Skip to Main content Skip to Navigation
Journal articles

On Bellissima's construction of the finitely generated free Heyting algebras, and beyond

Abstract : We study finitely generated free Heyting algebras from a topological and from a model theoretic point of view. We review Bellissima's representation of the finitely generated free Heyting algebra; we prove that it yields an embedding in the profinite completion, which is also the completion with respect to a naturally defined metric. We give an algebraic interpretation of the Kripke model used by Bellissima as the principal ideal sprectrum and show it to be first order interpretable in the Heyting algebra, from which several model theoretic and algebraic properties are derived. For example we prove that a free finitely generated Heyting algebra has only one set of free generators, which is definable in it. As a consequence its automorphism group is the permutation group over its generators.
Complete list of metadatas

Cited literature [14 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-00346039
Contributor : Luck Darnière <>
Submitted on : Wednesday, December 10, 2008 - 9:50:34 PM
Last modification on : Monday, March 9, 2020 - 6:15:53 PM
Document(s) archivé(s) le : Tuesday, June 8, 2010 - 4:11:00 PM

Files

heyting.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00346039, version 1
  • ARXIV : 0812.2027

Collections

Citation

Luck Darnière, Markus Junker. On Bellissima's construction of the finitely generated free Heyting algebras, and beyond. Archive for Mathematical Logic, Springer Verlag, 2010, 49 (7-8), pp.743-771. ⟨hal-00346039⟩

Share

Metrics

Record views

350

Files downloads

502