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Domaine Universitaire, 351, cours de la Libération, 33405 Talenegder
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Abstract. In abstract interpretation-based data-flow analysis, widening opera-
tors are usually used in order to speed up the iterative computation of tle min
mum fix-point solution (MFP). However, the use of widenings may leadge lo
of precision in the analysis. Acceleration is an alternative to widening ttst ha
mainly been developed for symbolic verification of infinite-state systems. |
tuitively, acceleration consists in computing the exact effect of somé&aten
flow cycle in order to speed up reachability analysis. This paper investigate
acceleration in convex data-flow analysis of systems with real-valuedhles
where guards are convex polyhedra and assignments are translatipastic-
ular, we present a simple and algorithmically efficient characterizatidnFd?-
acceleration for cycles with a unique initial location. We also show that the-MFP
solution is a computable algebraic polyhedron for systems with two variables

1 Introduction

Formal verification of safety properties on a system is ugumsed on the automatic
(or manual) generation afivariantsof the system. Invariants are over-approximations
of the set of all reachable configurations in the system. dWés-approximation must
be precise enough in order to determine which safety priegestre satisfied by the
system. Data-flow analysis, and in particular abstractpméation [CC77], provides a
powerful framework to develop analysis for computing suslariants.

For systems with numerical variabldmear relation analysisaims at comput-
ing invariants expressing linear relationships betweeialtes [Kar76, CH78, Min01,
SSM04, BHRZ05]. The desired invariant corresponds to th@mim fix-point (MFP)
solution of the system’s approximate semantics in some naai@lomain, and it may
be computed by Kleene fix-point iteration. However, the catapion may diverge and
widening/narrowing operatorfCC77, CC92] are often used in order to enforce con-
vergence at the expense of precision. This may lead to aviarthat are too coarse to
prove the desired safety properties on the system to beeckrifi

Acceleration is an alternative to widening that has maimgrodeveloped for sym-
bolic verification of infinite-state systems [BW94, CJ98, B3SFL02, BILO6]. Intu-
itively, acceleration consists in computing the exactatfté some control-flow cycle in
order to speed up Kleene fix-point computations in reachwlihalysis. Accelerated
symbolic model checkers such asdH, TREX, and FAST successfully implement this
approach. While being more precise than widening, acceberat also more computa-
tionally expensive.



Our contribution. We aim at developing methods that speed up the iterative atanp
tion of the MFP-solutionwithout any loss of precisioWe focus on a class of systems
with real-valued variables, the so-callgdarded translation systeni&TS3. This class
intuitively represents programs where conditions areedasonvex sets and transfor-
mations are restricted to translations. We investigatelecation of data-flow analysis
for this class in the complete lattice of closed convex stsheBR™. To discuss com-
putability issues, we devote particular attention to tlsslof rational polyhedral GTSs,
where conditions are rational polyhedra and translatiators are rational.

Recast in our setting, the (exact) acceleration techniqua#ioned above consist
in computing the merge over all path (MOP) solution along eg¢simple) cycle, which
we callMOP-accelerationWe show that the MOP-acceleration of any cycle is an ef-
fectively computable rational polyhedron for rationalywdral GTSs. However MOP-
acceleration is not in general sufficient to guarantee teaition of the Kleene fix-point
iteration, even for cyclic GTSs. We therefore investigdteP-accelerationwhich basi-
cally amounts to computing the MFP-solution of the systestrieted to a given cycle.

In other words, MFP-acceleration directly gives the MFRsSon for cyclic GTSs.

We obtain a surprisingly simple expression of the MFP-aegion for cycles with
a unique initial location. For rational polyhedral GTSssttharacterization shows that
the MFP-acceleration is an effectively computable rafipoéyhedron for these cycles.
This result cannot be extended to arbitrary cycles, as we @+dim (i.e. three real-
valued variables) cyclic example where the MFP-solutiamoisa polyhedron. We then
focus on2-dim GTSs and we prove that the MFP-solution is an effegtieeimputable
algebraic polyhedron (i.e. with algebraic coefficients) deneral rational polyhedral
2-dim GTSs. Even for cyclic GTSs in this class, the polyhedt&P-solution can be
non-rational.

Related work. Karr introduced in [Kar76] an algorithm for computing theaek MFP-
solution in the lattice of linear equalities. In [CH78], Gmi and Halbwachs framed
linear relation analysis as an abstract interpretation @nogided the first widening
operator over the lattice of rational polyhedra. This apptoonly provides an over-
approximation of the MFP-solution. Many refinements of tiriginal widening opera-
tor have since been studied [BHRZ05] to limit the loss of mien. Recently Gonnord
and Halbwachs [GHO06] introduced the notion of abstraceksration as a complement
to widening for linear relation analysis. We show that winilaintaining the same com-
putational complexity, our MFP-acceleration is “bettenan abstract-acceleration in
the sense that MFP-acceleration enforces convergence &iéene fix-point iteration
strictly more often than abstract-acceleration. On andthad [GHO06] also investigates
acceleration of multiple loops and the combination of tlatiens and resets.

Outline. The rest of the paper is organized as follows. Section 2 Iseesaime back-
ground material on lattices and convex sets. We introdueedga translation systems
in section 3, along with MOP-acceleration and MFP-accéhtanafor these systems.
We present in sections 4 and 5 our results on MOP-accelaratid MFP-acceleration
for guarded translation systems. Section 6 is devoted tdvifRE-solution of general
guarded translation systems in dimension not greater haviost proofs are only
sketched in the paper, but detailed proofs are given in apipenhis paper is the long
version of our FSTTCS 2007 paper.



2 The Complete Lattice of Closed Convex Sets

2.1 Numbers, lattices and languages

The paper follows th&SO 31-11 international standard for mathematical notation. We
respectively denote b¥, Q andR the usual sets of integers, rationals and real numbers.
Recall that a (realalgebraic numbeis any real number that is the root of some non-
zero polynomial with rational coefficients. We writethe set of all (real) algebraic
numbers. It is well-known from Tarski’s theorem thatl arithmetic the first-order
theory(R, +, -) of reals with addition and multiplication, admits quantifeéimination

and hence is decidable. It follows that any real numbisralgebraic iff{z } is definable

in real arithmetic. We denote iy, Q. , A, R, the restrictions o7, Q, A, R to the non-
negatives.

Recall that acomplete latticas any partially ordered s€tl, C) such that every
subsetX C L has aleast upper bound | X and agreatest lower boundl| X. The
supremun | L and theinfimum([| L are respectively denoted Byand L. A function
f € L — L ismonotonicif f(z) C f(y) forall z C yin L. It is well-known from
Knaster-Tarski’'s theorem that any monotonic functfoa . — L has deast fix-point
given by[ [{z € L | f(z) C z}. For any monotonic functioff € L — L, we define
the monotonic functiory* in L — L by f*(z) =[]{y € L | (z U f(y)) C y}. In
other wordsf*(z) is the least post-fix-point of greater thar:. Observe thaf*(z) =
x U f(f*(x)) for everyx € L.

For any complete latticeL, C) and any sef, we also denote by the partial order
on S — L defined as the point-wise extensionofi.e. f C g iff f(s) C g(s) for all
s € S. The partially ordered sét5 — L,LC) is also a complete lattice, with Iyb and
glb [ satisfying(|| F)(s) = LI{f(s) | f € F} and([ F)(s) = [1{f(s) | f € F} for
any subset’ C S — L.

For any setS, we write P(S) for the set of subsets &f. The partially ordered set
(P(S), ©) is a complete lattice, with lubJ and glb(). Theidentity function over any
setS is written1g, and shortlyl when the sef is clear from the context.

Let X' be a (potentially infinite) a set détters We write X* for the set of all (finite)
sequences - - - [, over X, ande denotes themptysequence. Given any two sequences
w andw’, we denote byw - w’ (shortly writtenw w’) their concatenationA subset of
27 is called danguage

2.2 Closed convex sets and polyhedra

We assume a fixed positive integecalled thedimension The components of eector

x € R" are denoted by = (x4, ..., x,). Operations on vectors are extended to subsets
of R™ in the obvious way, e.6 + 5’ = {x+ 2’ |x € S,z’ € '} foranyS, S’ C R™.
When there is no ambiguity, the singletfm} is shortly writtenz to unclutter notation,
e.g. we writex + S instead of{x} + S. Recall that thenaximum norm|-|| _ on R™

is defined by||z|| ., = max{|zi|,...,|z,|}. A subsetS of R" is calledboundedif
{llz||, | * € S} C [0,b] for someb € R. The (topological) closurginterior and
boundaryof a subsefS of R™ are respectively denoted bjo(S), int(S) andbd ().



We now recall some notions abotmnvexsubsets oR™ (see [Sch86] for details).
Recall that this class of subsetsif is closed under arbitrary intersection. Tdwnvex
hull of any subsetS C R", written conv (S), is the smallest (w.r.t. inclusion) convex
set that contains. Note thatconv (.5) is closed wherf is finite, but this is not true
in general. We devote particular attention in the sequeldsed convex subsets Bf*.
This class of subsets &f* is also closed under arbitrary intersection. Tlased convex
hull of any subsef C R”, writtencloconv (S), is the smallest (w.r.t. inclusion) closed
convex set that contains. Remark thatloconv (S) = clo(conv (S)). For any vector
d € R, we definel d to be the convex s€td = {\d | A € R, }. Therecession cone
0TS of any subsetS of R" is the set of all vectord € R™ such thatS + 1d C S.
Note thato € 07 S. If C is a closed convex subset Bf then0™C is also closed and
convex. If moreover” is non-empty then for ang € R™, we haved € 07 C iff there
existse € C suchthate + 7d C C.

Let us fixF € {Q, A, R}. A subsetS of R™ is called arf-half-spacef there exists
a € F"\ {0} andc € F such thatS = {x € R" | a1 21 + - + apzy, < c}. An
[F-polyhedronis any finite intersection df-half-spaces. In the sequél;polyhedrality
(resp.A-polyhedrality,R-polyhedrality) is also calledhtional polyhedrality(resp.alge-
braic polyhedrality real polyhedrality. MoreoverR-polyhedra and &-half-spaces are
shortly calledoolyhedraandhalf-spacesRemark that any subset Bf* is A-polyhedral
iff it is both polyhedral and definable iR, +, -).

The class of closed convex subset®biis writtenC,,. We denote by the inclusion
partial order ort,,. Observe tha{C,,, C) is a complete lattice, with lup| and glb[]
satisfying| | X = cloconv (| X) and[ | X =) X for any subseX C C,,.

3 Convex Acceleration for Guarded Translation Systems

We now define the class of guarded translation systems, farhwie investigate the
computability of data-flow solutions in the complete lati€,,, C). This class intu-
itively represents programs with real-valued variabldses conditions are closed con-
vex sets and transformations are restricted to transktion

An n-dim actionis any pair(G, d) whereG € C, is called theguardandd € R" is
called thedisplacementWe write A,, = C,, x R™ the set of alln-dim actions. Atrace
is any finite sequenae, - - - ay, € A}. Thedata-flow semantick:] of anyrn-dim action
a = (G, d) is the monotonic function i€,, — C,, defined by[a](C) = (G N C) + d.

An n-dim guarded translation syste(@®TS is any pair§ = (X,T) whereX is a
finite set ofvariablesandT C X x A,, x X is a finite set otransitions A transition
t = (X,a,X’) is also writtenX % X’ or X’ := a(X), and we say that (resp.X,
X') is theaction (resp.input variable output variablé of ¢. A pathin 8 is any finite
sequence; - - -t € T such that the output variable gfis equal to the input variable
of t;11 for everyl < i < k. We say that a path is apath fromX to X" if either (1)
m=candX = X', or (2)7m = t; -- -t and X, X’ respectively are the input variable
of ¢; and the output variable of . Any path with no repeated variable is callesiaple
path A cycleis any non-empty path from some variadeto X. Any cycle of the form
t - w wheret is a transition and is a simple path is called eimple cycleA valuation



is any functionp in X — C,,. An n-dim initialized guarded translation systeffGTS
is any tripleS = (X, T, po) where(X,T) is ann-dim GTS andpy € X — C,, is an
initial valuation.

Intuitively, a transitionX % X’ assigns variablé& to a(X) and does not change
the other variables. Formally, tiata-flow semantic] of any transitiort = X % X’
is the monotonic function ifX — €,) — (X — C,) defined by[t](p)(X’) =
[a](p(X)) and [t](p)(Y) = p(Y) for all Y # X'. The data-flow semanticf] is
extended to sequencesin A U T* in the obvious way]e] 1and[l -w] =
[w] o [I]. We also extend the data-flow semantics to langudgesP (A ) U P(T*) by
[2] = Uey, [w]-

For computability reasons, we extefidpolyhedrality, whereF € {Q, A, R}, to
actions, valuations and guarded translation systems:-8im action(G, d) is called
F-polyhedralif G is F-polyhedral andd € ™. An n-dim GTS (X, T) is called[F-
polyhedralif the action of every transitiom € T is F-polyhedral. A valuatiorp in
X — @, is calledF-polyhedralif p(X) is F-polyhedral for everyX € X. An n-dim
IGTS (X, T, po) is calledF-polyhedralif (X, T) andp, arelF-polyhedral.

Example 3.1.Consider the C-style source code given on the left-handtsdmv and
assume that the initial values of variablgsandz; satisfyz; = 1 and—1 < 25 < 1.
The corresponding IGTS is depicted graphically on the right-hand side below.

ai
while(z; >0A 2 >0){ @ @

21 =2 — 1
29 =29 + 1

} @ as @

Formally, the set of variables d&f is {X;, X2, X3, X4}, representing the values of
variablesz; andz, at program points 1, 2, 3 and 4. Its initial valuatio %; — {1} x
[-1,1], Xo — L, X5 — 1, X4 — 1}, and its set of transitions i§1, t2, t3,t4},
with:

(€2} ag

A w N e

t1= X1 5 Xy, a = (R%,0) ts= X5 =5 X3, ap = (R%,(-1,0))

+9

ty = X4a—4>X1, CL4:([R2,O) ts = X3a—3>X4, CL3=([R2,(0,1)) O

Given anyn-dim IGTSS8 = (X, T, po), themerge over all paths solutioMOP-
solution) of 8, written I7g, and theminimum fix-point solutiofMFP-solution)of 8,
written Ag, are the valuations defined as follows:

s = | | {[#](po) | = € T* is a path

As = [|{peX —CulpoCpand[t](p) C pforallt e T}
Remark that for any sequenee e T* and variableX € X, there exists a path’
such thaf]7](po)(X) = [7'](po)(X). Recall also thafT]*(p) denotes the least post-

fix-point of [T] greater tharp. Therefore it follows from the above definitions that
IIs = [T*](po) andAs = [T]"(po).



Example 3.2.Consider the IGTS’ = ({X},{X & X} {X — C,}) with a =
(R?,(-1,1)) andCy = {1} x [—1, 1]. Intuitively &’ corresponds to a compact version
of the IGTSE from Example 3.1, where the cycle is shortened into a singédf-
loop” transition. The convex setSy, [a] (Cy) and [aa]](Cy) are depicted below (re-
spectively in black, blue and red). Sinfeua] (Co) is empty, we get thala*](Co) =

Co U [a](Co) U [aa](Co). The characterization d#]" (Cy) is more complex ; the key
point here is to show that the s} x [0,2] is necessarily containe]*(Cy). The
sets[a*](Cy) and[a]" (Cy) are also depicted below.

[aal(Co), [al(Co). Co

The MOP-solutionfI¢. and the MFP-solutionls, of the IGTSE’ are the valuations
e = {X — [[CL*]](C())} andAg/ = {X — [[a]]*(CO)} O

Recall that our objective is to speed up, using accelerdtased techniques, the
computation of the MFP-solution for initialized guardedrislation systems. Recast
in our setting, exact acceleration [BW94, CJ98, FIS03, FIEIR06] intuitively con-
sists in computing the exact effett, ., [(a1 - - ax)*](Co) of some cyclex -
X1 Xpo1 =% X, starting with some&’y € €, in X. Thus we may want define
acceleration as the closed convex hull of this expressiaweder it would be even
more desirable to compute the larger fet; - - - ax)] " (Cp) since it is contained in the
MFP-solution. We thus come to the following definition. Givany traces in A7,
the function[o*] (resp.[o]") is called theMOP-acceleration ofr (resp. theMFP-
acceleration of).

As will be apparent in section 5, trace-based acceleragiont in general sufficient
to guarantee termination of the Kleene fix-point iteratieven for “cyclic” IGTS. The
reason is that trace-based acceleration distinguishesablaX (the “input variable”
of the cycle to be accelerated) and abstracts away all o#tnbles in the “current” val-
uationp of the fix-point iteration. Hence we also introduce acceilereof cycles, where
we intuitively consider the MOP-solution or MFP-solutiohtbe system restricted to
this cycle. Formally, given any simple cyctein 7%, theMOP-acceleration ofr (resp.
the MFP-acceleration ofr) is the function[U*] (resp.[U]*) whereU is the set of
transitions that occur im. Note that these accelerations may be extended to arbitrary
cycles through the notion of unfoldings [LS07].

The rest of the paper is devoted to the characterization angpatation of these
accelerations: section 4 focuses on acceleration forgraod section 5 investigates
acceleration for simple cycles.



4 Acceleration for Traces

We focus in this section on MOP-acceleration and MFP-acatts for traces. Remark
that for anyo = ay---a; € A%, with a; = (G4, d;), we have[o] = [a,] where
to = (Go,dy) is defined byd, = S d; andG, = (i, (Gi - Y12  dj). it
follows that[o*] = [a%] and[o]" = [a,]". Therefore we will w.l.0.g. restrict our
attention to MOP-acceleration and MFP-acceleration foglsi actions.

Consider am-dim actiona = (G, d) and a closed convex sé € C,. Recall
that [a*](Co) = |,en [a*] (Co). Observe that for everyy € N we have[a*] (Cy) =
(Gp N Co) + kd whereGy, = (' (G — id). By convexity of G we deduce that

=0
Gr =GN (G — (k—1)d) foreveryk > 1. Hence we have :

[a*](Co) = Co U (cloconv(GN((GNCy)+Nd)) + d)

The main difficulty here lies in the computation@bconv (G N ((G N Cy) + N d)).

We introduce the class of poly-based semilinear sets ang $iat this class is
closed under sum, union and intersection. We pal{-based lineaany subset oR™
of the formB + ZpeP N p whereB is a bounded polyhedron aritlis a finite subset of
Z7™. A poly-based semilineaget is any finite union of poly-based linear sets. Note that
poly-based semilinearity generalizes standard (integgamilinearity [GS66] in that for
any subsef of Z", Z is semilinear iffZ is poly-based semilinear.

Lemma 4.1. Every polyhedron is a poly-based linear set. Poly-basedlserar sets
are closed under sum, union and intersection.

We obtain from Lemma 4.1 thdu*](Cy) = Co U (cloconv (S) 4+ d) for some
poly-based semilinear sét Sincecloconv (ZPGP N p) = > _pep 1 p forany subset

P of R™, we get thatloconv (5) is a polyhedron and hence we come to the following
proposition.

Proposition 4.2. For anyn-dim actiona = (G, d) and closed convex séf € C,, if
G and () are polyhedra therfja*](Cp) is a polyhedron.

Remark that the proof of Proposition 4.2 is constructivedgithe proof of Lemma 4.1
is constructive). It follows that for eadh € {Q, A}, the seffa*](Co) is an effectively
computabler-polyhedron whem andC arelF-polyhedral. The following proposition
gives a simple expression of the MOP-acceleration for bedrmdosed convex sets.

Proposition 4.3. For anyn-dim actiona = (G, d) and closed convex sé€f, € C,, if
G N Cy is bounded then we have:

- ifGNCy#Pandd € 07 G then[a*](Cy) = Cp + 1d, and
— otherwise[a*] (Cy) = 0 for somek € N, and[a*](Co) = |I;=, [a'] (Co).

Our next result gives a surprisingly simple expression efNtP-acceleration for
arbitraryn-dim actions.



Proposition 4.4. For anyn-dim actiona = (G, d) and closed convex sé€ € C,,, we
have: "
. C ifGNCy =
e = {6 °

Co U ((GN(Cy+1d)) +d) otherwise

It follows from Proposition 4.4 thafa]*(Co) is a polyhedron wher andCj, are
polyhedra. If moreoves andCy areF-polyhedral, withF € {Q, A}, then[a]"(Co) is
an effectively computabli-polyhedron.

We now compare our MFP-acceleration approach \afiktract loop acceleration
introduced in [GHO6] as a complement to widening for linegation analysis. Let us
recast the definition of [GHO6] in our setting. Thbstract-acceleratiorﬂa]]® of anyn-
dim actiona = (G, d) is the monotonic function i€,, — @,, defined by[a]®(C;) =
Co U cloconv ({x € R" | Jxo € GNCh,x € (xo + 1d) N (G + d)}). Observe that
[a]®(Co) = Co U ((GNCy)+1d)n (G + d). Hence we obtain the following
relationships between MOP-acceleration, MFP-acceteratnd abstract-acceleration:

[a*](Co) E [a]®(Co) = Co U [a] (ConG) T [a]"(Co)

Note in particular thafa]®(Co) = [a]*(Co) whenCy C G. It turns out that abstract-
acceleration is not sufficient to guarantee terminationhef iKleene fix-point itera-
tion even for guarded translation systems consisting imglai‘self-loop” transition.
Consider our running example, the IGTS given in Example 3.2,

and recall thatCy = {1} x [-1,1]. The sequencéCy), o,  3....... T .
defined byCy., = [a]®(Cy) corresponds, for this example, : :
to the abstract-accelerated Kleene fix-point iteratiorgested >
in [GHO6]. An induction onk shows that for every > 1, the
setCy, is the convex hull of (1, —1), (1, 1), (—1,3), (=1, yx)}
wherey, = 1+ 5t<. The first sets’y, Cy, C> and C; of

the iteration are depicted on the right (darker sets coomesdp :
to smaller indices). It follows that the sequen@y), ., is o %
(strictly) increasing and hence this accelerated Kleenpdint

iteration does not terminate. Note that the situation wadtl : :
be better with MOP-acceleration. However as already note'ai_-l- ----- FREEEE L
in Example 3.2, MFP-acceleration afdirectly produces the

MFP-solution. Hence the MFP-accelerated Kleene fix-paaration would reach the
fix-point after just one iteration. Notice that MFP-accet@n and abstract-acceleration
have the same computational complexity.

5 Acceleration for cycles

We investigate the computation of the MOP-acceleratiogp(rthe MFP-acceleration)
of a simple cycle. Following our definitions, this problenduees to the computation of
the MOP-solution (resp. the MFP-solution) of an IGTS thattams all its transitions
into a unique (up to permutations) simple cyale= X; “% ... X; % X, called
cyclic. We only consider the MFP-solution computation in the ségimee the follow-
ing equality shows that the MOP-solution of a cyclic IGTSuees to the computation



of the MOP-acceleration of the traee= a; ... a:
k
Is(X1) = | |[o*] 0 [aisa - - ax] (po(X3))
=1

We first explain why the previous reduction cannot be extdid¢he MFP-solution.
Naturally, when the initial valuatiop, satisfiesoo(X) = L for all but one variableX;,
the following equality shows that the MFP-solution reduttethe MFP-acceleration of
traces (values ofls in X5, ..., X} are obtained by circular permutations):

As(X1) = o] o [aiy1 - - - ar] (po(Xi))

However, this case is not sufficient since we want to apply ME€&eleration at any
point during an iterative computation of MFP-solutionse2kdim cyclic rational poly-
hedral IGTSE, formally defined below shows that the MFP-solutidg cannot be re-
duced to MFP-acceleration of traces for a general initialatton p,. In fact, we prove

in the sequel that the MFP-solution &f is A-polyhedral but nof-polyhedral. Since
MFP-accelerations of traces only produgeolyhedral valuations we deduce that the
MFP-solution cannot be obtained using MFP-acceleratidraogs.

Example 5.1.Consider the cyclie-dim IGTS £, depicted graphically on the left-hand
side below.
P41

oo B 1
ay @2 L '

Ep—a—X)

Formally the initial valuatiorp, of €5 is {X; — {(-2,2)}, X2 — {(2,2)}, X5 —
{(2,-2)}, X4 — {(—2,-2)}}, and its actions;; = (G1,0),a2 = (G2,0),a3 =
(G3,0),a4 = (G4,0) are defined bye; = ]—o0, —1] x [1,+00[, G2 = [1, +00[ %
[1,+00[, Gs = [1,400] X |—00, —1] andGy = |—0c0, —1] X |—00, —1]. O

I
1

The MFP-solution of the IGTS, can be obtained by first proving that the Kleene
iteration (1 U [T])**2(po) is equal to the valuationle, 5, (The values ofde, j in
X1, X5, X3, X4 are graphically pictured in red, green, black and blue incénater of
the previous figure) wheréde, 5, is the following valuation parameterized by a real
numberh and wherg(hy) >0 is the sequence of rational numbers definedipy= 0
andhy41 = 4%,% (this last equality can be geometrically obtained from fhhtrhand
side picture of the previous figure).

Ag, n(X7) =conv{ (-2,2) ,(-2,-2),(-1,-2),(-1,—2+h)

( })
Ag, n(Xo) =conv{ (2,2) , (-2,2) , (—-2,1) , (—2+h,1) })
Agz,h(XlS) = COﬂV({ (23 72) ) (27 2) s (17 2) ’ (1v 2 - h) })
Agz,h(X4) = COﬂV({ (_2’ _2) ’ (27 _2) s (2’ _1) ) (2 —h, _1) })



Lemma 5.2. We have(1 U [T])(Ae, 1) = 4g, 1 forany0 <h <2 —+/3.

As Ag, 0 = (LU [T])*(po) we deduce thatle, p, = (1L U [T])**2(po) for any
k > 0 from the previous lemma 5.2.

Lemma 5.3. The sequencghy)i>o converges to the algebraic numder- /3.

Since Ag, n, T Ag,, we deduce from lemma 5.3 thats _v3 E Ag,. Observe
that lemma 5.2 proves that,, 2 V3 is a post-fix-point. Thus’l8 23 is the MFP-
solution. Note that this valuation Ispolyhedral but no- ponhedraI We will actually
show in the next section that the MFP-solution of &glim A-polyhedral IGTS (not
necessarily cyclic) ig\-polyhedral.

Now we provide an example @fdim cyclic Q-polyhedral IGTSE 3 corresponding
to a slightly modified version of, that exhibits a non-polyhedral MFP-solution.

Example 5.4.Consider the cycli@-dim IGTS €5 formally defined a€, except for (a)
its initial valuationpy equal to{ X; — (—1,1,0)+Tes, X2 — (1,1,0)+ Tesz, X3 —
(1,-1,0) + Tes, X4 — (—1,-1,0) + Tes} wherees = (0,0, 1), and (b) its actions
a1, a9, a3, ay defined as follows _ is the set of non-positive real number&, ):

ali(R_XR+XR,63) CL2:(|R+X|R+X|R,€3)
as=(R_xR_xR, e3) a3 =(Ry xR_ xR, e3)

O

Let us denote byl¢, ; foranyk € {2,. .., 400} the following valuation wheré,; =
fori > 1, (2;);>1 is defined by the initial value; = 3 and the inductior; 4
1+ 2.7, andes = (0,0, 1).

[| ==

Ag3’k(X1) CO”V({ (—1, 1,0) s (—1, -1, 1)} @] {(0, —hi,Zi) | 1<1< k}) + T63
Ao w(Xa) = co{ (1,1,0) .+ (=1, 1,1) FU{(=hs,0.2) | 1< i < k}) + T e
Ag37k(X3) = CO nv({ (1, —1,0) s (1, 1,1) }U{ (O,hi,2i> | 1<1< k‘}) + Tes
A£37k(X4) = COHV({(—I,—I,O) s (1, —1,1) }U{ (hi,O,zi) | 1<1< k‘}) + Tes

Lemma 5.5. Values ofde, 1~ in X1, X2, X3, X4 are closed convex sets but they are
not polyhedral.

Since(1 U [T])%(po) = Ae, 2, the following lemma 5.6 proves thét U [T])*(po) =
Ag, i foranyk € {2,..., 400}

Lemma 5.6. We havel U [T])(Ae, ) = Ae, x+1 foranyk € {2,..., +o0}.
We deduce thatl¢, . is the MFP-solution o€ .

Theorem 5.7. There exists 8-dim cyclic rational polyhedral IGTS with a MFP-solution
that is not polyhedral.

6 MFP-solution in Dimension< 2
We have proved in the previous section that the MFP-solwf@®-dim cyclic rational

polyhedral IGTS may be not rational. In this section the MfeRition of any2-dim
F-polyhedral IGTS (not necessary cyclic) is prodegiolyhedral for anyf € {A, R}.
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Remark 6.1.In [SWO05, LS07] thel-dim case is fully studied.

Let us first consider any-dim actiona = (G,d), a setS C R™ and observe
that the inclusiortloconv ((G N S) + d) C (G Ncloconv (S)) + d is strict in general.
Nevertheless, the following lemma provides a sufficientition to obtain the equality.
Recall thatbd (G) is theboundaryof G.

Lemma 6.2. We haveloconv ((G N S) + d) = (GNcloconv (S)) + d for anyn-dim
actiona = (G, d) and for any sefS C R" such thathd (G) N cloconv (S) C S.

Let S = (X, T, po) be anyn-dim polyhedral IGTS and lef\s be the following
valuation :

a=(G,d
As(X) = po(X) U|_J{bd (6) N 45(X) | x =42 x7)
Observe that\s is an intermediate valuationy T Ag C As. Let us denote by x x,
(resp.L’}}O}X) the set of traces that label some path (resp. simple patfy) = X. Let
A% be the valuation defined by (X) = cloconv (S(X)) whereS(X) is the following
set:

S(X) = J{lo] (As(Xo)) | Xo € X, 0 € Lx, x}

Note thatS(X) satisfies lemma 6.2, we deduce thatis a post-fix-point, i.e[T7] (Ag) T
A%. Moreover, asly C Ag we get the equalityly = As.

Lemma 6.3. We have the following equality :

As(X) = | [{Io] (As(X0)) | Xo € X, 0 € LE, } + 07 4s(X)

We now focus on dimensiohand assume thatis a2-dim polyhedral IGTS. Since
a polyhedron is a finite (eventually empty) intersection af{spaces, by adding some
new extra variables to the IGTS, we may assume without loggenérality that all
guards are either half-spaces or the wholeRsetNote that the boundary of an half-
space{z € R" | 1.1 + az.z2 < ¢} istheline{z € R" | ay.x1 + az.22 = ¢}, and
the boundary oR? is the empty-set. Thusd (G) N As(X) is polyhedral for any guard
G and any variableX. We deduce that\g is polyhedral. Moreover, a&-dim closed
convex cones are polyhedral we deduce thatis(X) is polyhedral for any variable
X. We have proved the following theorem.

Theorem 6.4. The MFP-solution of ang-dim polyhedral IGTS is polyhedral.
Finally, assume that the-dim IGTS § is a A-polyhedral and observe that for any
variableX € X and for any transitiolX % X’ with a = (G, d), there exists:

— three vectorsl; , dz, ds € R? such thabt Ag(X) = Tdy + Td2 + Tds.
— two half-spacedd;, H, such thabd (G) N As(X) = bd (G) N Hy N Hs.

Since any vector (resp. any half-space) can be defined2witfals (resp3 reals), we
may constructively deduce from lemma 6.3 a formul@Rn+, -) definingAg.

Theorem 6.5. The MFP-solution of ang-dim A-polyhedral IGTS is effectively-poly-
hedral.
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A Proof of Lemma 4.1

We need some background material on semilinear subsét® of order to prove the
lemma. A subsef of Z" is calledlinear if Z = b+ }_ ., Np for some vectob

in Z™ and some finite subsét of Z". A semilinearsubset ofZ™ is any finite union of
linear subsets of . Let us recall that semilinear subsetsZéfare precisely the subsets
of 7™ that are definable in Presburger arithmetic, the first-oadigiitive theory of the
integers [GS66]. Observe that a poly-based linear set issahget ofR™ of the form
B + Z whereB is a bounded polyhedron arflis a linear subset of .

Lemma 4.1. Every polyhedron is a poly-based linear set. Poly-based|serar sets
are closed under sum, union and intersection.

Proof. Consider a polyhedrofi contained irfR™. It is well-known (see for instance [Sch86,
pp. 88-89]) that” may be written as” = B + >, Td where B is a bounded
polyhedron andD is a finite subset oR™. Let D, denote the bounded polyhedron
Do = {Y4cprad|Aa €[0,1]} and observe thal = B+ Do + Y 4. p Nd. We
obtain thatC' is a poly-based linear set sinée+ D, is bounded.

Closure under union of poly-based semilinear sets is imatedClosure under sum
comes from (1) distributivity of sum over union and (2) clesunder sum of bounded
polyhedra. Let us prove closure under intersection. Frastridutivity of intersection
over union, it is sufficient to prove that the intersectioraoly two poly-based linear
sets is a poly-based semilinear set. Consider two boundgtigara B, B, and two
finite subsetd?;, P, of Z", and let us writeC; = B; + Zpepl NpandCy; = By +
>_pep, Np. Letus define the following sets for eveliye {1,2} andv € 2™

Ey = (But(-v))n 01"
Fy = (But(-v) n o1
Ly = v+ > Np

PEP

Note thatE} is a bounded polyhedron and thaf is a linear subset of™. We derive
from the above definitions thdt, = J,c,» Ef +v = U,ezn Fyy + v for each
h e {1,2}. The setV}, = {v € Z" | E} # 0} is necessarily finite sincB;, is bounded.
SinceE} = FY = () for everyv € Z™ \ V}, we obtain that:

G = U B+Ly = U F+Ly
vEV) vEV

for eachh € {1,2}. Observe that:

’L) (U1 + Zl) N (U2 + ZQ) D (Ul N Ug) + (Zl N Zg) for anyUl, Us, Z1,7Z5 C R™.
i1) This inclusion becomes an equality whein, U, C [0,1[" andZ;, Zy C Z™.
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Therefore, we get that:

CiNCy C (U Ff’1+L’f1> N ( U F;2+L;’2>

vi€VL v2€V2
- U (FY* 4 L") N (Fy? + Ly?)
(U17U2)EV1><V2
- U (FY* N FY?) + (L7 N L3?)
(’Ul,’uz)evl X Vo
- U (Ey* N E5?) + (L1 N Ly?)
(’Ul,vz)evl X Vo
C U (BT + LY*) N (B® + Ly?)
(Ul,’uz)GVl X Vo
C ( U E}’1+L’f1> n ( U E2”2+L§’2> C C1NCo
v1eV] Vo€V
Thus we come t@, N Cy = J  (BY*nE3?)+ (L N LY?). Remark that

(v1,v2)EVI X V>
ET* N E3? is a bounded polyhedron for every € Vi andv, € V5. Since semilinear
subsets o™ are closed under intersection, we also get ff{&tN L3? is a finite union
of linear subsets of ™. We conclude that’;, N Cs is a poly-based semilinear set. O

B Proof of Proposition 4.3

Proposition 4.3. For anyn-dim actiona = (G, d) and for any closed convex s€§ €
C,, if G N Cy is bounded then we have:

—ifGNCy#Pandd € 0T G then[a*](Cy) = Cy + 1d, and
— otherwise[a*] (Cy) = 0 for somek € N, and[a*](Co) = LI5=, [a’] (Co)-

Proof. Recall that[a*](Cy) = |,y [@*] (Co) and that for everys € N, we have
[a*](Co) = (Gr, N Cy) + k d whereGj, = ﬂ'?_ol G — i d. We obtain thafla*] (Cy) C

Cy + 1d for everyk € N, and thereforﬂal*]](co) C Cp + 1d. Now assume that
GNCy # Pandd € 07 G, and let us pick some € GN Cy. Sincez + 1d C G we get
thatz € G — kd for everyk € N. Hencex + kd € [a*](Co) T [a*](Co) for every
k € N, and it follows by convexity offa*](Co) thatz + Td C [a*](Cy). We deduce
thatd € 07 [a*](Co) and thus we come t6 + Td C [a*](Co) + 1d C [a*](Co),
which concludes the proof of the first assertion.

Observe thafa](Cy) = 0 if GNCy = B, and hence the second assertion is trivially
satisfied wherG N Cy = 0. Let us now assume th&t N Cy # 0 andd ¢ 07G.
Observe thati, 3 G4 for everyk € N. Sinced ¢ 07G we get that, ., G
is empty. Indeed if there was somein [, ., G then we would have + kd € G
for everyk € N which would imply thatz + Td £ G and hencel € 0*G. Observe
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thatG; N Cy = G N Cy is compact as it is a bounded closed subseR’af Since
(Gp N Co),.>1 is a non-increasing (w.r.t. inclusion) sequence of closs, st follows

thatGj, N Cy = () for somek > 1, and hencda”] (Cy) = 0 for somek > 1. Moreover,
we deduce thala*](Co) = | ;o [a'] (Co) = L=y [a°] (Co)- 0

C Proof of Proposition 4.4

We first need the following technical lemma, which can be pdowsing standard linear
algebra techniques.

Lemma C.1. Let x4, x2, y1, y2 denote four distinct vectors iR™. If we haver, —
x1 = A (y2 — y1) for some) < 0 then there exista;, \y € ]0, 1] such that\; x; +
(]. — Al)yl = )\2 ) + (]. — )\Q)yz.

Proposition 4.4. For anyn-dim actiona = (G, d) and for any closed convex sg§ €
C,., we have:

. C fGNCy=10
[a]"(Co) = {cg U ((GN(Co+1d)) +d) otherwisoe

Proof. If G N Cy = 0 then[a](Cy) = 0 and thereforda]*(Co) = Co. If d = 0 then
CoU((GN(Co+1d))+d) = Cy = [a]*(Cop). Now assume for the rest of the proof
thatG N Cy # 0 andd # 0, and let us writel = G N (Cy + T d). We first prove that
[a]*(Co) C (Co U (E + d)). Observe thatCy LI (E +d)) C (Co + 1 d) since bothCy
andE + d are closed convex sets that are contained in the closedxceat(@, + T d).
We therefore get that:

[al(CoU(E+d)) = (GN(CoU(E+d)+d E (GN(Co+1d))+d = E+d

Hence we come tfu] (Co Ll (E+d)) C (CoU(E+d)) and we deduce thdt] " (Cp) C
(Co U (E + d)). Let us prove the reverse inclusion by contradiction andimssthat
(CoU(E + d)) Z [a]*(Co). As Cy C [a]"(Co) we obtain that there exists €
E such thate + d ¢ [a]"(Cy). Observe thatz N [a]*(Co) # 0. Therefore the set
{llx —e|l, | z € Gn[a]"(Cy)} is non empty and ley denote its infimum. Since
GN[a]*(Cy) is closed, there exists € GN[a]*(Cy) suchthat|z — e|| = n. Remark
thatz’ = = + d € [a] " (Co) since(G N [a]*(Co)) + d = [a]([a]*(Co)) E [a] " (Co).
As e € FE there existx € Cy andX > 0 such thate = z + Ad. We deduce from
Lemma C.1 applied ta, e, ', x thatA; z+ (1 — A1) @’ = Ao e+ (1 — \2) « for some
A1, A2 € ]0,1[. Recall thatz, =’ € [a]*(Cp) ande,xz € G. From convexity of these
two sets, we obtain that = (A2 e + (1 — X\2) ) € G N [a]"(Cy). Therefore, we come
tolly — el = [|(1 = X2) (x — e)||,, = (1= A2)n < n, acontradiction sincg is the
infimum of {||z —e||__ | x € GN [a]"(Co)}. O

D Proof oflemmabs.2

We first prove the following lemma.
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Lemma D.1. We have the following equality for ahy> 0:
1
[[a’lﬂ (AEQJL(Xl)) = conv ({(_27 2)7 (_23 1)7 (_2 + mv 1)})
Proof. Let us denote by = [a1] (Ae,,»n(X1)). Following the definitions ofi; and
Ag, n(X1) we get this equality:
C = (]—00, —1] x [1,400[) Nconv ({(-2,2), (—2,-2),(-1,-2),(=1,—-2+ h)})

Let " = conv ({(—2,2),(-2,1),(—2+ 1/,1)}) whereh’ = ;L and let us prove
thatC' = C’. The following equalities proves thét-2, —1) and(—2 + &/, 1) are both
inC.

(_2a 1) = i ( 2a 2) ( 272)

(—2+n,1)=n.(-1,-2+ h) (1-1").(-2,2)

Moreover, from(—2,2) € C, we have proved that’ C C'. For the other inclusion, let
xz € C.Asx € Ag, n(X1), there exists\, Az, Az, Ay € Ry such that

AM+A+A+ =1
T =A.(—2,2) + X2 (=2, =2) + A3.(—1,-2) + A\y.(=1, -2+ h)

Observe that the following equalities hold:

(*2372) 4( al) 3( )
(-1,-2) =@ n%)( 1)+ 'H 24 1,1) - 3.(-2,2)
(1,24 h) = 5. (~2+ W, 1) — (& — 1).(-2,2)

Thus, by replacind—2, —2), (-1, —2), (—1, —2 + h) by the previous expressions in
the linear convex sum decomposimgwe get:

1
iL‘ :()\1 — 3.)\2 — 3.)\3 — )\4(ﬁ — 1)).(—2,2)

HAdo + Ao (4~ ) (-2,1)

Ad+ A3
h/

+ (=2+H.1)

Fromzx, > 1, the previous equality antl, + A + A3 + A4 = 1, we get:
1
(M =3d0 =305 = Xa.(35 = 1) 2 0

Moreover, ash > 0 we deduce that’ > 1 and in particular.A; + X3.(4 — ) > 0.
We have proved that € C’. ThusC C C’. O

Lemma 5.2. We have(1 U [T])(Ae, 1) = Ag, 1 forany0 <h <2 -3,
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Proof. From the previous lemma and the definitionA, ;, we deduce the following
equality:

Ag,n(X2) Ufar] (Aes,n(X1))

—conv ({(2:2),(-2.2). (=21, (-2 11, (-2 + 72 1))
Observe that — /3 and2 + /3 are the two roots of the polynomiaf — 4.2 41 = 0.
Thus fromh < 2 — /3 we geth? — 4.h + 1 > 0. In particular—2 < —2 4+ h <

—2 + 1 and we have proved thale, ,(X2) U [a1] (A, n(X1)) = 4g, 1 (X2).
By symmetrical rotations, we get the following equalities:

(AU [ta])(Aey,a)(X2) = Ag, 1 (X2)
(AU [t2])(Aes,a)(Xs) = Ag, 1 (X3)
(AU [ts])(Aes,a) (Xa) = Ag, 1 (X4)
(LU [ta])(Aes,a) (X1) = Ag, 1 (X1)

Since the variableX(;, X», X3, X, are distinct, we deduce thét U [T])(Ae,.q4) =
O

€a gl
E Proof of Lemma5.3

Recall that hy ) >0 is the sequence defined by = 0 andhy. 1 = ﬁ for anyk > 0.
Lemma 5.3. The sequencé:y,),>o converges towar@ — V3.

Proof. Note that2—+/3 < 2+4+/3 are the two roots of the polynomiaf —4.z+1 = 0.

In particularz? — 4.x + 1 > 0 for anyz < 2 — /3. Let us first prove by induction
that0 < h; < 2 — /3. The rankk = 0 is immediate sincel, = 0. Observe that
0 < hy <2—V3impliesi < hyyq < m = 2 — /3. We have proved that

0 < hj, < 2—+/3foranyk > 0. Fromhy, | — h; = hi%ﬁ:“ and0 < hy < 2—/3
we gethy+1 —hi > 0. Thus(hy)i>0 i a bounded increasing sequence, We deduce that
(hx)k>0 converges toward a limit. Taking the limit in the equality;11.(4 — hy) =1
and the inequalityr, < 2 — /3 providesh.(4 — h) = 1 andh < 2 — /3. Thus

h=2-—+3. O

F Proof of Lemmab.5

Recall that the sequence;);>1 is defined byzy = 2 andz; 41 = 1+ z“fl for any
i > 1, and the sequend@;);>1 is defined byh; = % foranyi > 1.

Lemma F.1. The sequencg;);>1 is unbounded, increasing and it satisfigs< ¢ + 1
foranyi > 1.
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Proof. An immediate induction provides; < i + 1 for anyi > 1. Fromz;,; =
L+ ziy, We getzigg — 2 = (’+1+)2 “ thusz; 11 > 2; and we have proved that
is an increasing sequence. Note thatif);>1 is bounded, we deduce thatconverges
toward a vector. Taking the limit in the equality; .1 = 1+ z;. ;77 providesz = 1+2
and we get a contradiction. Therefqrg);>1 is unbounded. O

A function f € C' — R is saidconvexif its graphGy = {(z,y) € C xR |y >
f(x)} is convex. Let us prove that functighdefined ovef0, 1] by the following equal-
ity for any A € ]h;41, h;] and for anyi > 1:

A—hy A—hip
+ Zi.
i+1 — hy hi = hita

FO) = 21y

Lemma F.2. Function f is convex.

Proof. Observe that it is sufficient to show the following inequafiir any: > 2:

_fhigy) = J(hi) | f(hi) = S(hi1)
hiv1 — hy hi —h;_1

By replacingh;—1, hi, hit1, f(hi—1), f(hi), f(hiy1) respectively by2-, 1, (2 —
1), 2, 1+ z“_%l z;, the previous difference becomes equal#oz;(i — 1) > 0. O

>0

We now prove that values ofs, ;. in X1, X2, X3, X4 are closed (this result is
not immediate).

Lemma F.3. The setonv ({(h;,z;) | ¢ > 1}) + 1(0,1) is closed.

Proof. Let C be this closed convex set. Observe thais the graph of the functioff.
Consider a sequengéz;, y;));>o in this graph that converges toward a vedtary).
Note that there existg € N\{0} such thatr; € ]hl +1,hi,]. Sincey; > f(z;) > 2,

we deduce thatz; ) >0 is bounded. A$zl)l>1 is increasing and unbounded, we deduce
that(i;); >0 is bounded. Thus, by extracting subsequences, we can aisat(g) >
remains equal to a constangé N\{0}. Thus(z;),>o converges toward € [h;11, h;].
Since f is continuous ovefh; 1, h;], fromy; > f(z;) we deducey > f(x). Thus
(z,y) is in the graph off and we have proved thét is closed. a

Lemma 5.5. Values ofd¢, 1~ in X1, X2, X3, X4 are closed convex sets but they are
not polyhedral.

Proof. Let C be the convex hull of (0, —h;, 2;) | ¢ > 1}. From the previous lemma F.3
we deduce that’ + 7 es is closed. Note that there exists a bounded closed convex set
Co suchthatC' + Td = Cy + 1d. SinceCo is a bounded closed convex set, we deduce
that the convex hull of—1,1,0) U ( —1,1) U Cy is a closed convex sét’. Now,
just observe thatlg, ;. (X;) = Teg. Thus this set is closed. By symmetry, we
have proved that values dfggﬁoo in X1, X», X3, X, are closed.

Now, let us prove that these values are not polyhedral. @bskat if A, 4o (X7)
is polyhedral thenle, 1 (X1)N{0} x R? is also polyhedral. Note that this set is equal
to C' + es. Since the graph of is not polyhedral we deduce thdk, . ..(X1) is not
polyhedral. By symmetry, the value df:, |, in X, X2, X3, X, are not polyhedral.

O
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G Proof of Lemma 5.6

Lemma G.1. The sefa;] (Ae, 1 (X1)) is equal to the following set for arkye {2,. .., +o0}:
conv ({(—=1,1, )} U{(=hit1,0,2i41) |0 <i < k})+ Tes

Proof. Letus denote b’ = [a1] (Ae, 1 (X1)). Following definitions ofi; andAe, 1 (X7),
we get this equality:

C—e3 = (R xRy xR)N(conv ({(—=1,1,0), (=1, -1, D)} U{(0,—h;, 2) | 1 < i< k})+Tes)

Note that the following equalities hold:

(_hi+170azi+l)_e3 = ﬁ(_15170)+ﬁ(07 huzl)
(=h1,0,z1) —es  =3.(-1,-1,1)+ 3.(-1,1,0
(717171)763 = (71a170)

Thus(—h;41,0, z41), (—h1,0,21) and(—1,1, 1) are inC and we have proved thét
contains the following convex sét':

C" = conv ({(—1, 1, 1) U {(—hi+1,0,zi+1) I 0<i< k}) + Tes

For the converse inclusion, let € C. There exists\,u, 3 € R4 and a sequence
(ri)1<i<k Of elements irR . such that-; = 0 expect for a finite number afsuch that:

Abp+ > =1

1<i<k

T — ez = /\.(—1, 1, 0) + M.(—l, —1, 1) + Z T,‘.(O, —h;, Zl) + (.e3
1<i<k

Observe that the two following equalities hold:

(0, =hy, 2i) = B (=hit1,0, 25401 — 1)

- H%.(—l,l,())
(=1,-1,1) = 2.(=hy,0,2; — 1) — (—1,1,0)

Thus, by replacing0, —h;, z;) and(—1, —1, 1) by the previous expressions in the linear
convex sum decomposing— ez, we get:
T
—e3=(\—u— (—-1,1
x—e3=(\—pu Zi-i-l)( ,1,0)
1<i<k
+ 2./},.(—]11,0, 21— 1)

1+1
+ Z i .Ti.(—hi+1,0,zi+1 — 1)

1<i<k
+ ﬁ.e3
From the following equality:
63:(>\7,LL7 Z Z+1)63+2M63+ Z i .r;.€s
1<i<k 1<i<k
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We get:

= —p= Y LY

1<i<k
+2.u.(=h1,0,2)
1+ 1
+ Z i .’I’i.(—hi+1,0,zi+1)
1<i<k
+ 5.63

Sincex —e3 € R_ xRy xR, we deduce thaty > 0. Thus(A—p—> ;. 75) = 0
AS (N = 1= ik ) + 2.8+ Yy i g, o = 1 we deducer € C. O

7

Lemma 5.6. We havel U [T])(Ae, k) = Ae, 41 foranyk € {2,..., +o0}.

Proof. From lemma G.1, we deduce thag, . (X2) U [a1] (Ae, x(X1)) is equal to
Agy k1 (X2). Thus(LU [t1])(Aey 1) (X2) = Aey x+1(X2). By symmetrical rotations,
we get the following equalities:

(LU [t])(Aes 1) (X2) = Ag k1(X2)

Ty ﬂtﬂ])(/les k)(XB) Ags hy1(X3)

(LU [ta]) (e, 0) (Xa) = Agg p+1(Xa)

(LU [ta])(Aey0) (X1) = Agg p+1(X1)
Since the variables(;, X», X3, X, are distinct, we deduc@l U [T])(Ae, %) =
Agy kg1 O

H Proof of Lemma 6.2

Lemma 6.2. We haveloconv ((G N S) + d) = (GNcloconv (S)) + d for anyn-dim
actiona = (G, d) and for any sefS C R" such thathd (G) N cloconv (S) C S.

Proof. Naturally, we can assume thdt= 0. Let us prove the non immediate inclu-
sion G N cloconv (S) C cloconv (GN S). Letx € G N cloconv (S). Observe that
if € bd(G) then fromz € bd(G) N cloconv (S) C S, we getx € GN S
and in particularr € cloconv (G N S). Thus, we can assume thate G\ bd (G).
Sincex € cloconv (S), there exits a sequend®;,),>o of finite subsets ofS and
a sequencéxy),>o in the convex hull ofS; that converges towara. As z is in
the interiorG\ bd (G) of G, there exists an integek’ > 0 such thatx; is also in
this set for anyk > K. By re-indexing the sequence, we can assume Ehat 0.
Let us consider a sequen¢ay y)yes, i Ry such thaty® g Ak, = 1 and such
that . is a linear convex combinatiom, = >_, s Aky-y. Observe that for any
y € S;\G, aszy, € G\ bd (G), there exist a real valugy, ,, such tha < py , < 1
and such thafl — p o ).¢x + 4.y € bd (G). Let us denote by, (y) this vector
in bd (G). Sincexy is a convex linear combination of vectors thandy € S we
deduce thaff(y) is also a convex linear combination of vectorsinThus fi(y) €
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bd (G) N conv (S) C S and we have proved thg(y) € G N S. By replacing each
o (fe(y) = (1= pngy).xy) in the equalityey, = 35, cg, Aky-y, We

get:
Ak
(2 Mot D S Hae= Y Mgyt Y ’yf
yeSKNG yESK\G .y yeSKNG yESk\G

Thereforery, is a linear convex combination of vectorsGhn S. Sincex;, converges
towardz, we deduce that € cloconv (G N S). O

| Proof of Lemma 6.3
Lemma 6.3. We have the following equality :

As(X) =| [{[o] (As(Xo)) | Xo € X, 0 € LE, v} + 0T Ag(X)
Proof. Let A¢ be the valuation defined by the following equality:

AL(X) = | [{Io] (As(X0)) | Xo € X, o € LY, <} + 0" As(X)

As L% y C Lx, x we deduce that [{[o] (4s(Xo)) | Xo € X, 0 € Lg, }
A:SEXg. Moreover asds(X) 4+ 0T Ag(X) = As(X) andAg = A we getA§(X)
Ag(X).

Now, assume by contradiction that the inclusion is striat.d&duce that there exists
a pathr = (Xo = X) and a vectory € As(X,) such thatfo] (o) is reduced to a
vector denoted by satisfyingz € A5(X) and such thak ¢ A¢(X). Naturally, we
can assume without loss of generality that the length isfminimal.

C
C

Note thatr cannot be simple. Thus, this path can be decomposedintory.f.m;
wheremy = (Xo 2% X1), 0 = (X; = X;) is a loop with a non zero length and
7 = (X1 2% X). We denote byr; anda’ the vectorszy = xg + do,, ' =
x1 + do, . Note thate = @’ + d,,. When the sefoo.w”.01] (zo) is not empty, it
is reduced tdo,] (z1 + k.d.,). We denote byl the set of realr € R, such that
[o1] (®1 + .dy) # 0. Observe that is a non empty closed interval of the form
I={reRy|ro <r<ri}wherery € Ry andr; € Ry U{+oc0}.

Let us show that’ + ro.d,, € A%(X). Note that ifry = 0, the pathr.m with a
smaller length tham and the vectoy € Ag(Xy) providese’+0.d,, € A¢(X). Now,
consider the caseg > 0. The sequenca, ..., t; of k > 0 transitionst; = (Y;_1 G,
Y;) such thatr; = t; .. .t will be useful for proving the property in this case. In fact,
asry is the minimal real iR (not only inR,.) such thafla; ... ax] (x1 + ro.dyw) # 0.
We deduce that there exists< ¢ < k such thafa; ... a;—1] (£1+70.dw) € bd (Gy,).
Note thatz; andx, + d,, are both inAg(X;) thanks to the paths, andr.0 and the
vectorzg € Ag(Xp). As0 < rg <1 andAg(Xl) is convex, we deduce that; +
ro.dy € Ag(X1). Therefordla, ... a;—1] (x1+70.dw) € As(Y;_1) thanks to the path
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t1...t1 and the vector, + rg.dy, € Ag(Xl) Thus[al Ce ai,ﬂ] (iL’l + To.dw) S
bd (Gt,) N Ag(Y;—1) T Ag(Y;—1). The patht; 1, ...t with a smaller length that
and the vectoffa; ...a;—1] (x1 + ro.dw) € As(Yi—1) prove thatfa; ...ax] (x1 +
r0.dyw) € AY(X). Thusz' + ro.dy, € AG(X).

Finally, note that ifr; = oo thend,, € 0" Ag(X). Froma’ + ro.d, € A% (X)
we deduce that = =’ + ro.dy, + (1 — 79).dy € A¢(X) and we get a contradiction.
Thusr; < +o0o0. A symmetrical proof as the one given in the previous patyshows
thatz’ + ri.dy, € AG(X). Asrg < 1 < ry andz’ + ro.d,, andzx’ + r;.d,, are both
in the convex setlg(X), we deduce that = =’ + d,, € A¢(X) and we also get a
contradiction. O

J Proof of Theorem 6.5

Theorem 6.5. The MFP-solution of ang-dim A-polyhedral IGTS is effectively-poly-
hedral.

Proof. We denote byH, . the half-spacdx € R? | (o, z) < ¢} parameterized by
a € R? andc € R. Given a tupler; = (ag,c1, as,co) wherea; = (au,t)ier and
as = (aa,zt)ier are two sequences of elementsiih and wherec; = (c1¢)ter and
ca2 = (ca,4)ter are two sequence of elementsinwe denote byAs ., the following
valuation:

a=(G,d
Ay (X) = po(X) U] [{bd (G) N Heagprers N Hecgyrem, | £ = (X S0

XN}
Given a tupler2 = (dl, dQ, dg) Whered1 = (dl,X)XeXa do = (d2,X)X€X andd3 =
(ds,x ) xecx are three sequences of element&# we denote byCs ., the following
valuation:

CS,rz (X) = le,X + Td2,X + TdS,X

Observe that lemma 6.3 proves that there exists(r, r2) such thatls , = As where
Asg  is the following valuation:

A, (X) = [{[o] (A5, (X0)) | Xo € X, 0 € L, x} + Cs,r,(X)
Finally, let us consider the following formula(r):
(b(?“) = [[T]] (ASJ‘) C AS,T /\VT/([[T]] (AS,T’) C AS,T’ — AS,T C AS,T’)

As the boundary of any guard is definablg +, -), we deduce thap is a formula
in this logic. Note that an element satisfying[1] (As,+) C As . is a post-fix-point.
Moreover, asppy T Ag ,» we deduce thatls T Ag .. As there exists an such that
Ag » = Ag we deduce thap defines the set af such thatds , = As. In particularg
is satisfiable and there exists an effectively computalgetahic solution-. Now just
observe thatls , is A-polyhedral. a
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