≤ 1/p but are presently unable to derive the correct minimax rate.

7 Proofs

7.1 Proof of Proposition 2

For simplicity, we shall write h(θ, λ) for h(sθ, sλ) and analogously d2(θ, λ) for d2(sθ, sλ).

Let us first evaluate h2(θ, λ) for 0 < θ < λ ≤ 1/3. Setting βθ =
(
θ2 + θ + 1

)−1 ∈
[9/13, 1), we get

2h2(θ, λ) =

∫ 1

0

(√
sθ(x) −

√
sλ(x)

)2
dx

= θ3
(
θ−1 − λ−1

)2
+
(
λ3 − θ3

)(
λ−1 −

√
βθ

)2
+
(
1 − λ3

) (√
βθ −

√
βλ

)2

= (λ− θ)
θ

λ

(
1 − θ

λ

)
+ (λ− θ)

[

1 +
θ

λ
+

(
θ

λ

)2
](

1 − λ
√
βθ

)2

+
(
1 − λ3

) (√
βθ −

√
βλ

)2
.

Note that the monotonicity of θ 7→ βθ implies that

4/9 <
(
1 − λ

√
βθ

)2
< 1,

√
βθ +

√
βλ > 2

√
β1/3 = 6/

√
13
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and

0 < βθ − βλ =
(λ− θ)(λ+ θ + 1)

(θ2 + θ + 1)(λ2 + λ+ 1)
< λ− θ. (7.1)

It follows that

0 <
(√

βθ −
√
βλ

)2
=

(βθ − βλ)2
(√
βθ +

√
βλ

)2 <
13

36
(λ− θ)2 =

13λ

36
(λ− θ)

(
1 − θ

λ

)

and

0 <
(
1 − λ3

)(√
βθ −

√
βλ

)2
<

13λ
(
1 − λ3

)

36
(λ− θ)

(
1 − θ

λ

)
<

2(λ− θ)

17

(
1 − θ

λ

)
.

We can therefore write

G = 2(λ− θ)−1h2(θ, λ) = z(1 − z) + c1(θ, λ)
(
1 + z + z2

)
+ c2(θ, λ)(1 − z),

with z = θ/λ ∈ (0, 1), 4/9 < c1(θ, λ) < 1 and 0 < c2(θ, λ) < 2/17. Since, for given
values of c1 and c2, the right-hand side is increasing with respect to z, 4/9 < c1 <
G < 3c1 < 3 and we conclude that for all θ and λ in (0, 1/3],

h2(θ, λ) = C(θ, λ)|θ − λ| with 2/9 < C(θ, λ) < 3/2.

It immediately follows that the set Sη = {sλj
, j ≥ 0} with λj = (2j + 1)2η2/3 is an

η-net for the family S. On the other hand, given λ ∈ (0, 1/3) and r ≥ 2η, in order
that sλj

∈ B(sλ, r), it is required that h2(λj , λ) = C(λj, λ)|λj −λ| < r2 which implies
that |λj − λ| < (9/2)r2 and therefore

|Sη ∩ B(sλ, r)| ≤ 1 + (27/4)(r/η)2 ≤ exp
[
0.84(r/η)2

]
for all sλ ∈ S.

It follows from Lemma 2 of Birgé (2006a) that S has a metric dimension bounded by
3.4 and Corollary 3 of Birgé (2006a) implies that a suitable T-estimator s̃ built on
Sη has a risk satisfying

Esθ

[
h2(s, s̃)

]
≤ Cn−1 for all sθ ∈ S.

Let us now proceed with the L2-distance d2.

d2
2(θ, λ) = θ3

(
θ−2 − λ−2

)2
+
(
λ3 − θ3

) (
λ−2 − βθ

)2
+
(
1 − λ3

)
(βθ − βλ)2

=

(
1

θ
− 1

λ

)(
1 − θ

λ

)(
1 +

θ

λ

)2

+

(
1

θ
− 1

λ

)[
θ

λ
+

(
θ

λ

)2

+

(
θ

λ

)3
]
(
1 − λ2βθ

)2

+

(
1

θ
− 1

λ

)(
1 − θ

λ

)
θλ2

(
1 − λ3

)(βθ − βλ

λ− θ

)2

.

Since 8/9 < 1 − λ2βθ < 1 and, by (7.1),

0 < θλ2
(
1 − λ3

)(βθ − βλ

λ− θ

)2

<
1

27
,
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we conclude that

G =
(
θ−1 − λ−1

)−1
d2
2(θ, λ) = (1− z)(1+ z)2 + c1(θ, λ)

(
z + z2 + z3

)
+ c2(θ, λ)(1− z),

with z = θ/λ ∈ (0, 1), 8/9 < c1(θ, λ) < 1 and 0 < c2(θ, λ) < 1/27. It follows that

1 < 1 + z − z2 − z3 + (8/9)
(
z + z2 + z3

)
< G < 1 + 2z + (1/27)(1 − z) < 3,

which finally implies that, for all θ and λ in (0, 1/3],

d2
2(θ, λ) = C(θ, λ)

∣∣θ−1 − λ−1
∣∣ with 1 < C(θ, λ) < 3.

Now setting Sη = {sλj
, j ≥ 0} with λj =

(
3 + 2jη2/3

)−1
we deduce as before that

Sη is an η-net for S. In order that sλj
∈ B(sλ, xη), it is required that d2

2(λj , λ) =

C(θ, λ)|λ−1
j −λ−1| < x2η2, which implies that |λ−1

j −λ−1| < x2η2. It follows that the

number of elements of Sη contained in the ball is bounded by 3x2/2+1 ≤ exp
(
x2/2

)

for x ≥ 2. Hence the metric dimension of S with respect to the L2-distance is bounded
by 2. It nevertheless follows from the fact that h(θ, λ) → 0 while d2(θ, λ) → +∞ when
θ and λ tend to zero and classical arguments of Le Cam (1973) — see also Donoho
and Liu (1987) or Yu (1997) — that the minimax risk over S is infinite when we use
the L2-loss.

7.2 Proof of Lemma 1

Let us begin with a preliminary lemma.

Lemma 2 Let F and G be two disjoint sets with positive measures α = µ(F ) and
β = µ(G) and g ∈ L2 such that infx∈F g(x) > 0. Set gε = g+ε(α1lG −β1lF ) for ε > 0.
Then gε is a density for ε small enough and for any f ∈ L2,

lim
ε→0

1

2ε

[
d2
2(gε, f) − d2

2(g, f)
]

= α

∫

G
(g − f) dµ− β

∫

F
(g − f) dµ (7.2)

and

lim
ε→0

2

ε

[
h2(gε, f) − h2(g, f)

]
= β

∫

F

√
fg−1 dµ− α

∫

G

√
fg−1 dµ, (7.3)

with the convention that
∫
G

√
fg−1 dλ = +∞ if either µ(G ∩ {g = 0} ∩ {f > 0}) > 0

or the integral diverges.

Proof: Since
∫
gε dµ = 1 and gε ≥ 0 for ε small enough gε is a density. Moreover,

setting k = α1lG − β1lF , we get

d2
2(gε, f) =

∫
(g + εk − f)2 dµ = d2

2(g, f) + ε2‖k‖2 + 2ε

∫
k(g − f) dµ

and (7.2) follows. Let ∆(ε) = ε−1
[
h2(gε, f) − h2(g, f)

]
and fix η > 0. Then

∆(ε) = ε−1

[∫ √
gf dµ−

∫ √
(g + εk)f dµ

]

= ε−1

[∫

F

[√
gf −

√
(g − εβ)f

]
dµ+

∫

G

[√
gf −

√
(g + εα)f

]
dµ

]

=

∫

F

β
√
f√

g − εβ +
√
g
dµ −

∫

G∩{g>0}

α
√
f√

g + εα+
√
g
dµ

−
∫

G∩{g=0}∩{f>0}

√
αf/ε dµ.

28



When ε tends to 0, the first integral converges to (β/2)
∫

F

√
fg−1 dµ and the second

one converges to (α/2)
∫

G∩{g>0}

√
fg−1 dµ, by monotone convergence. The last one

converges to +∞ if µ(G ∩ {g = 0} ∩ {f > 0}) > 0 and 0 otherwise, which achieves
the proof of (7.3).

If ‖v1 ∨ v2‖∞ > 2B, we may assume, exchanging the roles of v1 and v2 if necessary,
that µ(A) > 0 with A = {v1 ≥ v2 and v1 > 2B}. Let C = {v1 < B ∧ v2}. If
µ(C) > 0, we may apply Lemma 2 with F = A, G = C, g = v1 and v′1 = gε. We first
set f = t. Since v1 − t < B on C while v1 − t > B on A, it follows from (7.2) that
d2(v

′
1, t) < d2(v1, t) for ε small enough. If we now set f = v2 and use (7.3), we see that

h(v′1, v2) < h(v1, v2) since v2 ≤ v1 on A and v2 > v1 on C. We conclude by setting
v′2 = v2. If µ(C) = 0, then µ({B ≤ v1 < v2}) + µ({v2 ≤ v1 < B}) = 1 and both
sets have positive µ-measure since v1 6= v2. In this case we set F = {B ≤ v1 < v2},
G = {v2 ≤ v1 ∧ u} and g = v2. Then µ(F ) > 0 and µ(G) > 0 since u ≤ B < v2 on F
and they are densities. If we use (7.2) with f = u, we derive that d2(v

′
2, u) < d2(v2, u)

for ε small enough and if we use (7.3) with f = v1, we derive that h(v′2, v1) < h(v2, v1),
in which case we set v′1 = v1.

7.3 Proof of Theorem 5

We consider the family of tests ψ(tn, tp,X) = ψtn,tp,x(X) provided by the assumption
with x = A|p−n|. Given this family of tests and S = {ti, i ≥ 1}, we define the random
function DX on S as in Birgé (2006a), i.e. we set Ri = {tj ∈ S, j 6= i |ψ(ti, tj ,X) =
tj} and

DX (ti) =






sup
tj∈Ri

{
d(ti, tj)

}
if Ri 6= ∅;

0 if Ri = ∅.
(7.4)

Given some ti ∈ S, we want to bound

Ps

[
DX (ti) > xyi

]
for x ≥ 1 and yi = 4d(s, ti) ∨

√
Aa−1i2i.

Let us define the integer K by x2 < 2K ≤ 2x2. Then

K ≥ 1, a2−i−K(xyi)
2 ≥ a2−i−1y2

i ≥ Ai/2 and e−AK ≤ x−2A/ log 2. (7.5)

Now, setting y = xyi, observe that

Ps

[
DX (ti) > y

]
= Ps [ ∃j with d(ti, tj) > y and ψ(ti, tj ,X) = tj] ≤ Σ1 + Σ2,

with

Σ1 =
∑

j<i

1ld(ti ,tj)>y Ps [ψ(ti, tj ,X) = tj] ; Σ2 =
∑

j>i

1ld(ti,tj)>y Ps [ψ(ti, tj ,X) = tj ] .

If i = 1, then Σ1 = 0 and if i ≥ 2, we can use (5.2) and y ≥ 4d(s, ti) to derive that

Σ1 ≤ B
∑

j<i

1ld(ti ,tj)>y exp
[
−a2−id2(ti, tj) +A|i− j|

]

≤ B exp
[
−a2−iy2

i x
2 +Ai

]∑

j≥1

e−Aj
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≤ B
e−A

1 − e−A
exp

[
−Ai

(
x2 − 1

)]
≤ B

e−A

1 − e−A
exp

[
−A

(
x2 − 1

)]

≤ B
(
1 − e−A

)−1
exp

[
−Ax2

]
≤ B

(
1 − e−A

)−1
x−2A/ log 2,

where we used (7.5), i ≥ 1 and x ≥ 1. Also, by (5.1),

Σ2 ≤ B
∑

j>i

1ld(ti ,tj)>y exp
[
−a2−jd2(ti, tj) −A|i− j|

]

≤ B
∑

j>i

exp
[
−a2−jy2 −A(j − i)

]
= B

+∞∑

k=1

exp
[
−a2−i−ky2 −Ak

]

≤ B

[
K∑

k=1

exp
[
−a2−i−ky2 −Ak

]
+
∑

k>K

exp[−Ak]
]

= B(Σ3 + Σ4),

with Σ4 = e−AK
(
eA − 1

)−1
and, by (7.5),

Σ3 = e−AK
K−1∑

j=0

exp
[
−a2−i−K+jy2 +Aj

]
≤ e−AK

K−1∑

j=0

exp
[
−A(i2j−1 − j)

]

≤ e−AK
∑

j≥0

exp
[
−
(
2j−1 − j

)]
< 3e−AK .

We finally get, putting all the bounds together and using (7.5) again,

Ps

[
DX (ti) > xyi

]
≤ BC(A)x−2A/ log 2 for x ≥ 1. (7.6)

As a consequence DX (ti) < +∞ a.s. and we can define

ŝA = tp with p = min

{
j

∣∣∣∣DX (tj) < inf
i
DX (ti) +

√
Aa−1

}
.

In view of the definition of DX , d(ti, tj) ≤ DX (ti) ∨ DX (tj), hence, for all ti ∈ S,

d (ŝA, ti) ≤ DX (ti) +
√
Aa−1 and

d (ŝA, s) ≤ DX (ti) +
√
Aa−1 + d(s, ti) < DX (ti) + yi.

It then follows from (7.6) that

Ps [d (ŝA, s) > zyi] ≤ BC(A)(z − 1)−2A/ log 2 for z ≥ 2.

Integrating with respect to z leads to

Es [(d (ŝA, s) /yi)
q] ≤ BC(A, q) for 1 ≤ q < 2A/ log 2,

and, since ti is arbitrary in S,

Es [dq (ŝA, s)] ≤ BC(A, q) inf
i≥1

[
dq(s, ti) ∨

(
a−1i2i

)q/2
]

for 1 ≤ q < 2A/ log 2.
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BIRGÉ, L. and ROZENHOLC, Y. (2006). How many bins should be put in a regular
histogram. ESAIM-Probab. & Statist. 10, 24-45.

CENCOV, N.N. (1962). Evaluation of an unknown distribution density from observations.
Soviet Math. 3, 1559-1562.

DELYON, B. and JUDITSKY, A. (1996). On minimax wavelet estimators. Appl. Comput.
Harmonic Anal. 3, 215-228.

DeVORE, R.A. and LORENTZ, G.G. (1993). Constructive Approximation. Springer-
Verlag, Berlin.

DEVROYE, L. (1987). A Course in Density Estimation. Birkhäuser, Boston.
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