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Abstract. In Graph Minor III, Robertson and Seymour conjecture that
We prove that given a hypergraph H on a surface of Euler genus k, the
tree-width of H

∗ is at most the maximum of tw(H) + 1 + k and the
maximum size of a hyperedge of H

∗.

1 Preliminaries

A surface is a connected compact 2-manyfold without boundaries. A surface
Σ can be obtained, up to homeomorphism, by adding k(Σ) “crosscaps” to the
sphere. k(Σ) is the Euler genus or just genus of the surface.

Let Σ be a surface. A graph G = (V, E) on Σ is a drawing of a graph in
Σ, i.e. each vertex v is an element of Σ, each edge e is an open curve between
two vertices, and edges are pairwise disjoint. We only consider graphs up to
homomorphism. A face of G is a connected component of Σ \ G. We denote by
V (G), E(G) and F (G) the vertex, edge and face sets of G. We only consider
2-cell graphs, i.e. graph whose faces are homeomorphic to open discs. The Euler
formula links the number of vertices, edges and faces of a graph G to the genus
of the surface

|V (G)| − |E(G)| + |F (G)| = 2 − k(G).

The set A(G) = V (G) ∪ E(G) ∪ F (G) of atoms of G is a partition of Σ. Two
Atom x and y of G are incident if x∩ ȳ or y∩ x̄ is non empty, z̄ being the closure
of z. A cut-edge in a graph G on Σ is an edge e separates G, i.e. G intersects
at least two connected components of Σ \ ē. As an example, if a planar graph G
has a cut-vertex u, any loop on u that goes “around” a connected component of
G \ {u} is a cut-edge.

Let G = (V ∪ VE , L) be a bipartite graph on Σ. The graph G can be seen as
the incidence graph of a hypergraph. For each ve ∈ VE , merge ve and its incident
edges into a hyperedge e, and call ve its center. Let E be the set of all hyperedges.
A hypergraph on Σ is any such pair H = (V, E). For brevity, we also say edges

for hyperedges. We extend the notions of cut-edges, 2-cell graphs, atoms and
incidence to hypergraphs. Moreover, since they naturally correspond to abstract
graphs and hypergraphs, graph and hypergraph on surface inherit terminology
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from them. For example, we denote |e| the number of vertices incident to a
hyperedge e, and we denote α(H) the maximum size of an edge of H . Note that
a graph on Σ is also a hypergraph on Σ.

The dual of a hypergraph H = (V, E) on Σ is obtained by choosing a vertex
vf for every face f of H . For every edge e of center ve, we pick up an edge e∗ as
follows: choose a local orientation of the surface around ve. This local orientation
induces a cyclic order v1, f1, v2, f2, . . . , vd, fd of the ends of e and of the faces
incident with e (possibly with repetition). The edge e∗ is the edge obtained by
“rotating” e and whose ends are vf1

, . . . , vfd
.

A tree-decomposition of a hypergraph H on Σ is a pair T = (T, (Xv)v∈V (T ))
with T a tree and (Xv)v∈V (T ) a family of bags such that:

i.
⋃

v∈V (T ) Xv = H ;

ii. ∀x, y, z ∈ V (T ) with y on the path from x to z, Xx ∩ Xz ⊆ Xy.

The width of T is tw(T ) = max
(

|V (Xt)| − 1 ; t ∈ V (T )
)

and the tree-width

tw(H) of H is the minimum width of one of its tree-decompositions.
Tree-width was introduced by Robertson and Seymour in connection with

graph minors. In [RS84], they conjectured that for a planar graph G, tw(G)
and tw(G∗) differ by at most one. In an unpublished paper, Lapoire [Lap96]
proves a more general result: for any hypergraph H in an orientable surface Σ,
tw(H∗) ≤ max(tw(H) + 1 + k(Σ), α(H∗) − 1). Nevertheless, his proof is rather
long and technical. Later, Bouchitté et al. [BMT03] gave an easier proof for
planar graphs. Here we generalises Lapoire’s result to arbitrary surfaces while
being less technical.

To avoid technicalities, we suppose that H is connected, contains at least two
edges, has no pending vertices (i.e. vertices incident with only one edge) and no
cut-edge.

2 P-trees and duality

From now on, H = (V, E) is a hypergraph on a surface Σ. The border of a
partition µ of E is the set of vertices δ(µ) that are incident with edges in at least
two parts of µ, and the border of X ⊆ E is the border of the partition {X, E\X}.
A partition µ = {X1, . . . , Xp} of E is connected if there is a connecting partition

{V1, X1, F1, . . . , Vp, Xp, Fp} of A(H)\ δ(µ) so that each Vi ∪Xi ∪Fi is connected
in Σ.

A p-tree of H is a tree T whose internal nodes have degree three and whose
leaves are labelled with the edges of H in a bijective way. Removing an internal
node v of T results in a partition µv of E. Labelling each internal node v of T
with δ(µv), turns T into a tree-decomposition. The tree-width of a p-tree is its
tree-width, seen as a tree-decomposition. A p-tree is connected if all its nodes
partitions are connected.

Let {A, B} be a connected bipartition of H and {VA, A, FA, VB, B, FB} a
corresponding connecting partition. We define a contracted hypergraph H/A as
follows. Consider the incidence graph GH(V ∪ VE , L) of H , and identify the



edges in A with their centers. By adding edges trough faces in FA, we can make
GH [A∪VA] connected. We then contract A∪VA into a single edge center vA. To
make the resulting graph bipartite, we remove all vA-loops. When removing a
loop e incident to only one face F , the new face F ∪e is not a disc but a crosscap.
Since the border of F ∪ e is a loop, we can “cut” Σ along this loop and replace
F ∪ e by an open disc while decreasing the genus of the surface. The obtained
graph is the bipartite graph of H/A. A connected partition {A, B} is non trivial

if neither H/A nor H/B are equal to H .
We need the following folklore lemma:

Lemma 1. For any connected bipartition {A, B} of H, tw(H) ≤ max
(

tw(H/A),

tw(H/B)
)

. If δ({A, B}) belongs to a bag of an optimal tree-decomposition, then

tw(H) = max
(

tw(H/A), tw(H/B)
)

.

Let S be a set of vertices of H . An S-bridge is a minimal subset X of E
with the property that δ(X) ⊆ S. There are two kind of S-bridges: singletons
containing an edge whose ends all belong to S and sets EC containing all the
edges incident to at least one vertex in C, a connected component of G \S. The
S-bridges partition E. We define the abstract graph G/S whose vertices are the
S-bridges and in which {X, Y } is an edge if there is a face incident with both
an edge in X and an edge in Y . A key fact is that any bipartition {A, B} of
V (G/S) such that G/S [A] and G/S [B] is connected corresponds to the connected
bipartition {∪A,∪B}.

Proposition 1. There exists a connected p-tree T of H with tw(T ) = tw(H).

Proof. By induction on |E|, if |E| ≤ 3, since H has no cut-edge, the only p-tree
is connected and optimal. We can suppose that |E| ≥ 4. We claim that there
exists a connected non trivial bipartition {A, B} of E whose border is contained
in a bag of an optimal tree-decomposition of H . Two cases arise:

– If the trivial one vertex tree-decomposition whose bag is H is optimal, we
consider the graph G/V . Since they are in bijection with the edges of H , and
since H has no cut edge, G/V has at least four vertices and no cut vertex.
There thus exists a bipartition {A, B} of V (G/V ) with |A|, |B| ≥ 2, G/V [A]
and G/V [B] connected which gives a connected non trivial bipartition of E.

– Otherwise, there exists a separator S contained in a bag of an optimal tree-
decomposition of H . Let C and D be two connected component of H \ S,
and SC and SC their corresponding S-bridges. Since H contains no pending
vertex, |SC |, |SD| ≥ 2. Let x and y be the vertices of G/S corresponding to
SC and SD. Take a spanning tree of G/S . Removing an edge between x and
y leads to a connected non-trivial bipartition of E, which finishes the proof
of the claim.

Since {A, B} is connected, eA and eB are respectively not cut-edges in H/A
and H/B. By induction, there exists connected p-trees TA and TB of optimal
width of H/A and H/B. By removing the leaves labelled eA and eB and adding
an edge between their respective neighbour, we obtain from TA ⊔ TB a p-tree of



H which is connected. Its width is max(tw(T /A), tw(T /B)) which is equal, by
Lemma 1 to tw(H). ⊓⊔

Because of the natural bijection between E(H) and E(H∗), a p-tree T of H
also corresponds to a p-tree T ∗ of H∗.

Proposition 2. For any connected p-tree T of H,

tw(T ∗) ≤ max(tw(T ) + 1 + k(Σ), α(H∗) − 1).

Proof. Let v be a vertex of T labelled Xv in T and X∗

v in T ∗. If v is a leaf,
then X∗

v = {e∗} and |X∗

v | − 1 ≤ max(tw(T ) + 1 + k(Σ), α(H∗) − 1). Otherwise,
let {A, B, C} be the E-partition associated to v. The label of v in T and T ∗ is
respectively Xv = δ({A, B, C}) and X∗

v , the set of faces incident with edges in
at least two parts among A, B and C.

As for the proof of Proposition 1, since {A, B, C} is connected, we may
contract A (and B and C). But since we now care about the faces of H , we have
to be more careful. We want an upper bound on |X∗

v |, we may thus add but not
remove faces to X∗

v . So adding edges to make GH [A∪ VA] connected is OK, but
we cannot remove a loop e on say vA incident with two faces in X∗

v . Instead, we
cut Σ along e and fill the holes with open discs. While doing so, we removed e,
we cut vA in two siblings, and we decreased the genus of Σ.

After contracting A, B and C, we obtain a bipartite graph Gv on Σ′ that has
|Xv| + 3 + s vertices with s the number of siblings, at least |X∗

v | faces and with
k(Σ′) ≤ k(Σ)−s. Since Gv is bipartite and faces in X∗

v are incident with at least
4 edges, 2|E(Gv)| = 4|F4|+ 6|F6| + · · · ≥ 4|F (Gv)| with F2k the set of 2k-gones
faces of Gv, and thus |E(Gv)| ≥ 2|F (Gv)|. If we apply Euler’s formula to Gv on
Σ′, we obtain: |Xv| + 3 + s − |E(Gv)| + |F (Gv)| = 2 − k(Σ′) ≥ 2 − k(Σ) + s.
Adding this to |E(Gv)| ≥ 2|F (Gv)|, we get |Xv| + 1 + k(Σ) ≥ |F (Gv)| ≥ |X∗

v |
which proves that |X∗

v | − 1 ≤ max(tw(T ) + 1 + k(Σ), α(H∗) − 1), and thus
tw(T ∗) ≤ max(tw(T ) + 1 + k(Σ), α(H∗) − 1). ⊓⊔

Let us now prove the main theorem.

Theorem 1. For any hypergraph H on a surface Σ,

tw(H∗) ≤ max
(

tw(H) + 1 + k(Σ), α(H∗) − 1
)

.

Proof. By Proposition 1, let T be a connected p-tree of H such that tw(T ) =
tw(H). By Proposition 2, tw(T ∗) ≤ max(tw(T ) + 1 + k(Σ), α(H∗) − 1). Since
tw(H∗) ≤ tw(T ∗), we deduce, tw(H∗) ≤ max(tw(H)+1+k(Σ), α(H∗)−1). ⊓⊔
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