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Abstract. In this paper, we derive asymptotic results for the L
1-Wasserstein

distance between the distribution function and the corresponding empirical dis-
tribution function of a stationary sequence. Next, we give some applications
to dynamical systems and causal linear processes. To prove our main result,
we give a Central Limit Theorem for ergodic stationary sequences of random
variables with values in L

1. The conditions obtained are expressed in terms of
projective-type conditions. The main tools are martingale approximations.
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1. Introduction

The Kantorovich or L1-Wasserstein distance between two probability measures
P1 and P2 on R with finite mean, is defined by

d1(P1, P2) := inf
{

∫

|x − y| dν(x, y) : ν ∈ P(R2) with marginals P1, P2

}

,

where P(R2) is the space of probability measures on R
2.

Let Λ1 be the space of 1-Lipschitz functions. It is well known that d1 can also
be written as follows:

d1(P1, P2) =

∫

|F2(t) − F1(t)| dt = sup
f∈Λ1

∣

∣

∣

∫

fdP1 −
∫

fdP2

∣

∣

∣
,

where F1 (respectively F2) is the distribution function of P1 (respectively of P2).
Let (Xi)i∈Z be a stationary sequence of real-valued random variables. In this

paper, we are concerned with the Central Limit Theorem (CLT) for the L1-
Wasserstein distance, defined by

∫

R

|Fn(t) − FX(t)| dt, (1.1)

where FX is the common distribution function of the variables Xi, and Fn is the
corresponding empirical distribution function (see Section 3).

In the literature, several previous works on the Kantorovich or L1-Wasserstein
distance, have already been done, for a sequence of i.i.d random variables X =

Date: December 15, 2008.
1



2 SOPHIE DEDE

(Xi)i∈Z ( see for instance del Barrio, Giné and Matrán [3]). Recall that if X has
the distribution function FX , then the condition

∫ ∞

−∞

√

FX(t)(1 − FX(t)) dt < ∞,

is equivalent to

Λ2,1(X) :=

∫ ∞

0

√

P(|X| > t) dt < ∞.

In their Theorem 2.1, del Barrio, Giné and Matrán [3] prove that if (Xi)i∈Z

is i.i.d, then the processes
√

n(Fn − FX) converge in law in L1 to the process
{B(F (t)), t ∈ R}, where B is a Brownian bridge, if and only if Λ2,1(X) < ∞. Our
main result extends Theorem 2.1 in del Barrio, Giné and Matràn [3] to the case
of stationary sequences, satisfying some appropriate dependence conditions.

Before giving the idea of the proof, let us introduce L1(µ) = L1(T, µ), where µ
is a σ-finite measure, the Banach space of µ-integrable real functions on T, with
the norm ‖.‖1,µ, defined by ‖x‖1,µ =

∫

T
|x(t)|µ(dt). Let L∞(µ) be its dual space.

First, we give the Central Limit Theorem (CLT) for ergodic stationary sequences
of martingale differences in L1(µ) (see Section 4.1). Then, by martingale approxi-
mation (see for instance Volný [19]), we derive a Central Limit Theorem for some
ergodic stationary sequences of L1(µ)-valued random variables satisfying some
projective criteria. This result allows us to get sufficient conditions to derive the
asymptotic behavior of (1.1).

The paper is organized as follows. In Section 2, we state our main result. In
Section 3, we derive the empirical Central Limit Theorem for statistics of the type
(1.1) for a large class of dependent sequences. In particular, the results apply
to unbounded functions of expanding maps of the interval, and to causal linear
processes.

2. Central Limit Theorem for stationary sequences in L1(µ)

From now, we assume that the ergodic stationary sequence (Xi)i∈Z of centered
random variables with values in L1(µ), is given by Xi = X0◦T

i, where T : Ω −→ Ω
is a bijective bimeasurable transformation preserving the probability P on (Ω,A).
Let Sn =

∑n
j=1 Xj , be the partial sums. For a subfield F0 satisfying F0 ⊆ T

−1(F0),

let Fi = T
−i(F0).

Notation 2.1. For any integer p ≥ 1 and for any real random variable Y , we
denote ‖.‖p, the Lp-norm defined by ‖Y ‖p = E(|Y |p)1/p, and ‖.‖∞ denotes the
L∞-norm, that is the smallest u such that P(|Y | > u) = 0.

Here is our main result:

Theorem 2.2. Assume that, for any real t, E(X0(t)|F−∞) = 0, E(X0(t)|F∞) =
X0(t) and

∫

T

‖X0(t)‖2 µ(dt) < ∞. (2.1)
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Let P0(X(t)) = E(X(t)|F0) − E(X(t)|F−1) and assume that

∑

k∈Z

∫

T

‖P0(Xk(t))‖2 µ(dt) < ∞. (2.2)

Then

n−1/2
n

∑

i=1

X0 ◦ T
i −→

n→∞
G in law in L1(µ), (2.3)

where G is a L1(µ)-valued centered Gaussian random variable with covariance
operator: for any f ∈ L∞(µ),

ΦG(f, f) = E
((

f
(

∑

k∈Z

P0(Xk)
))2)

=
∑

k∈Z

Cov(f(X0), f(Xk)). (2.4)

As a consequence, we have

Corollary 2.3. Assume that (2.1) holds. Moreover, suppose that

∞
∑

n=1

1√
n

∫

T

‖E(Xn(t) | F0)‖2 µ(dt) < ∞ , (2.5)

and that
∞

∑

n=1

1√
n

∫

T

‖X−n − E(X−n(t) | F0)‖2 µ(dt) < ∞ . (2.6)

Then, the conclusion of Theorem 2.2 holds.

3. Applications to the empirical distribution function

Let Y = (Yi)i∈Z be a sequence of real-valued random variables. We denote
their common distribution function by FY and by Fn the corresponding empirical
distribution function of Y :

∀ t ∈ R, Fn(t) =
1

n

n
∑

i=1

1Yi≤t.

Let λ be the Lebesgue measure on R. If E(|Y1|) < ∞, the random variable
Xi(.) = {t 7→ 1Yi≤t − FY (t), t ∈ R} may be viewed as a centered random variable
with values in L1(λ).

Notation 3.1. Let FYk |F0 be the conditional function of Yk given F0, and let
FYk |F−1 be the conditional function of Yk given F−1.

With these notations, the following equalities are valid: for every k in Z,
∫

T

‖P0(Xk(t))‖2 dt =

∫

T

‖FYk|F0(t) − FYk|F−1(t)‖2 dt, (3.1)

and

∫

T

‖E(Xk(t) | F0)‖2 dt =

∫

T

‖FYk|F0(t) − FY (t)‖2 dt. (3.2)
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3.1. Dependent sequences.

As we shall see in this section, applying Corollary 2.3, we can derive sufficient
conditions for the convergence in L1(λ) of the process

√
n(Fn − FY ), as soon as

the sequence Y satisfies some weak dependence conditions. Set F0 = σ(Yi, i ≤ 0).
We first recall the following dependence coefficients as defined in Dedecker and
Prieur [9]: for any integer k ≥ 0,

φ̃(k) = sup
t∈R

‖P(Yk ≤ t | F0) − P(Yk ≤ t)‖∞ ,

and
α̃(k) = sup

t∈R

‖P(Yk ≤ t | F0) − P(Yk ≤ t)‖1 .

When the sequence Y is φ̃-dependent, the following result holds:

Proposition 3.2. Assume that

∑

k≥1

√

φ̃(k)

k
< ∞ and

∫ ∞

0

√

P(|Y | > t) dt < ∞, (3.3)

then {t 7→ √
n(Fn(t) − FY (t)), t ∈ R} converges in L1(λ), to a centered Gaussian

random variable, with covariance function: for any f, g ∈ L∞(λ),

Φλ(f, g) =

∫

R2

f(s)g(t)C(s, t) dt ds (3.4)

with

C(s, t) = FY (t ∧ s) − FY (t)FY (s) + 2
∑

k≥1

(P(Y0 ≤ t, Yk ≤ s) − FY (t)FY (s)).

Remark 3.3. Proposition 3.2 is also true with the φ-mixing coefficient of Ibragimov
[12]. Notice that this result contains the i.i.d case, developed in del Barrio, Giné
and Matrán [3].

Before giving sufficient conditions when the sequence Y is α̃-dependent, we first
recall the following definition:

Definition 3.4. For any nonnegative and integrable random variable Y , define
the quantile function QY of |Y |, that is the cadlag inverse of the tail function
x → P(|Y | > x).

Proposition 3.5. Assume that

∑

k≥1

1√
k

∫ α̃(k)

0

QY (u)√
u

du < ∞, (3.5)

then the conclusion of Proposition 3.2 holds.

Remark 3.6. Notice that Proposition 3.5 is also true with strong α-mixing coeffi-
cients of Rosenblatt [18]. Notice also that (3.5) is equivalent to

∑

k≥1

1√
k

∫ ∞

0

√

α̃(k) ∧
√

P(|Y | > t) dt < ∞. (3.6)
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3.1.1. Application to expanding maps. Let T be a map from [0, 1] to [0, 1] preserv-
ing a probability µ on [0, 1]. Recall that the Perron-Frobenius operator K from
L1(µ) to L1(µ) is defined via the equality: for any h ∈ L1(µ) and f ∈ L∞(µ),

∫ 1

0

(Kh)(x)f(x)µ(dx) =

∫ 1

0

h(x)(f ◦ T )(x)µ(dx).

Here we are interested by giving sufficient conditions for the convergence in L1(λ)
of the empirical distribution function associated to FY where the random variables
(Yi)i∈Z are defined as follows: for a given monotonic function f , let

Yk = f ◦ T k . (3.7)

In fact since on the probability ([0, 1], µ), the random variable (T, T 2, ..., T n) is
distributed as (Zn, Zn−1, ..., Z1), where (Zi)i≥0 is a stationary Markov chain with
invariant measure µ and transition Kernel K (see Lemma XI.3 in Hennion and
Hervé [11]), the convergence in L1(λ) of the empirical distribution function associ-
ated to FY is reduced to the one of the empirical distribution function associated
to Ff(Z).

In this section we consider two cases: first the case of a class of BV-contracting
maps and secondly the case of a class of intermittent maps.

a) The case of BV-contracting maps. Let BV be the class of bounded variation
functions from [0, 1] to R. For any h ∈ BV , denote by ‖dh‖ the variation norm of
the measure dh. A Markov kernel K is said to be BV -contracting if there exist
C > 0 and ρ ∈ [0, 1[ such that

‖dKn(h)‖ ≤ Cρn‖dh‖. (3.8)

A map T is then said to be BV-contracting if its Perron-Frobenius operator K
is BV-contracting (see for instance Dedecker and Prieur [9], for more details and
examples of maps which are BV-contracting).

In this case, the following result holds:

Corollary 3.7. If T is BV-contracting and f is a monotonic function from ]0, 1[

to R satisfying
∫ ∞

0

√

λ(|f | > t) dt < ∞, then the conclusion of Proposition 3.2
holds for the sequence (Yk)k∈Z where Yk is defined by (3.7).

Remark 3.8. In the particular case when f is positive and non increasing on ]0, 1[,
with f(x) ≤ Dx−a for some a > 0 and D a constant, we get that

∫ ∞

0

√

λ(|f | > t) dt ≤ C2

∫ ∞

1

1

t1/(2a)
dt,

where C2 is a constant. Consequently, Corollary 3.7 holds as soon as a < 1
2

holds.

b) Application to intermittent maps. For γ in ]0, 1[, we consider the intermittent
map Tγ from [0, 1] to [0, 1], studied for instance by Liverani, Saussol and Vaienti
[14], which is a modification of the Pomeau-Manneville map [16]:

Tγ =

{

x(1 + 2γxγ) if x ∈ [0, 1/2[
2x − 1 if x ∈ [1/2, 1].
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We denote by νγ the unique Tγ-probability measure on [0, 1] and by Kγ the Perron-
Frobenius operator of Tγ with respect to νγ. For these maps, we obtain the
following result:

Corollary 3.9. For γ in ]0, 1[, if Tγ is an intermittent map and f is a monotonic
function from ]0, 1[ to R, satisfying

∑

k≥1

1√
k

∫ ∞

0

1

k
1−γ

2γ

∧
√

νγ(|f | > t) dt < ∞, (3.9)

then the conclusion of Proposition 3.5 holds for the sequence (Yk)k∈Z where Yk is
defined by (3.7).

Remark 3.10. In the particular case when f is positive and non increasing on
]0, 1[, with f(x) ≤ Dx−a for some a > 0 and gνγ

the density of νγ such that
gνγ

(x) ≤ Vγx
−γ where V (γ) is a constant, we can prove that (3.9) holds as soon

as a < 1
2
−γ does (see Section 4.8). In his comment after Theorem 3, Gouëzel [10]

proved that if f(x) = x−a, then n−1/2
∑n

k=1(f ◦ T i
γ − νγ(f)) converges to a normal

law if a < 1/2−γ, and that there is a convergence to a stable law (with a different
normalization) if a > 1/2 − γ. This example shows that our condition is close to
optimality.

3.2. Causal linear processes.

We focus here on the stationary sequence

Yk =
∑

j≥0

ajεk−j, (3.10)

where (εi)i∈Z is a sequence of real-valued i.i.d random variables in L2 and
∑

j≥0 |aj| <
+∞.

Corollary 3.11. Assume that, ε0 has a density bounded by K and that |a0| 6= 0.
Moreover, assume that

∑

k≥0

∫ (ak)2

0

Q|Y0|(u)√
u

du < ∞. (3.11)

Then the conclusion of Proposition 3.2 holds for the sequence (Yk)k∈Z where Yk is
defined by (3.10).

Remark 3.12. Since
∑

j≥0 |aj | < ∞, (3.11) is true provided that

∑

k∈Z

∫ |ak |
2

0

Q|ε0|(u)√
u

du < ∞. (3.12)

As a consequence, we get the following result

Corollary 3.13. Assume either Item 1 or 2 below:

1. for some r > 2, the i.i.d random variables (εi)i∈Z are in Lr and ε0 has a
density bounded by K. In addition |a0| 6= 0 and

∑

k≥0

k1/(r−1)|ak|(r−2)/(r−1) < ∞. (3.13)
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2. for some r > 2,

∀ x > 0, P(|ε| > x) ≤
( c

x

)r
where c is a positive constant ,

and ε0 has a density bounded by K. In addition |a0| 6= 0 and
∑

k≥0

|ak|1−2/r < ∞. (3.14)

Then the conclusion of Proposition 3.2 holds for the sequence (Yk)k∈Z where Yk is
defined by (3.10).

4. Proofs

4.1. Central Limit Theorem for L1(µ)-valued martingale differences.

We extend to L1(µ)-valued martingale differences, a result of Jain [13], which
is, for a sequence of i.i.d centered L1(µ)-valued random variables X = (Xi)i∈Z, the
Central Limit Theorem holds if and only if

∫

T
(E(X1(t)

2))1/2 µ(dt) < ∞.

Theorem 4.1. Let (Mi)i∈Z be a sequence of stationary ergodic martingale differ-
ences with values in L1(µ) such that Mi = M0 ◦ T

i. Assume that
∫

T

‖M0(t)‖2 µ(dt) < ∞. (4.1)

Then

n−1/2
n

∑

i=1

M0 ◦ T
i −→

n→∞
G in law, (4.2)

where G is a L1(µ)-valued centered Gaussian random variable with covariance
function: for any f in L∞(µ), ΦG(f, f) = E(f 2(M0)).

Proof of Theorem 4.1. Before giving the proof, we recall some notations and
definitions used in the proof.

Notation 4.2. Using the notations of Jain [13], we consider for any real separable
Banach space B and its dual B

′,

WM2
0 = {ν probability measures on B:

∫

|f |2 dν < ∞,

∫

f dν = 0, ∀ f ∈ B
′}.

Definition 4.3. If ν ∈ WM2
0 , its covariance kernel Φν is given by: for any f, g ∈

B
′,

Φν(f, g) =

∫

fg dν.

Definition 4.4. µ ∈ WM2
0 is pregaussian if there is a Gaussian measure ν, such

that Φν = Φµ.



8 SOPHIE DEDE

By the classical Linderberg’s theorem for stationary ergodic martingale dif-
ferences in Billingsley [2], n−1/2f(Sn) converges in law to the centered gaussian
random variable Z in R, with variance E(f 2(M0)), for each f ∈ L∞(µ). Now, we
have to prove that the distribution of n−1/2Sn is relatively compact. As L1(µ) is of
cotype 2, we use the same approach as in the proof of Theorem 6.4 in de Acosta,
Araujo and Giné [1].
By stationarity, it follows that

E

([

f
( Sn√

n

)]2)

=
1

n

n
∑

i=1

E([f(Mi)]
2) = E([f(M0)]

2).

By Theorem 11 in Jain [13], if (4.1) holds, then M0 is pregaussian, so there exists
a L1(µ)-valued centered Gaussian random variable G ( or a Gaussian measure γ
on L1(µ)), with covariance operator ΦG, such that, for any f in L∞(µ),

E([f(G)]2) = ΦG(f, f) = E([f(M0)]
2).

By Theorem 5.6 in de Acosta, Araujo and Giné [1], every centered Gaussian
measure on L1(µ), is strongly Gaussian which means that there exist a Hilbert
space H, a continuous linear map M : H → L1(µ) and a tight centered Gauss-
ian measure ν on H such that γ = ν ◦ M−1. Therefore, we can apply Theo-
rem 6.2 [1], with K = {ξ a probability measure on L1(µ) such that Φξ(f, f) ≤
Φγ(f, f), for all f ∈ L∞(µ)}, so K is relatively compact. We have proved that the
distribution of n−1/2Sn is relatively compact. �

4.2. Proof of Theorem 2.2.

We construct the martingale

Mn =

n
∑

i=1

M0 ◦ T
i,

where M0 =
∑

k∈Z
P0(Xk). Notice that (M0 ◦ T

i)i∈Z is a sequence of a stationary
ergodic martingale differences. By triangle inequality,

∫

T

‖M0(t)‖2 µ(dt) =

∫

T

∥

∥

∑

k∈Z

P0(Xk(t))
∥

∥

2
µ(dt)

≤
∑

k∈Z

∫

T

‖P0(Xk(t))‖2 µ(dt) < ∞.

Applying Theorem 4.1, we infer that

1√
n

Mn −→
n→∞

G in law in L1(µ),

where G is a L1(µ)-valued centered Gaussian random variable such that ΦG(f, f) =
E([f(M0)]

2), for any f ∈ L∞(µ).
To conclude the proof, it suffices to prove that

lim
n−→∞

∫

T

∥

∥

∥

Sn(t)√
n

− 1√
n

n
∑

i=1

M0(t) ◦ T
i
∥

∥

∥

2
µ(dt) = 0. (4.3)
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The proof is inspired by the proof of Theorem 1 in Dedecker, Merlevède and Volný
[8]. By triangle inequality,

∫

T

∥

∥

∥

Sn(t)√
n

− 1√
n

n
∑

i=1

M0(t) ◦ T
i
∥

∥

∥

2
µ(dt)

=

∫

T

∥

∥

∥

Sn(t)√
n

− E(Sn(t) | Fn)√
n

+
E(Sn(t) | Fn)√

n
+

E(Sn(t) | F0)√
n

− E(Sn(t) | F0)√
n

− 1√
n

n
∑

i=1

M0(t) ◦ T
i
∥

∥

∥

2
µ(dt)

≤
∫

T

∥

∥

∥

Sn(t)√
n

− E(Sn(t) | Fn)√
n

∥

∥

∥

2
µ(dt)

+

∫

T

∥

∥

∥

E(Sn(t) | Fn)√
n

− E(Sn(t) | F0)√
n

− 1√
n

n
∑

i=1

M0(t) ◦ T
i
∥

∥

∥

2
µ(dt)

+

∫

T

∥

∥

∥

E(Sn(t) | F0)√
n

∥

∥

∥

2
µ(dt). (4.4)

It suffices to prove that each term of the right-hand side in Inequality (4.4) tends
to 0, as n tends to infinity. Let us first control the second term. Since

E(Sn(t) | Fn) − E(Sn(t) | F0) =

n
∑

i=1

n
∑

k=1

Pi(Xk(t)),

it follows that, by stationarity and orthogonality,

∫

T

∥

∥

∥

E(Sn(t) | Fn) − E(Sn(t) | F0)√
n

− 1√
n

n
∑

i=1

M0(t) ◦ T
i
∥

∥

∥

2
µ(dt)

=

∫

T

√

√

√

√

∥

∥

∥

E(Sn(t) | Fn) − E(Sn(t) | F0)√
n

− 1√
n

n
∑

i=1

M0(t) ◦ Ti

∥

∥

∥

2

2
µ(dt)

=

∫

T

√

√

√

√

1

n

n
∑

i=1

∥

∥

n
∑

k=1

P0(Xk−i(t)) − M0(t)
∥

∥

2

2
µ(dt)

=

∫

T

√

√

√

√

1

n

n
∑

i=1

∥

∥

n−i
∑

j=1−i

P0(Xj(t)) − M0(t)
∥

∥

2

2
µ(dt)

≤
√

2
[

∫

T

√

√

√

√

1

n

n
∑

i=1

∥

∥

∑

j≤−i

P0(Xj(t))
∥

∥

2

2
µ(dt) +

∫

T

√

√

√

√

1

n

n
∑

i=1

∥

∥

∑

j≥n−i+1

P0(Xj(t))
∥

∥

2

2
µ(dt)

]

.

(4.5)
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Splitting the sum on i of the first term in the right-hand side of Inequality (4.5),
we get that

∫

T

√

√

√

√

1

n

n
∑

i=1

∥

∥

∑

j≤−i

P0(Xj(t))
∥

∥

2

2
µ(dt)

=

∫

T

√

√

√

√

1

n

N
∑

i=1

∥

∥

∑

j≤−i

P0(Xj(t))
∥

∥

2

2
+

1

n

n
∑

i=N+1

∥

∥

∑

j≤−i

P0(Xj(t))
∥

∥

2

2
µ(dt)

≤
∫

T

√

√

√

√

1

n

N
∑

i=1

∥

∥

∑

j≤−i

P0(Xj(t))
∥

∥

2

2
µ(dt) +

∫

T

√

√

√

√

1

n

n
∑

i=N+1

∥

∥

∑

j≤−i

P0(Xj(t))
∥

∥

2

2
µ(dt).

Fubini entails that

∫

T

√

√

√

√

1

n

N
∑

i=1

∥

∥

∑

j≤−i

P0(Xj(t))
∥

∥

2

2
µ(dt) ≤ 1√

n

∫

T

N
∑

i=1

∥

∥

∑

j≤−i

P0(Xj(t))
∥

∥

2
µ(dt)

≤ 1√
n

∫

T

N
∑

j≤−1

∥

∥P0(Xj(t))
∥

∥

2
µ(dt)

≤ 1√
n

N
∑

j∈Z

∫

T

‖P0(Xj(t))‖2 µ(dt) −→
n→∞

0.

Moreover, since

∫

T

√

√

√

√

1

n

n
∑

i=N+1

∥

∥

∑

j≤−i

P0(Xj(t))
∥

∥

2

2
µ(dt) ≤

∫

T

√

1

n
(n − N)

(

∑

j≤−N

‖P0(Xj(t))‖2

)2
µ(dt)

≤
∫

T

(
∑

j≤−N

‖P0(Xj(t))‖2) µ(dt)

≤
∑

j≤−N

∫

T

‖P0(Xj(t))‖2 µ(dt),

we infer by (2.2) that

lim
N→∞

lim sup
n→∞

∫

T

√

√

√

√

1

n

n
∑

i=N+1

∥

∥

∑

j≤−i

P0(Xj(t))‖2
2 µ(dt) = 0 .

Whence

∫

T

√

√

√

√

1

n

n
∑

i=1

∥

∥

∑

j≤−i

P0(Xj(t))
∥

∥

2

2
µ(dt) −→

n→∞
0.
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In the same way, splitting the sum on i of the second term in the right-hand side
of Inequality (4.5), we derive that

∫

T

√

√

√

√

1

n

n
∑

i=1

∥

∥

∑

j≥n−i+1

P0(Xj(t))
∥

∥

2

2
µ(dt)

=

∫

T

√

√

√

√

1

n

n−N
∑

i=1

∥

∥

∑

j≥n−i+1

P0(Xj(t))
∥

∥

2

2
+

1

n

n
∑

i=n−N+1

∥

∥

∑

j≥n−i+1

P0(Xj(t))
∥

∥

2

2
µ(dt)

≤
∫

T

√

√

√

√

1

n

n−N
∑

i=1

∥

∥

∑

j≥n−i+1

P0(Xj(t))
∥

∥

2

2
µ(dt) +

∫

T

√

√

√

√

1

n

n
∑

i=n−N+1

∥

∥

∑

j≥n−i+1

P0(Xj(t))
∥

∥

2

2
µ(dt).

Since

∫

T

√

√

√

√

1

n

n−N
∑

i=1

∥

∥

∑

j≥n−i+1

P0(Xj(t))
∥

∥

2

2
µ(dt) ≤

∫

T

√

(n − N)

n

(

∑

j≥N+1

‖P0(Xj(t))‖2

)

µ(dt)

≤
∑

j≥N+1

∫

T

‖P0(Xj(t))‖2 µ(dt),

and

∫

T

√

√

√

√

1

n

n
∑

i=n−N+1

∥

∥

∑

j≥n−i+1

P0(Xj(t))
∥

∥

2

2
µ(dt) ≤

∫

T

1√
n

n
∑

i=n−N+1

∥

∥

∑

j≥n−i+1

P0(Xj(t))
∥

∥

2
µ(dt)

≤ N√
n

∫

T

∑

j∈Z

‖P0(Xj(t))‖2 µ(dt),

we deduce by (2.2), that

lim
n→∞

∫

T

√

√

√

√

1

n

n
∑

i=1

∥

∥

∑

j≥n−i+1

P0(Xj(t))
∥

∥

2

2
µ(dt) = 0.

Consequently, we derive that
∫

T

∥

∥

∥
E

(Sn(t)√
n

∣

∣

∣
Fn

)

− E

(Sn(t)√
n

∣

∣

∣
F0

)

− 1√
n

n
∑

i=1

M0(t) ◦ T
i
∥

∥

∥

2
µ(dt) −→

n→∞
0.

To prove that the last term of Inequality (4.4) tends to 0 as n tends to infinity,
we first write that

∫

T

∥

∥

∥
E

(Sn(t)√
n

∣

∣

∣
F0

)
∥

∥

∥

2
µ(dt) ≤ 1√

n

∫

T

∥

∥

N
∑

k=1

E(Xk(t) | F0)
∥

∥

2
µ(dt)

+
1√
n

∫

T

∥

∥

n
∑

k=N+1

E(Xk(t) | F0)
∥

∥

2
µ(dt).



12 SOPHIE DEDE

By orthogonality,

∥

∥

n
∑

k=N+1

E(Xk(t) | F0)
∥

∥

2

2
=

n
∑

k=N+1

n
∑

l=N+1

E(E(Xk(t) | F0)E(Xl(t) | F0))

=

n
∑

k=N+1

n
∑

l=N+1

E(

∞
∑

m=0

P−m(Xk(t))P−m(Xl(t))).

Using Cauchy-Schwarz inequality and stationarity, it follows that

1

n

∥

∥

n
∑

k=N+1

E(Xk(t) | F0)
∥

∥

2

2
≤ 1

n

∞
∑

m=0

n+m
∑

k=N+m+1

n+m
∑

l=N+1+m

‖P0(Xk(t))‖2‖P0(Xl(t))‖2

≤
(

∞
∑

k=N+1

‖P0(Xk(t))‖2

)2

.

Consequently

1√
n

∫

T

∥

∥

n
∑

k=N+1

E(Xk(t) | F0)
∥

∥

2
µ(dt) ≤

∞
∑

k=N+1

∫

T

‖P0(Xk(t))‖2 µ(dt) ,

and by (2.2), it follows that

lim
N→∞

lim sup
n→∞

1√
n

∫

T

∥

∥

n
∑

k=N+1

E(Xk(t) | F0)
∥

∥

2
µ(dt) = 0. (4.6)

On the other hand, by stationarity,

∥

∥

N
∑

k=1

E(Xk(t) | F0)
∥

∥

2
=

∥

∥

N
∑

k=1

∑

i∈Z

E(Pi(Xk(t)) | F0)
∥

∥

2

≤
N

∑

k=1

(

∑

i∈Z

‖Pi(Xk(t))‖2

)

≤ N
∑

i∈Z

‖P0(Xi(t))‖2 .

Hence by (2.2), we get that

lim
n→∞

∫

T

1√
n

∥

∥

N
∑

k=1

E(Xk(t) | F0)
∥

∥

2
µ(dt) = 0 . (4.7)

Therefore, (4.6) and (4.7) imply that

lim
n→∞

∫

T

∥

∥

∥
E

(Sn(t)√
n

∣

∣

∣
F0

)
∥

∥

∥

2
µ(dt) = 0.
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To prove that the first term of Inequality (4.4) tends to 0 as n tends to infinity,
we write that

∫

T

∥

∥

∥

Sn(t)√
n

− E

(Sn(t)√
n

∣

∣

∣
Fn

)
∥

∥

∥

2
µ(dt) ≤ 1√

n

∫

T

∥

∥

∥

n−N
∑

k=1

[Xk(t) − E(Xk(t) | Fn)]
∥

∥

∥

2
µ(dt)

+
1√
n

∫

T

∥

∥

∥

n
∑

k=n−N+1

[Xk(t) − E(Xk(t) | Fn)]
∥

∥

∥

2
µ(dt).

By orthogonality,

∥

∥

n−N
∑

k=1

[Xk(t) − E(Xk(t) | Fn)]
∥

∥

2

2

=

n−N
∑

k=1

n−N
∑

l=1

E([Xk(t) − E(Xk(t) | Fn)][Xl(t) − E(Xl(t) | Fn)])

=
n−N
∑

k=1

n−N
∑

l=1

[E(Xk(t)Xl(t)) − E(E(Xk(t) | Fn)E(Xl(t) | Fn))]

=

n−N
∑

k=1

n−N
∑

l=1

E
(

∞
∑

m=n+1

Pm(Xk(t))Pm(Xl(t))
)

.

Consequently by using Cauchy-Schwarz inequality and stationarity,

1

n

∥

∥

∥

n−N
∑

k=1

[Xk(t) − E(Xk(t) | Fn)]
∥

∥

∥

2

2
≤ 1

n

∞
∑

m=n+1

n−N−m
∑

k=1−m

n−N−m
∑

l=1−m

‖P0(Xk(t))‖2‖P0(Xl(t))‖2

≤
(

−(N+1)
∑

k=−∞

‖P0(Xk(t))‖2

)2
.

Hence we get

1√
n

∫

T

∥

∥

∥

n−N
∑

k=1

[Xk(t) − E(Xk(t) | Fn)]
∥

∥

∥

2
µ(dt) ≤

−(N+1)
∑

k=−∞

∫

T

‖P0(Xk(t))‖2 µ(dt),

and by (2.2), it follows that

lim
N→∞

lim sup
n→∞

1√
n

∫

T

∥

∥

∥

n−N
∑

k=1

[Xk(t) − E(Xk(t) | Fn)]
∥

∥

∥

2
µ(dt) = 0. (4.8)
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Also by stationarity,

∥

∥

∥

n
∑

k=n−N+1

[Xk(t) − E(Xk(t) | Fn)]
∥

∥

∥

2
=

∥

∥

∥

n
∑

k=n−N+1

∞
∑

m=n+1

Pm(Xk(t))
∥

∥

∥

2

≤
n

∑

k=n−N+1

(

∑

m∈Z

‖Pm(Xk(t))‖2

)

≤ N
∑

i∈Z

‖P0(Xi(t))‖2 .

Hence
∫

T

1√
n

∥

∥

∥

n
∑

k=n−N+1

[Xk(t) − E(Xk(t) | Fn)]
∥

∥

∥

2
µ(dt) ≤ N√

n

∑

i∈Z

∫

T

‖P0(Xi(t))‖2 µ(dt).

(4.9)
Therefore, (4.8) and (4.9) imply that

lim
n→∞

∫

T

∥

∥

∥

Sn(t)√
n

− E

(Sn(t)√
n

∣

∣

∣
Fn

)
∥

∥

∥

2
µ(dt) = 0.

To end the proof, it remains to prove (2.4). With this aim, we use Corollary 1 in
Dedecker, Merlevède and Volný [8]. Hence it suffices to prove that, for any f in
L∞(µ),

∑

k∈Z

‖P0(f(Xk))‖2 < ∞. (4.10)

As f is a linear form on L1(µ) then f belongs to L∞(µ). It follows that

‖P0(f(Xk))‖2 = ‖f(P0(Xk))‖2 ≤ C(f)
∥

∥

∥

∫

T

|P0(Xk)(t)|µ(dt)
∥

∥

∥

2

≤ C(f)

∫

T

‖P0(Xk)(t)‖2 µ(dt),

where C(f) is a constant depending on f . Consequently, (4.10) holds as soon as
(2.2) holds. �

4.3. Proof of Corollary 2.3.

We prove Corollary 2.3 with the same arguments as in the end of the proof of
Corollary 2 in Peligrad and Utev [15].

By stationarity and orthogonality, for all k in Z, we have

‖E(Xk | F0)‖2
2 =

∥

∥

∥

0
∑

j=−∞

Pj(Xk)
∥

∥

∥

2

2
=

∞
∑

j=k

‖P−j(X0)‖2
2

and

‖X−k − E(X−k | F0)‖2
2 =

∥

∥

∥

∞
∑

j=1

Pj(X−k)
∥

∥

∥

2

2
=

∞
∑

j=1

‖Pj(X−k)‖2
2 =

∞
∑

j=k+1

‖Pj(X0)‖2
2.
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Now, applying Lemma A.2 in Peligrad and Utev [15], to ai := ‖P−i(X0)‖2, it
follows

∞
∑

i=1

‖P−i(X0)‖2 ≤ 3
∞

∑

n=1

n−1/2
(

∞
∑

i=n

‖P−i(X0)‖2
2

)1/2

≤ 3
∞

∑

n=1

n−1/2‖E(Xn | F0)‖2, (4.11)

and then to ai := ‖Pi(X0)‖2,

∞
∑

i=1

‖Pi(X0)‖2 ≤ 3

∞
∑

n=1

n−1/2
(

∞
∑

i=n

‖Pi(X0)‖2
2

)1/2

≤ 3
∞

∑

n=1

n−1/2‖X−(n−1) − E(X−(n−1)|F0)‖2

≤ 3
∞

∑

n=0

(n + 1)−1/2‖X−n − E(X−n|F0)‖2

≤ 3‖X0 − E(X0|F0)‖2 + 3
∞

∑

n=1

n−1/2‖X−n − E(X−n|F0)‖2

≤ 3
∞

∑

n=1

n−1/2‖X−n − E(X−n | F0)‖2 + 6‖X0‖2. (4.12)

Therefore, by (4.11) and (4.12), we deduce that

∑

k∈Z

‖P0(Xk)‖2 =

∞
∑

k=1

‖P−k(X0)‖2 +

∞
∑

k=1

‖Pk(X0)‖2 + ‖P0(X0)‖2

≤ 3

∞
∑

n=1

n−1/2
(

∞
∑

i=n

‖P−i(X0)‖2
2

)1/2

+3

∞
∑

n=1

n−1/2
(

∞
∑

i=n

‖Pi(X0)‖2
2

)1/2

+ ‖P0(X0)‖2

≤ 3
[

∞
∑

n=1

n−1/2‖E(Xn | F0)‖2 +
∞

∑

n=1

n−1/2‖X−n − E(X−n | F0)‖2

]

+ 8‖X0‖2.

Consequently, (2.5) and (2.6) implies (2.2). �

4.4. Proof of Proposition 3.2.

We apply Corollary 2.3 to the variables Xi(.) = {t 7→ 1Yi≤t − FY (t), t ∈ R}.
Let

Z(t) =
FYk|F0(t) − FY (t)

‖FYk|F0
(t) − FY (t)‖2

.

Obviously,

∀ t ∈ R, ‖E(Xk(t) | F0)‖2 ≤ ‖Xk(t)‖2 ≤
√

FY (t)(1 − FY (t)). (4.13)
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By Proposition 2.1 in Dedecker [4] and by (4.13), for any k in Z, we derive

‖FYk|F0
(t) − FY (t)‖2 = E

( FYk|F0
(t) − FY (t)

‖FYk|F0(t) − FY (t)‖2

(FYk |F0
(t) − FY (t))

)

= Cov(Z(t), Xk(t))

≤ 2‖Z(t)‖2‖Xk(t)‖2

√

φ̃(k)

≤ 2
√

FY (t)(1 − FY (t))

√

φ̃(k).

Consequently, we deduce that (2.5) holds as soon as (3.3) holds. �

4.5. Proof of Proposition 3.5.

We apply Corollary 2.3 to the random variables Xi(.) = {t 7→ 1Yi≤t −FY (t), t ∈
R}.
By Hölder’s inequality for any k ≥ 0, we get

‖E(Xk | F0)‖2 = ‖E(1Yk≤t | F0) − P(Yk ≤ t)‖2

≤
√

‖E(1Yk≤t | F0) − P(Yk ≤ t)‖1

√

‖E(1Yk≤t | F0) − P(Yk ≤ t)‖∞
≤

√

α̃(k). (4.14)

Using (4.13) and (4.14),
∫ ∞

−∞

‖E(Xk(t) | F0)‖2 dt ≤
∫

R

√

α̃(k) ∧
√

FY (t)(1 − FY (t)) dt

≤
∫ ∞

0

√

α̃(k) ∧
√

1 − FY (t) dt +

∫ 0

−∞

√

α̃(k) ∧
√

FY (t) dt

≤
∫ ∞

0

√

α̃(k) ∧
√

P(|Y | > t) dt.

Notice that
√

α̃(k) ∧
√

P(|Y | > t) =

∫ 1

0

1
u≤
√

P(|Y |>t)
1

u≤
√

α̃(k)
du

=

∫

√
α̃(k)

0

1u2≤P(|Y |>t) du

=

∫

√
α̃(k)

0

1QY (u2)≥t du.

By Fubini and by a change of variable, we derive
∫ +∞

0

√

α̃(k) ∧
√

P(|Y | > t) dt =

∫ ∞

0

(

∫ 1

0

1
u≤
√

P(|Y |>t)
1

u≤
√

α̃(k)
du

)

dt

=

∫

√
α̃(k)

0

(

∫ ∞

0

1QY (u2)≥t dt
)

du

=

∫

√
α̃(k)

0

QY (u2) du =
1

2

∫ α̃(k)

0

QY (u)√
u

du.
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We deduce that (3.5) implies (2.5). The CLT holds, by applying Corollary 2.3. �

4.6. Proof of Corollary 3.7.

Recall that to prove the convergence for the empirical distribution function of
Y where (Yk)k∈Z is defined by (3.7), it suffices to show the convergence in L1(λ) of
the empirical distribution function of f(Z) where (Zi)i∈Z is the stationary Markov
chain with transition Kernel K. Hence we shall prove that f(Z) satisfies the
conditions of Proposition 3.2.

Using the fact that f is a monotonic function, Dedecker and Prieur [9] proved
that

φ̃(F0, f(Zk)) ≤ φ̃(F0, Zk).

In addition, they proved that if (3.8) holds then

φ̃(F0, Zk) ≤ C1ρ
k,

with C1 a positive constant (see [9]). This entails that (3.3) holds. �

4.7. Proof of Corollary 3.9.

For the same reasons given in the proof of Corollary 3.7, we shall prove that
f(Z) satisfies the conditions of Proposition 3.5. Hence we apply Proposition 3.5
to the variables Xi(.) = {t 7→ 1Yi≤t − FY (t), t ∈ R}. Using the fact that f is a
monotonic function, Dedecker and Prieur [9] proved that

α̃(F0, Yk) = α̃(F0, f(Zk)) ≤ α̃(F0, Zk).

Recently, Dedecker, Gouëzel and Merlevède [6] proved in Proposition 1.12, that
there exists a constant Cγ, such that, for any positive integer k,

α̃(F0, Zk) ≤
Cγ

(n + 1)
1−γ

γ

. (4.15)

As Tγ is an intermittent map, and f is a monotonic function, it follows by (4.15)
that

∫ ∞

0

√

α̃(k) ∧
√

νγ(|f | > t) dt ≤
∫ ∞

0

Cγ

(k + 1)
1−γ

2γ

∧
√

νγ(|f | > t) dt.

Consequently, (3.6) holds as soon as (3.9) holds. �

4.8. Proof of Remark 3.10.

Since the density gνγ
of νγ is such that gνγ

(x) ≤ V (γ)x−γ , we infer that

νγ(f > t) ≤ D
1−γ

a V (γ)

1 − γ
t−

1−γ

a , (4.16)

where D and V (γ) are positive constants. By Fubini and (4.16), we then get that
∫ +∞

0

k− 1−γ
2γ ∧

√

νγ(|f | > t) dt =

∫ ∞

0

(

∫ 1

0

1
u≤
√

νγ(|f |>t)
1

u≤k
−

1−γ
2γ

du
)

dt

≤ K(γ, a)k

(

−
(1−γ)

2γ

)(

− 2a
1−γ

+1
)

,

where K(γ, a) is a constant.
Consequently, (3.9) holds as soon as a < 1

2
− γ does. �
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4.9. Proof of Proposition 3.11.

We apply Theorem 2.2 to the random variables Xk(t) = {t 7→ 1Yk≤t − FY (t)}.
Let Mi = σ(εk, k ≤ i). By a result in Lemma 6 in Dedecker and Merlevède [7],

‖FYk|M0
(t) − FYk|M−1

(t)‖2 ≤ K | a0 |−1| ak | ‖ε1 − ε0‖2. (4.17)

Moreover, we have

‖FYk|M0
(t) − FYk|M−1

(t)‖2 ≤ ‖FYk|M0
(t) − FY (t)‖2 + ‖FYk|M−1

(t) − FY (t)‖2

≤ 2
√

FY (t)(1 − FY (t)).

We deduce that (2.2) holds as soon as

∑

k∈Z

∫ ∞

0

(K | a0 |−1| ak | ‖ε1 − ε0‖2) ∧ (2
√

P(|Yk| > t)) dt < ∞,

and it may be reduced to

∑

k∈Z

∫ ∞

0

| ak | ∧
√

P(|Yk| > t) dt < ∞ ⇔
∑

k∈Z

∫ |ak|
2

0

Q|Yk|(u)√
u

du < ∞.

Now, from Theorem 2.2, we infer that
√

n(Fn − FY ) converges in law to a L1(λ)-
valued centered Gaussian random variable G, with covariance operator Φµ defined
by (3.4). �

4.10. Proof of Remark 3.12.

By using Lemma 2.1 in Rio [17], page 35, we have that
∫ |ak |

2

0

Q|Y0|(u)√
u

du ≤
(

∑

j≥0

|aj|
)

∫ |ak|
2

0

Q|ε0|(u)√
u

du.

Consequently since
∑

j≥0 |aj| < ∞, (3.11) is true provided that

∑

k∈Z

∫ |ak |
2

0

Q|ε0|(u)√
u

du < ∞. (4.18)

�

4.11. Proof of Corollary 3.13.

4.11.1. Proof of Item 1 of Corollary 3.13.
To apply Corollary 3.11, it suffices to prove (3.12).
Firstly, recall that, if U is an uniform random variable on [0, 1], Q2

|ε0|
(U) and

|ε0|2 have the same law.
We proceed as in Rio [17] p 15. By Hölder’s inequality on [0, 1], it follows that

∑

k≥0

∫ |ak|
2

0

Q|ε0|(u)√
u

du =

∫ 1

0

Q|ε0|(u)
(

∑

k≥0 1{u≤|ak|2}√
u

)

≤
(

∫ 1

0

Q|ε0|(u)r du
)1/r(

∫ 1

0

(

∑

k≥0 1{u≤|ak|2}√
u

)r/(r−1)

du
)(r−1)/r

.
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Using the same notations as in Dedecker and Doukhan [5], let

δ−1(u) =
∑

k≥0

1{u≤|ak|2} and f(x) = xr/(r−1).

We infer that

f(δ−1) =

∞
∑

j=0

(f(j + 1) − f(j))1{u≤|aj |2}

=
∞

∑

j=0

((j + 1)r/(r−1) − jr/(r−1))1{u≤|aj |2}.

Set Cr = 1∨ ( r
r−1

). Since (j +1)r/(r−1) − jr/(r−1) ≤ Crj
1/(r−1), (3.12) holds as soon

as
∫ 1

0

∑

j≥0

j1/(r−1)
1{u≤|aj |2}

u
r

2(r−1)

du < ∞ ,

which is true provided that
∑

j≥0

j1/(r−1)|aj|
r−2
r−1 < ∞.

�

4.11.2. Proof of Item 2 of Corollary 3.13.
We apply Corollary 3.11, so it suffices to prove (3.12).
Notice that, the quantile function Q|ε0|, here, is dominated by cu−1/r. Thus, we
derive

∫ |ak |
2

0

Q|ε0|(u)√
u

du ≤
∫ |ak|

2

0

c

u1/2+1/r
du

≤ c
2r

r − 2
|ak|1−2/r.

Consequently, (3.12) holds as soon as (3.14) does. �
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