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Abstract

We present a convex formulation of dictionary learning fparse signal decomposition.
Convexity is obtained by replacing the usual explicit uppeund on the dictionary size by a
convex rank-reducing term similar to the trace norm. Inipalar, our formulation introduces an
explicit trade-off between size and sparsity of the decasitjpm of rectangular matrices. Using
a large set of synthetic examples, we compare the estimabidities of the convex and non-
convex approaches, showing that while the convex formandias a single local minimum, this
may lead in some cases to performance which is inferior téotted minima of the non-convex
formulation.

1 Introduction

Sparse decompositions have become prominent tools inlggoeessingllil], image process-
ing [Z], machine learning, and statisti¢d [3]. Many reléoas and approximations of the as-
sociated minimum cardinality problems are now availablesed on greedy approachEs [4] or
convex relaxations through thé-norm [1,[3]. Active areas of research are the design of ef-
ficient algorithms to solve the optimization problems agged with the convex non differen-
tiable norms (see, e.gll[5]), the theoretical study of fresifying effect of these norm[6, 7],
and the learning of the dictionary directly from data (see,, €4,[2]).

In this paper, we focus on the third problem—namely, we asstlnat we are given a matrix
Y € RY¥*F and we look for factorizations of the fortdi = UV T, whereU € RYN*M and
V e RP*M that are close t&” and such that the matri& is sparse. This corresponds to
decomposingV vectors inR” (the rows ofY") over a dictionary of sizél/. The columns of
V' are thedictionary elementgof dimensionP), while the rows ofU are thedecomposition
coefficientof each data point. Learning sparse dictionaries from dasashown great promise
in signal processing tasks, such as image or speech pnogd&$i and core machine learning
tasks such as clustering may be seen as special cases oathenfork [9].

Various approaches have been designed for sparse digtitszaning. Most of them con-
sider a specific loss between entries)ofandY’, and directly optimize ovet/ and V', with
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additional constraints oty and V' [A0,[11]: dictionary elements, i.e., columns Wf may or
may not be constrained to unit norms, while a penalizatiotherrows ofU is added to impose
sparsity. Various forms of jointly non-convex alternatimgtimization frameworks may then be
used [I0[T1[12]. The main goal of this paper is to study thesipdisy and efficiency of con-
vexifying these non-convex approaches. As with all corfieadions, this leads to the absence
of non-global local minima, and should allow simpler anady$iowever, does it really work in
the dictionary learning context? That is, does convexiag I better decompositions?

While in the context of sparse decomposition wWikeddictionaries, convexification has led
to both theoretical and practical improvemeifis[6,13, 7],reort both positive and negative
results in the context of dictionary learning. That is, aaxification sometimes helps and some-
times does not. In particular, in high-sparsity and lowtiditary-size situations, the non-convex
fomulation outperforms the convex one, while in other ditues, the convex formulation does
perform better (see Secti@h 5 for more details).

The paper is organized as follows: we show in Sedflon 2 thhgifsize of the dictionary is
not bounded, then dictionary learning may be naturally aast convex optimization problem;
moreover, in Sectiohl 3, we show that in many cases of intetleist problem may be solved
in closed form, shedding some light on what is exactly actdesnd not achieved by these
formulations. Finally, in Sectiofl4, we propose a mixéel> formulation that leads to both
low-rank and sparse solutions in a joint convex framewankSéctior{hb, we present simulations
on a large set of synthetic examples.

Notations Given a rectangular matriX € R¥*” andn € {1,...,N},p € {1,..., P},
we denote byX (n,p) or X, its element indexed by the pdin, p), by X (:,p) € R¥ its p-th
column and byX (n, :) € R” itsn-th row. Moreover, given a vectar € RY, we denote by|z|,
its ¢9-norm, i.e., forg € [1,00), [|z[lq = (Cn_; [2a|*)Y7 and||z||o = max,cq1, ny |2n]- We
also write a matrixy € R¥*? astU = [u4, ..., uy], where each,,, € RV,

2 Decomposition norms

We consider a losé : R x R — R which is convex with respect to the second variable. We
assume in this paper that all entriesofare observed and the risk of the estimatds equal
toxs SN, 2521 ¢(Yyp, Xnp). Note that our framework extends in a straightforward way to
matrix completion settings by summing only over observeti&n[12].

We consider factorizations of the forddi = UV "; in order to constrair/ andV, we
consider the following optimization problem:

N P M
i 1 T A 2 2
e e WP 2 2 Vs UV )+ 5 D7 (& + loml[R), - )

n=1 p=1 m=1

where|| - [|c and| - ||z are anynormson RY andR” (on thecolumn space andow space
of the original matrixX). This corresponds to penalizing each columroand V. In this
paper, instead of consideririg andV separately, we consider the matfik and the set of its
decompositions on the ford = UVT, andin particular, the one with minimum sum of norms

[wml|Z, |om||% m € {1,..., M}. Thatis, forX € RV*F we consider
1 M
M : 2 2
X) = min — E U + ||v . 2
D ( ) (UV)ERNXM xRPXM | X[y T 9 m:1(|| mHC H mHR) ( )
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If M is strictly smaller than the rank of, then we letf}/(X) = +occ. Note that the minimum
is always attained if\/ is larger than or equal to the rank &f. Given X, each paifu,,, v.,)
is defined up to a scaling factor, i.€u,,, v,,) may be replaced b{u,, s, v.,s,!); optimizing
with respect tas,,, leads to the following equivalent formulation:

M
M .
X) = min U v . 3
) (U,V)eWxRW,X(JvT,; | l1vm | 2 (3)
Moreover, we may derive another equivalent formulation bystraining the norms of the
columns ofV to one, i.e.,

(X)) = (4)

M
min E HumHC
(UV)ERNXM X RPXM X=UVT, Ym,[lvm|r=1 “=|

This implies that constraining dictionary elements to beimit norm, which is a common as-
sumption in this context[11] 2], is equivalent to penaligitne norms of the decomposition
coefficients instead of the squared norms.

Our optimization problem in EqCX1) may now be equivalentijtien as

1 N P

Cin N5 2 2 (Vg Xup) + A (X). (5)
n=1p=1

with any of the three formulations ¢! (X) in Eqgs. [2)43). The next proposition shows that if

the sizeM of the dictionary is allowed to grow, then we obtain a norm ectangular matrices,

which we refer to as decompositiomorm. In particular, this shows thatf is large enough

the problem in Eq[{5) is a convex optimization problem.

Proposition 1 For all X € RV*F the limit f2°(X) = limps oo 3 (X) exists andf¥ () is a
norm on rectangular matrices.

Proof Since givenX, £ (X) is nonnegative and clearly nonincreasing with it has a non-
negative limit when)M tends to infinity. The only non trivial part is the triangulimequal-

ity, i.e., [y (X1 + X2) < fy(Xh) + fy(Xz). Lete > 0 and let(Uy, V) and(Us, Va) be
the twoe-optimal decompositions, i.e., such thiF (X;) > M Jlupmllcllvimllr — € and
Iy(Xa) > Z%il |luom|lcllvamllr — €. Without loss of generality, we may asssume that
M, = My = M. We considel/ = [U; Us], V = [V} V5], we haveX = X| 4+ Xy = UV T
and /3 (X) < Xy (luamllcloimllr + lluzm e lvam | R) < F3(X0) + f3(X2) + 2¢. We
obtain the triangular inequality by lettingtend to zero. [ |

Following the last proposition, we now l@t/ tend to infinity; that is, if we denotéX||p =
I (X), we consider the following rank-unconstrained @odvexproblem:

N P
) 1
min —ZZE(Y”P’XHP) + 1 X1[p- (6)

However, there are three potentially major caveats thatldhme kept in mind:
Convexity and polynomial time Even though the nornj - || p leads to a convex func-
tion, computing or approximating it may take exponentialdi—in general, it is not because a
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problem is convex that it can be solved in polynomial timesdme cases, however, it may be
computed in closed form, as presented in Sedflon 3, whilgheracases, an efficiently com-
putable convex lower-bound is available (see Sefion 4).

Rank and dictionary size The dictionary sizeM must be allowed to grow to obtain
convexity and there is no reasdn,general to have a finiteM such thatf°(X) = fM(X).
In some cases presented in Seclibn 3, the optivhas finite, but we conjecture that in general
the required) may be unbounded. Moreover, in non sparse situations, theafaX and the
dictionary sizeM are usually equal, i.e., the matricEsandV have full rank. However, in
sparse decompositiond/ may be larger than the rank of, and sometimes even larger than
the underlying data dimensian (the corresponding dictionaries are said thebercomplete

Local minima The minimization problem in Eq]1), with respectifoandV’, even with
M very large, may still have multiple local minima, as oppotethe one inX, i.e., in Eq. [6),
which has a single local minimum. The main reason is that giienization problem defining
(U, V) from X, i.e., Eq. [B), may itself have multiple local minima. In peular, it is to be
constrasted to the optimization problem

N P
. 1 T -
e BB s T 2 2 (¥ (UV D) + ATV, (7)
n=1p=

which will turn out to have no local minima i#/ is large enough (see Sectibnl4.3 for more
details).

Before looking at special cases, we compute the dual norin ¢, (see, e.g.[[13] for the
definition and properties of dual norms), which will be usaie.

Proposition 2 (Dual norm) The dual norm|Y||},, defined as

IY][h= sup trX'Y,
IX[p<1

is equal to]| Y[|}, = supj,.< av'YTu.

L lvllr

Proof We have, by convex duality (see, e.@..1[13]),

IV]H = sup trX'Y =infsuptr X'Y — )| X|[p+ A
IXlp<t AZ0 X
M
= juf g, D2 (s v T = Al ) +
m=

Ty T
Leta = SUD|ju|| <1, |vl|lr<1 ¥ Y'iu If A <a,

sup U;YTum = Mum|llellvm|lr = 400,
Um ,Um
while if A > a, then
sup U;I;YTum = Mumllel|lvmllr = 0.
Um yUm

The result follows. [



3 Closed-form decomposition norms

We now consider important special cases, where the decdtimposorms can be expressed
in closed form. For these norms, with the square loss, theesooptimization problems may
also be solved in closed form. Essentially, in this sectiwa,show that in simple situations
involving sparsity (in particular when one of the two noris||c or || - ||z is the£!-norm),
letting the dictionary sizel/ go to infinity often leads to trivial dictionary solutionsamely

a copy of some of the rows a&f. This shows the importance of constraining not only the
norms, but also thé’-norms, of the sparse vectaus,, m € {1,..., M}, and leads to the joint
low-rank/high-sparsity solution presented in Secfibn 4.

3.1 Tracenorm:||-|lc=|"lzand || |z =] " |2

When we constrain both th-norms ofu,,, and ofv,,, it is well-known, that| - || p is the sum
of the singular values ok, also known as the trace norm[12]. In this case we only nded
min{ N, P} dictionary elements, but this number will turn out in geh¢oabe a lot smaller—
see in particular[14] for rank consistency results reldtethe trace norm. Moreover, with the

square loss, the solution of the optimization problem in@yis X = zminiN’P}

m=
AN P, 0}u,v), whereY = SS2n{NPY o o o] s the singular value decomposition bt
Thresholding of singular values, as well as its interpra@taas trace norm minimization is well-
known and well-studied. However, sparse decomposition®@osed to simply low-rank de-
compositions) have shown to lead to better decompositiomaany domains such as image

processing (see, e.d.] [8]).

max{o,, —

3.2 Sum of norms of rows:|| - [|c = || - |l1

When we use thé!-norm for ||u,, ||, whatever the norm on,,, we have:

1Ylp = sup v'YTu= sup sup v'YV'u= sup |[|[Yv|x
ulli <1, flvllr<1 ol g<1 [|ufl <1 vl <t
= ma max ||Y (n,)v|]lpr = ma; Yn. ) TI%
ne{l,--}fN} vXH () HR ne{l,..%N}H (n,:) HRv

which implies immediately that

N

N
|X|lp= sup trX'Y= sup X (n,)Y (n,) =) | X(n,:) &
1Yl <t o Y ()T %<1 —

That is, the decomposition norm is simply the sum of the nasfitke rows. Moreover, an opti-
mal decomposition i = ZnN:1 60,0 X, wheres,, € RY is a vector with all null components
except at, where it is equal to one. In this case, each rowXafk a dictionary element and the
decomposition is indeed extremely sparse (only one nonceaficient).

In particular, when|-|| g = || ||2, we obtain the sum of th&-norms of the rows, which leads
to a closed form solution to Eq1(6) &&(n, :) = max{||Y (n,:) " |la — ANP,0}Y (n,:)/||Y (n,:
)'l2 foralln € {1,...,N}. Also, when|| - ||z = || - ||1, we obtain the sum of thé'-norms
of the rows, i.e, thé'-norm of all entries of the matrix, which leads to decouplgdations for
each entry and closed form solutiéf(n, p) = max{|Y (n,p)| — ANP,0}Y (n,p)/|Y (n,p)|.



These examples show that with thenorm on the decomposition coefficients, these simple
decomposition norms do not lead to solutions with smallioli@ry sizes. This suggests to
consider a larger set of norms which leads to low-rank/satiationary and sparse solutions.
However, those two extreme cases still have a utility as bag to good search ranges for the
regularization parametex for the mized norms presented in the next section.

4  Sparse decomposition norms

We now assume that we hale||r = || - ||2, i.e, we use thé*>-norm on the dictionary elements.

In this situation, wherf - || = || - ||1, as shown in Sectidn 3.2, the solution corresponds to a very
sparse but large (i.e., large dictionary siZg matrix U; on the contrary, whefi - ||c = || - |2,

as shown in Section 3.1, we get a small but non sparse niatrix is thus natural to combine
the two norms on the decomposition coefficients. The maintre$this section is that the way
we combine them is mostly irrelevant and we can choose théication which is the easiest

to optimize.

Proposition 3 If the loss/ is differentiable, then for any functiofi : Ry x R, — R, such
that|| - [[c = f(|| - |l1, || - [|2) is @ norm, and which is increasing with respect to both vaeab
the solution of Eq.[06) for| - ||c = f(|| - |l1, || - ||2) is the solution of Eq.L{6) fof| - ||c =
[(1—=v)| - ||} +v| - |3]*/?, for a certainv and a potentially different regularization parameter
A

Proof If we denoteL(X) = w5 >0_1 311 £(Yyp, Xnp) @and L* its Fenchel conjugaté[13],
then the dual problem of EQ](6) is the problem of maximizing*(Y") such thaf|Y||}, < A.
Since the losd. is differentiable, the primal solutioX is entirely characterized by the dual
solutionY. The optimality condition for the dual problem is exacthattihe gradient of.*

is equal touv ', where(u, v) is one of the maximizers in the definition of the dual norm,, i.e
N SUD £(|1ul, [ull2)<1, [[v]l2<1 v'Y Tu. In this case, we havein closed form, and. is the max-
imizer of sup ¢y, jjull2)<1 u"YY Tu. With our assumptions offi, these maximizers are the
same as the ones subjecitd|; < «; and||ul|2 < ay for certainag, as € R,.. The optimality
condition is thus independent ¢f We then select the functiof{a, b) = [(1 — v)a® + vb?]!/?
which is practical as it leads to simple lower bounds (seeviel |

We thus now consider the norm defined|adZ = (1 — v)||ul|? + v|jul|3. We denote by
the convex function defined on symmetric matriceddd) = (1 — v) Z%—:l |Aij| + vir A,
for which we haveF (uu') = (1 — v)||ul|} + v||ul]3 = |Jul|Z.

In the definition of /(X)) in Eq. (), we can optimize with respect tin closed form,
i.e.,

. 1
mi

M
1
— 2 _ - T Ty\—1
VERPXM,I)l(:UVT 2 m§_1 lvmllz = 5 tr X' (UU ') X

is attained al/ = X " (UU")~'U (the value is infinite if the span of the columnsidfis not
included in the span of the columns &f). Thus the norm is equal to

1
|X|lp= lim min =

M
1
T T Ty—1
Jimmin 2mle(umum) + §trX (UUT)71X. (8)



Though|| X || p is a convex function of, we currently don’t have a polynomial time algorithm
to compute it, but, sincé’ is convex and homogeneous,, -, ' (umu) = F(3, >0 U,
This leads to the following lower-bounding convex optintiaa problem in the positive semi-
definite matrixA = UU ":

1 T 41
I XIp = e Rj\gxlglA>0§F(A) §trX ATX. 9
This problem can now be solved in polynomial tiniel[13]. Thisnputable lower bound in
Eq. (@) may serve two purposes: (a) it provides a good ifdtgibn to gradient descent or path
following rounding techniques presented in Secfiol 4.} ti{e convex lower bound provides
sufficient conditions for approximatgobal optimality of the non convex problems]13].

4.1 Recovering the dictionary and/or the decomposition

Given a solution or approximate solutiot to our problem, one may want to recover dictio-
nary elementé/ and/or the decompositiol for further analysis. Note that (a) having one of
them automatically gives the other one and (b) in some sinste.g., denoising daf through
estimatingX, the matriced/ andV are not explicitly needed.

We propose to iteratively minimize with respectlio(by gradient descent) the following
function, which is a convex combination of the true functinrEq. [8) and its upper bound in

Eq. @) - n ; 1

——rwuT + Flumu,,) + =tr X (UUT)™?

mz>0 miy) + 5t XT(UUT)

Whenn = 0 this is exactly our convex lower bound applied defined in B, for which
there are no local minima ify, although it is not a convex function &f (see Sectiofi 43 for
more details), while ay = 1, we get a non-convex function @&f, with potentially multiple
local minima. This path following strategy has shown to léadjood local minima in other
settings|[15].

Moreover, this procedure may be seen as the classical mgirgieration that follows a
convex relaxation—the only difference here is that we relaard convex problem into a simple
convex problem. Finally, the same technique can be applleehwminimizing the regularized
estimation problem in EqL]6), and, as shown in Sedflon Hdmg leads to better performance.

4.2 Optimization with square loss

In our simulations, we will focus on the square loss as it$e@adsimpler optimization, but our
decomposition norm framework could be applied to otherdss$Vith the square loss, we can
optimize directly with respect t&” (in the same way theat we could earlier for computing the
norm itself); we temporarily assume tHatc RV** is known; we have:

= i sV OV TR+ SIVIE

1
- yT [[— T NP UT |y
T UUTU + ANPI)"'U

_ 1 T T -1
= yp Y (UUT/ANP+ D)7y,



with a minimum attained & = Y'U(U'U + ANPI)"' = Y (UUT + ANPI)"'U. The
minimum is aconvexfunction of UUT € RY*N and we now have a convex optimization
problem ovempositive semi-definite matriceshich is equivalent to EqLI6):

A
' trY "(A/ANP+ 1)y + = i F Ty, 10
AERJ\I?XHNH, Az0 2N P v (4/ +1) + 2A:zfg§lumujnmz>:o () (10)

It can be lower bounded by the following still convex, but nealvable in polynomial time,

problem:
1 A
min ~ —tr YT (A/A+1)7Y + ZF(A). 11
. (A/A+1) 5 F'(4) (11)
This fully convex approach will be solved within a globallptonal low-rank optimization
framework (presented in the next section). Then, roundipgrations similar to Sectidn 4.1
may be used to improve the solution—note that this roundiaefriique taked” into account

and it thus preferable to the direct application of Sedfidh 4

4.3 Low rank optimization over positive definite matrices

We first smooth the problem by usitigy— »/) ijzl(Afj +e2)1/2 4 v tr A as an approximation
of F(A), and(1 — v)(XN | (u2 4 £2)1/2)2 + v||u||3 as an approximation of (uu " ).

Following [16], since we expect low-rank solutions, we cgtimize over low-rank matri-
ces. Indeed,[116] shows that @ is a convex function over positive semidefinite symmetric
matrices of sizelV, with a rank deficient global minimizer (i.e., of rank < N), then the
function U — G(UU") defined over matrice§’ € RV*M has no local minima as soon as
M > r. The following novel proposition goes a step further forasvidifferentiable functions

by showing that there is no need to knewn advance:

Proposition 4 Let GG be a twice differentiable convex function over positiveidefinite sym-
metric matrices of siz&/, with compact level sets. If the functiéh : U — G(UU ") defined
over matriced/ € RV*M has a local minimum at aank-deficientmatrix U, thenUU " is a
global minimum of=.

Proof Let N = UU'. The gradient offf is equal toVH (U) = 2VG(UUT)U and the
Hessian ofH is such thatv?H (U)(V,V) = 2te VGUUNHVVT + V2GUU " )(UV" +
VUT,UVT +VUT). Since we have a local mimimunY H(U) = 0 which implies that
tr VG(N)N = tr VH(U)U" = 0. Moreover, by invariance by post-multiplying by an
orthogonal matrix, without loss of generality, we may cdesithat the last column @f is zero.
We now consider all directiong € RV*M with first M — 1 columns equal to zero and last
column being equal to a givanc R". The second order Taylor expansionf{U + tV) is

HU+tV) = HU)+t?tVGN)VVT
2
= +%V2G(N)(UVT +VUL, UVt +VUT) +O0()
= HU)+t>"VG(N)v+ O(t3).

Since we have a local minima, we must haz\TWG(N)v > 0. Sincew is arbitrary, this implies
thatVG(N) »= 0. Together with the convexity af andtr VG(IN)N = 0, this implies that we
have a global minimum of? [13]. [ |



The last proposition suggests to try a snél| and to check that a local minimum that we can
obtain with descent algorithms is indeed rank-deficienit i, we have a solution; if not, we
simply increasé\/ and start again until/ turns out to be greater than

Note that minimizing our convex lower bound in EQ. (7) by aegckent algorithm ifU, V')
is different than solving directly EqLI(1): in the first sitiem, there are no (non-global) local
minima, whereas there may be some in the second situatigmadtice, we use a quasi-Newton
algorithm which has complexit§ (N?) to reach a stationary point, but requires to compute the
Hessian of sizeéV M x N M to check and potentially escape local minima.

4.4 Links with sparse principal component analysis

If we now consider that we want sparse dictionary elemerstead of sparse decompositions,
we exactly obtain the problem of sparse PCA [14, 18], wheewishes to decompose a data
matrix Y into X = UV " where the dictionary elements are sparse, and thus easmetpret.
Note that in our situation, we have seen that wjith||z = || - |2, the problem in Eq.{1) is
equivalent to Eq[{J0) and indeed only depends on the cmenrimatrix%YYT.

This approach to sparse PCA is similar to the non convex fatioms of [18] and is to be
contrasted with the convex formulation 6f]17] as we aim aéclly obtaining &ull decom-
position of Y with an implicit trade-off between dictionary size (here thumber of principal
components) and sparsity of such components. Most worksidenone unique component,
even though the underlying data have many more underlyingeasions, and deal with mul-
tiple components by iteratively solving a reduced probleim.the non-sparse case, the two
approaches are equivalent, but they are not here. By vavyengd, we obtain a set of solu-
tions with varying ranks and sparsities. We are currentipgaring the approach df[iL8], which
constrains the rank of the decomposition to ours, whereahk is penalized implicitly.

5 Simulations

We have performed extensive simulations on synthetic elesrtp compare the various for-
mulations. Because of identifiability problems which are slibject of ongoing work, it is not
appropriate to compare decomposition coefficients andétiodary elements; we rather con-
sider a denoising experiment. Namely, we have generatedcemt, = UV ' as follows:
select)M unit norm dictionary elements;, . .., vy, in RY uniformly and independently at ran-
dom, for eachn € {1,..., N}, selectS indices in{1,..., M} uniformly at random and form
then-th row of U € RV*M with zeroes except for random normally distributed elementhe
S selected indices. Construkt = Y + (tr YY" )'/20¢/(NP)'/2, wheres has independent
standard normally distributed elements angheld fixed at0.6). The goal is to estimat#
from Y, and we compare the three following formulations on thi&:tgga) the convex mini-
mization of Eq.[[Il) through techniques presented in Selld with varyingr and)\, denoted
as @Nv, (b) the rounding of the previous solution using technigdescribed in Section 4.1,
denoted as GNV-R, and (c) the low-rank constrained problem in Ed. (1) With|jc = || - |1
and|| - ||[r = || - ||]2 with varying A and M, denoted as NCoNv, and which is the standard
method in sparse dictionary learning [8/2] 11].

For the three methods and for each replication, we seledinb@egularization parameters
that lead to the minimum valugX — Y;||?, and compute the relative improvement on using the
singular value decomposition (SVD) &f. If the value is negative, denoising is better than with



N =100 N =200

#1P M S| NoCoNv CoNv-R CoNv | NoCoNnv CoNv-R  Conv

1110 10 2| -16.4+5.7 -9.0+£1.9 -6.5-2.3|-19.8+2.3 -10.2+-1.6 -7.1+£2.0
2120 10 2|-40.8+4.2 -11.6+2.6 -5.6-3.2| -455+2.0 -16.4+1.4 -7.0:1.3
3110 20 2| -8.6+3.6 -9.0+£1.8 -84+1.9|-15.0£2.7 -11.5+15 -10.5:1.5
4 120 20 2|-24.9£3.3 -13.0+£0.7 -10.4t1.1| -40.9+£2.2 -18.9+0.8 -14.8:0.7
5110 40 2| -6.6+2.8 -8.%15 -9.0+1.4| -7.6+2.6 -10.1+-1.6 -9.9+1.6
6 120 40 2|-13.2+2.6 -12.3+1.4 -11.5-1.3| -25.4+-3.0 -16.7+1.3 -15.6-1.4
7110 10 4| 1.7439 -15+05 -0.2+0.2| -1.9+25 -1.7+0.6 -0.1+0.1
820 10 4|-16.7+459 -1.4+0.8 -0.0+0.0| -27.1+1.8 -3.0+0.7 0.0+0.0
9110 20 4| 2.2+24 -254+09 -1.7£0.8| 2.0£29 -25+0.8 -1.2+1.0
1020 20 4| -1.2t25 -3.1+1.1 -0.9+0.9|-12.1+3.0 -55+1.0 -1.6t1.0
11{10 40 4| 3.54+3.0 -3.3:1.3 -3.3£15| 2.6£0.9 -3.3£0.5 -3.3+0.5
12120 40 4| 3.7+2.3 -3.9+£0.6 -3.6+£0.8| -1.7£1.7 -6.3£0.9 -5.3+0.8
13|10 10 8| 9.6+3.4 -0.1+£0.1 0.0+£0.0| 7.2+3.0 -0.1+£0.1 0.0£0.0
14|20 10 8| -1.6+3.7 0.0+:0.0 0.0+0.0| -4.8+2.3 0.0£0.0 0.0£0.0
1510 20 8| 9.6+2.4 -0.4+04 -0.2+0.3| 9.4+15 -0.4£04 -0.2+£0.2
1620 20 8| 11.3£1.8 -0.2+0.2 -0.0+0.0| 7.0+25 -0.4£0.3 -0.0+£0.0
1710 40 8| 8.8+3.0 -0.8+0.7 -0.7+0.7| 7.2+1.3 -0.7£0.4 -0.5+£0.5
18|20 40 8| 10.9+1.1 -0.9+0.6 -0.6+0.5| 9.4+1.0 -1.0+£04 -0.4+0.4

Table 1: Percentage of improvement in mean squared errthrregpect to spectral denoising, for

various parameters of the data generating process. Sdentebxtails.
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the SVD (the more negative, the better). In Tdlle 1, we ptesegrages over 10 replications
for various values ofV, P, M, andS.

First, in these simulations where the decomposition caeffis are known to be sparse,
penalizing by/!'-norms indeed improves performance on spectral denoisinglf methods.
Second, as expected, the rounded formulatiooN@R) does perform better than the non-
rounded one (GNV), i.e., our rounding procedure allows to find “good” localninia of the
non-convex problem in EqJ(1).

Moreover, in high-sparsity situation§ (= 2, lines 1 to 6 of Tabl&ll), we see that the rank-
constrained formulation dCoNV outperforms the convex formulations, sometimes by a wide
margin (e.g., lines 1 and 2). This is not the case when the fdti P becomes larger than 2
(lines 3 and 5). In the medium-sparsity situatigh+£ 4, lines 7 to 12), we observe the same
phenomenon, but the non-convex approach is better only Wieeratio)/ / P is smaller than or
equal to one. Finally, in low-sparsity situations £ 8, lines 13 to 18), imposing sparsity does
not improve performance much and the local minima of the cam/ex approach NICoONV
really hurt performance. Thus, from Talfle 1, we can see tlitatigh sparsity (smalb) and
small relative dictionary size of the original non noisyaléite., low ratio) / P), the non convex
approach performs better. We are currently investigatiegretical arguments to support these
empirical findings.

6 Conclusion

In this paper, we have investigated the possibility of caifyang the sparse dictionary learn-
ing problem. We have reached both positive and negativelasioas: indeed, it is possible to
convexify the problem by letting the dictionary size exjplicgrow with proper regularization
to ensure low rank solutions; however, it only leads to bgitedictive performance for prob-
lems which are not too sparse and with large enough diciiemain the high-sparsity/small-
dictionary cases, the non convex problem is empiricallyptémenough to solve so that our
convexification leads to no gain.

We are currently investigating more refined convexificatiand extensions to nonnegative
variants [9], applications of our new decomposition normslustering [[9], the possibility of
obtaining consistency theorems similar [fal[14] for the @nformulation, and the application
to the image denoising problein [2].
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