Independent Component Analysis

Abstract : The Independent Component Analysis (ICA) of a random vector consists of searching for the linear transformation that minimizes the statistical dependence between its components. In order to design a practical optimization criterion, the expression of mutual information is being resorted to, as a function of cumulants. The concept of ICA may be seen as an extension of Principal Component Analysis, which only imposes independence up to second order and consequently defines directions that are orthogonal. Applications of ICA include data compression, detection and localization of sources, or blind identification and deconvolution.
Type de document :
Chapitre d'ouvrage
J-L.Lacoume. Higher-Order Statistics, Elsevier, pp.29-38, 1992
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00346684
Contributeur : Pierre Comon <>
Soumis le : vendredi 12 décembre 2008 - 10:21:09
Dernière modification le : vendredi 23 janvier 2009 - 16:32:22
Document(s) archivé(s) le : mardi 8 juin 2010 - 16:46:29

Fichier

Comon92-elsevier.pdf
Accord explicite pour ce dépôt

Identifiants

  • HAL Id : hal-00346684, version 1

Collections

Citation

Pierre Comon. Independent Component Analysis. J-L.Lacoume. Higher-Order Statistics, Elsevier, pp.29-38, 1992. <hal-00346684>

Partager

Métriques

Consultations de
la notice

1459

Téléchargements du document

892