N

N

Term Validation of distributed hard real time
applications

Gaglle Largeteau-Skapin, Dominique Geniet

» To cite this version:

Gagélle Largeteau-Skapin, Dominique Geniet. Term Validation of distributed hard real time applica-
tions. CIAA 2002: international conference on implementation and application of automata No7, Jul
2002, Tours, France. pp.339-343, 10.1007/3-540-44977-9 . hal-00345984

HAL Id: hal-00345984
https://hal.science/hal-00345984
Submitted on 10 Dec 2008

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00345984
https://hal.archives-ouvertes.fr

Term Validation of Distributed Hard Real-time
Applications

Gaglle Largeteau and Dominique Geniet

Laboratoire d’Informatique Scientifique et Industrielle,
Université de Poitiers & ENSMA,
Téléport 2 - 1 avenue Clément Ader
BP 40109 86961 Futuroscope Chasseneuil cédex, France
largeteau@ensma.fr, dgeniet@ensma.fr

Abstract. We show that, when the modeled physical process is closed,
finite automata and product operators are sufficient to valid distributed
systems on an operational way.

1 Introduction

A real-time system is reactive and concurrent (all operations associated with
a process managing have to run simultaneously). It is a set of elementary tasks,
each of them coding a reaction to incoming events. This set is composed of
periodic and non periodic tasks (related to alarm signals and user actions).
Validity of a real-time system is based on both the correctness of its results
and its conformity to timing constraints. There are two classes of real-time sys-
tems: hard and soft systems. If not respecting terms implies irretrievable con-
sequences, the system is hard, otherwise the system is soft. Here, we deal with
hard real-time systems composed of periodic tasks.

Validating a real-time system consists in proving that it will always be able
to react in conformity with its timing constraints, whatever the incoming event
flow. The term validation is then a decision process related to task schedul-
ing sequences. It usually follows two main approaches: first, in-line approach
consists in choosing the task to elect for any context switch during the applica-
tion run. Since computing task system scheduling issue with critical resources
is NP-complete [2], this approach is not optimal' for almost every task configu-
ration, and it has an exponential complexity. To solve this problem, the off-line
approach uses formal models to search for existence of at least one scheduling
sequence satisfying constraints (through model checking techniques).

The fast technological evolution in recent years (especially in network com-
munications) has resulted in using distributed systems as a base for hard real-
time applications more and more frequently. These systems stand founded on
real-time protocols integrating timing constraints for messages transmissions.

! A scheduling algorithm is optimal if and only if it gives a valid scheduling sequence
when there exists one.

Since scheduling distributed systems is NP-difficult, the in-line approach is still
not optimal. We use the off-line approach defined in [3][4] to suggest a method
that validates distributed systems on an operational way. Its principle is to inte-
grate communication protocols in the model and to adapt the model to targets
with different processor speeds. The physical architecture is composed of a set
of sites, that communicate through a network. Each site dispose of many pro-
cessors, and of a RAM shared between its processors. All the processors follow
the local clock of the site. Moreover, each site dispose of a network board, which
contains a specialised processor. Real-time system validation involves the fore-
seeability of behaviors. Since using cache or pipeline induces nondeterminism,
they are always disabled in real-time systems: here, we make the assumption, in
the framework of validation, that none are used.

Firstly, the model is presented in the framework of centralised real-time sys-
tems with fixed execution time tasks. Then, we describe a modelling technique
for distributed real-time systems integrating speed differences. We show how
product automata can be used to model simultaneity in distributed systems. We
assume that there is no task migration. The task placement is not considered.

2 Centralised systems validation

2.1 Task temporal modelling

A real-time software is a set of atomic tasks. We denote (7;);[1,5) such a system.
Each task 7; is specified by: its arrival time r;, its deadline D, its period T;, and
C;, the CPU execution time of each instance of the task. Parameters r;, D; and
T; come from the specifications of the external system, but C; depends on both
the code of the task and the performances of the target processor. We assume
that all atomic statements have the same duration of one time wunit?. Hence,
C; is constant in time units. On the opposite, r;, D; and T; do not depend on
the CPU frequency: they are not fixed in time unit. In the following, we use
this property to build a model language which takes into account both term
specifications, and performances of the processor.

Let 7 be a task of timing constraints r, D and T. The code £ of 7 is a word
over the set P of atomic statements. The execution duration C of T is extracted
from this code. During its execution, 7 can be active or suspended whether it
owns the processor or not. Then, for each time unit, observing 7 state allows to
build an activity/inactivity sequence for 7. The set of sequences that respects
the specified timing constraints is the 7 temporal model. Our aim is to build this
set, i.e to build the regular language L(7). We consider time as implicit: each
task processes one action by time unit. Letter a models the activity state of 7
for one time unit, and e models its suspended state for one time unit. We note
Y={a, e}. The temporal model associated with £ is the word ¢(&), where ¢ is
the concatenation morphism P — {a}. The length of ¢() is the duration C of 7.
The 7 temporal model L, (7) is obtained by given the system inactivity periods

2 Time unit is the duration of a non-preemptive instruction (assembler).

(using). We use the Shuffle® operator II1, the generic expression of the model
is given in [3] by*L(7) = Center(e"((¢P~C1I1¢(¢))eT ~P)*). Each word w of this
language has got the same length T and is called valid temporal behavior of 7.

Task 7 is running on a processor with particular temporal features : we define
a time unit as the time interval between two clock ticks, and a cadence as the
inverse of its duration. In the multi-processor case, all processors of a same site
work in a synchronous way. The duration of 7 is then equal to | ¢(¢§) | X us on
site S, and | ¢(&) | x ur on site T. The T temporal features (D, T, etc.) are
no longer expressed in the language directly as the occurrence number of e, but
as the occurrence number of e that is necessary to model the inactivity time
corresponding to the target processor. We note L, (7) the set of 7 valid temporal
behaviors on a processor that have u for time unit.

Ezample: Let be T with (r,D,T,C)=(3ms,8ms,10ms,3t.u.?). A 7 model can be
Lims(1) = Center(e3((#°I1a®)e2)*), or Laso,s(7) = Center(e'?((¢?°I11a®)e®)*).

The rate between a’s and e’s depend on the target cadence. In the following,
we show that task 7, defined with temporal characteristics (r,D,T,C), and de-
signed to run on a processor with a cadence c(u=1/c), can always be associated
with a regular language L, (7). In order to integrate processor features in the
model, values expressed in seconds (r, D, T) have to be converted in time units.
Let u be the time unit associated with the processor, x seconds correspond to
£ t.u. on this processor. The values in seconds of r, D and T equal respectively
to -, % and % t.u.. Usually, timing constraints r, D and T are of the order of
10~!s and the time unit u is of the order of 10~5s. Since Q is dense in R, we can
assume that 7, % and % are integers. By using the same approach than in [3],

we get Ly ()= Center(e% ((o(Z~OIIg(£)) o*57))*) as task model. We note 7
the set {L, (1),u € Q**}.

2.2 Validation

We have defined in [3][4] a technique, based on the Arnold-Nivat [1] model, to

collect all valid scheduling sequences of a task system. The principle consists

first in associating each critical resource R; (processor, resource, message, etc.)

with a virtual task Vg; (modeled by a regular language L(Vg;)), and then as-

sociating the system (7;);cr with the homogeneous product {2 of the L(7;) and

the L(Vg;). Let call S the subset of]II (X;) of vectors describing valid config-
1€

urations (respecting mutual exclusion on processors or resources). We prove in
[4] that languageS Proj;(Center(L(7);c1NS*)) collects the set of valid scheduling
sequences, from resources management and timing constraints point of view.

3 Shuffle(IIT), is defined by the formula: Va € X, a ITlle = a and V(a,b,w,w’) € X¥%x
(X*)?, aw Illbw’= a (w [IIbw’) U b (aw Iw’).
4 The L center is the set of L prefixes indefinitely extendable in L,
algebraically, Center (L*) = L*.LeftFactors(L).
® t.u. for time unit
® Proj; (Center(L(7)ie1NS*)) is noted £2,., s(L(r:)) in the following.

Validating a real-time tasks system (7;);cr consists in deciding if the config-
uration (7;);er can be scheduled in conformity with its time constraints. This
decision is reached by evaluating the predicate (center(2,., s(L(7;))) = 0) using
an automaton associated with the language. If the language is empty, there exists
a valid temporal behavior, then the configuration can be scheduled, otherwise
there is no way to schedule the system.

3 Model for distributed systems

A distributed system is defined by a lack of common memory, a use of communi-
cation system and by the fact that there is no global state that can be observed
[5]. Such a system is characterised by a set of sites, running with different speeds.
Each site has a local clock that does not depend on others and that is the refer-
ence for every processor of the site. A clock is defined as an increasing sequence
depending on time. A model that collects behaviors of a distributed system must
be able to express simultaneity of different tasks placed on different sites, with no
assumption concerning both a global time and correlations between the different
speeds of the sites.

The model presented in section 2 is useful to validate real-time systems placed
on a single site, possibly multi-processor. The speed of the site is implicitely
modeled by the the time unit associated with the labels of the edges of the
product automaton which models the software. A distributed system can be
viewed (on a model way) as a set of such automata, each automaton being
associated with its own time unit. As far as the target architecture is known and
static, we know a priori the different speeds of the differents sites. To build an
automaton that collects all behaviors of the system, we need two tools. First, a
zoom technique, to accord the different automata with the same time semantics:
we can not give a semantics to a product automaton A2B, when A and B do not
share the same time semantics. Second, a start result, to show that respective
starting times of different sites have no incidence on the time validity of the
software. The zoom technique is presented in section 3.1. The start result is
obtained as an obvious corollary of properties of words of a regular language
center.

3.1 Zoom languages

In 7 building process (recall that 7={L, (7),u € Q*}), we take various CPU
speeds into account. We obtain a language class which satisfies the following
property: for each word of each language of 7, the rate between a’s and e’s
is a function of the cadence. Consider L, € 7. We call granularity the time
associated with each letter duration into L, words. It is the time semantics
of each edge of the automaton. We note 4L, the observation of L, with the
granularity g (i.e. the zoom rate %)

To build the product L,f2L,, L, and L, must be observed with the same
granularity. Then, we must be able to get g € Q such that both 4L, and 4L,

exist. Then, we must build the set L,(7) of languages that collects behaviors of
L, in different granularities, i.e. the set of 4L, (7) associated with task 7 running
on a site that has u as a time unit and observed with a granularity g. To build
L, (1), we use the isomorphism 1), defined by:

Yug : PeU{a,o} = (P. U {a,e})* such that k = u/g, Vz ¢ P.,¢(z) = z*;Vz €
{P,S},¢(x) = a*F~t.z;Ve € {V,R},¢(x) = z.ab~L.

Then Ly (7)={,Lu(7), g Lu(1)C Z*/3g € Q** ;u € gN*, Lyy(7)=tu g (Lu(T))}-
Given 4, Ly, and 4, L,,. We remark that 4, L, 2, L,, have a time semantics if
and only if g1=go. The model expresses simultaneity through the homogeneous
product {2 of languages, our goal is then to find a granularity g which, applied
to all sites, gives a temporal semantics to the product. To reach this aim, we
extend in a natural way the GCD notion to Q (GCD operator is noted A).

Theorem 1. Given Ly, (11) and Ly,(72). Then, g€ Q*, g=uiAus and
gLu, (1)CE*, gLy, (12)CX* such that 4Ly, (11)€Ly, (11) and gLy, (12)€Ly, (12)

Obtained languages are maximal: 3 g'>g/, Ly, (71)€ Ly, (T1), gL, (T2)€ Ly, (12).
Moreover, ¥ gives a constructing algorithm for this languages class. This theorem
gives a technique to build a set of languages sharing the same granularity. This
set allows to use homogeneous product for the composition of systems placed on
different sites. This approach stands whatever the site speeds and start times
and it can be used in the frame of multi-processor centralised systems that do
not have a global clock.

3.2 Communication integration

In the previous part, we have established our model validity in the distributed
case. We apply the homogeneous product to languages corresponding to each
site. We note L, (S,,) the language associated to the site S,,.

Let (L, (S;:))ics be the set of languages associated with sites. We use The-
orem 1 (section 3.1): let be G=A;cs(u;), and (gL(S;))ics the set of languages
such that: Vi € J, L(S;) = tu;,¢(Ly; (S;)). Languages (¢ L(S;))iecs are all built
on the same granularity G, we can therefore build ¢L = (2(¢L(S:))ics). gL
gives the system (7;);cr model on sites (S;);cs.

To temporarily validate this system, we have to integrate communication
protocols into the model. Our aim is to warrant that message transmissions stay
in temporal terms. Then, it is necessary to have a model for network behaviors.
To obtain the model for all the drivers, we first model one of them, and then
their simultaneous run using the Arnold-Nivat’s product. The driver task is
duplicated in order to run on each site of the system, on a dedicated processor
(the network board CPU). The model language that collects driver behaviors is
called D, it is built on the network. The language D has the granularity gp of
one bit transmission duration. For all j in J, 4,D,,, is the driver i associated
language. All drivers share the same code and then the same language. Let Prot
be the synchronisation set expressing protocol communication constraints. Then
oo B = 2,, Prot(gp D), is the model for the network. This method can be used
for any protocol that supports an automaton based model.

We check then the compatibility of message transmission and application
timing constraints. To warrant application terms, a message must be transmit-
ted in a limited time: it has a deadline. We use a virtual task Stw (stopwatch)
that keeps a record of the elapsed time between a message Send and its receive.
This deadline, associated with a network model, allows to decide the compati-
bility between transmission and timing constraints. Granularity of Stw is G. Let
aMsg=Projs;,(cL s, ¢Stw), computed with a resource synchronisation (Sr)
on the stopwatch [sec.2.2]. To test transmission validity, we must compute the
languages ¢Msg and ,pR homogeneous product. We apply Theorem 1: using
H=GAg, we get gMsg and gR.

Language gL=Center(gMsg2s, mR) collects the set of valid messages schedul-
ing (respecting timing constraints) on the network. The validity test is the same
as in centralised system validation: If gL=0 then there is no valid behavior,
otherwise, there exists at least one.

4 Conclusion

Languages L,(7) are useful to validate hard real time distributed systems, if
they are based on protocols that can be modeled by regular languages. The
centralised model was extended by considering processors speed and by defining
a zoom operation on languages. This last tool, associated with a generalisation
of GCD to Q, is useful to model with finite automata distributed systems with
no addition of restrictive hypothesis (the only one is the closure of the modeled
system: this is not a restriction when considering real-time systems!).

The result is a schedulability decision for the application on a distributed
architecture. One of the central corollaries of this approach is the cyclicity of
scheduling sequences in distributed multi-processor environnement: this result
is an immediate corrolary (star lemma) of the fact that valid scheduling set is a
regular language.

This work is ongoing. Our present studies concern both the integration of task
migration and the integration of a small level of non determinism by considering
alarm events.

References

1. A.Arnold: Finite transition systems. Prentice Hall. (1994).

2. S.K.Baruah, L.E.Rosier, R.R.Howell: Algorithms and Complexity Concernig the
Preemptive Scheduling of Periodic Real-Time Tasks on one Processor. RTS. (1990).

3. D.Geniet: Validation d’applications temps réel & contraintes strictes & l’aide de lan-
guages rationnels. RTS. (2000).

4. D.Geniet, G.Largeteau: Validation d’applications temps réel strictes & durées vari-
ables a I'aide de languages rationnels. MSR. Toulouse. (2001).

5. M.Raynal: Synchronisation et état global dans les systémes répartis. Eyrolles.(1992).

