N

N

Algebraic approach for dependable logic control systems
design

Jean-Marc Roussel, Jean-Marc Faure, Jean-Jacques Lesage, Antonio Medina

» To cite this version:

Jean-Marc Roussel, Jean-Marc Faure, Jean-Jacques Lesage, Antonio Medina. Algebraic approach for
dependable logic control systems design. International Journal of Production Research, 2004, 42 (14),
pp. 2859-2876. 10.1080/00207540410001705266 . hal-00344923

HAL Id: hal-00344923
https://hal.science/hal-00344923
Submitted on 6 Dec 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00344923
https://hal.archives-ouvertes.fr

An algebraic approach for
dependable logic control systems design

JM. ROUSSELW* 1 M. FAUREW® | 1.5, LESAGE™ and A. MEDINA()®)

(1) LURPA, ENS de CACHAN, 61 avenue du président Wilson, F-94235 CACHAN Cedex, France.
(2) SUPMECA, 3 rue Fernand Hainaut, F-93407 Saint-Ouen Cedex, France.
(3) Pre-doctoral fellow of CONACYT, Mexico.

To whom correspondence should be addressed. e-mail: jean-marc.roussel@lurpa.ens-cachan. fr

This article presents a formal method that enables to design a logic control system from specifi-
cations given in natural language. The aim of the proposed method is to prevent designer's faults
coming from specifications misinterpretation. A significant part of the article is devoted to the
presentation of the formal framework that underlies this formal design method: the algebra II.
The operations and relations on this algebra allow to state formally specifications of a logic con-
trol system and to detect inconsistencies in a specifications set. This inconsistency problem is
solved by introducing priority levels. From the consistent set of specifications obtained, control
laws can be generated by using theorems and properties of the algebra II. An application of this
formal design method to an industrial example permits to illustrate its main advantages.

1 Introduction

The fast-paced development of information and communication technologies has led to in-
troducing an increasing number of automatic operations within everyday objects as well as
within production systems for goods and services. The role of these control systems is not lim-
ited to replacing the operator during the execution of basic tasks but instead extends to include
operator assistance in the completion of complicated tasks, such as the detection of potentially-
hazardous situations, failures or deterioration and the safeguarding of an installation under ac-
ceptable security conditions. A broad array of examples of such systems are encountered in the
fields of manufacturing systems, transport, production and energy distribution, even for func-
tions pertaining to the safety of both people and goods. Whole components of our daily lives
and of the economy at large thereby rely upon the successful operations of control systems.

This evolution, related to the increasing demand on the part of society to better control
technological risks, explains the significant development efforts devoted to methods that enable
guaranteeing, as of the design phase, that the control system meets all requirements imposed by
the application. A control system can in fact only be qualified as dependable if no flaw due to a
misinterpretation of its specifications has been introduced during design. By adopting the tax-
onomy proposed in (Laprie 1992), these methods have thus staked a position in the removal of
faults caused by the control system designer.

Only the control of discrete event systems (DES), which represent a sizable share of all in-
dustrial systems (all the more so given the focus on safety functions), will be considered herein.
Under such conditions, two main categories of methods for fault removal during design have
been identified (Faure and Lesage 2001):

* A posteriori verification of the design result;
* (Semi-)automatic design.

The first approach consists of letting the control system designer develop control laws
based on the requirements contained in the set of specifications and then automatically analyse
a formal representation of these control laws. Such an analysis relies on formal techniques that

1/20

are either analysis techniques for state automata (i.e. model-checking techniques (Bérard and al.
1999)) or symbolic calculus techniques (i.e. theorem-proving techniques (Roussel and Denis
2002, Roussel and Faure 2002)).

The second approach, qualified as synthesis by some authors (Ramadge and Wonham
1989, Zaytoon and Carré-Ménétrier 2001, Gouyon and al. 2004), is intended to directly deduce
the control laws from the specifications, without any involvement of a designer (or at least in
limiting involvement to a strict minimum). This approach necessitates, in exchange, a formal
modelling set-up as regards both the specifications and the rules for manipulating the represent-
ative formal models.

The work presented in this article lies within this latter category and is aimed at contribut-
ing to fault removal during the design of a control system for a logic DES, by means of propos-
ing a method that enables deducing from specifications expressed using natural language a
complete and consistent formal description of the control laws. This formal model may then be
easily implemented in either hardware or software form.

The following section is devoted to presenting this method's main objective and serves to
introduce the formalism used to ground the methodology. This formalism will then be discussed
in the third section; the various operations and relations admitted that provide a formal basis for
the design method will be explored therein as well. This construction serves in the fourth section
to describe the proposed design method for a dependable control system. The fifth and final sec-
tion illustrates a simple example using this method.

2 Objective of the present research work

The starting point for the proposed design method is the set of specifications inherent in the
control system, as expressed with natural language. These specifications describe the expected
behaviour of the control system, in the form of vivacity constraints (what the control system
must accomplish) and safety constraints (what the system must not accomplish), and may in-
clude constraints coming from actuator and sensor technology choices. All of these constraints
are to be expressed in the form of logic assertions, i.e. propositions that must be true for the de-
sired control system.

As an example, let's consider the pneumatic manipulator represented in figure 1. Its pur-
pose is to transport mechanical parts from the picking station to the placing station. Due to the
presence of obstacles between these two stations, horizontal movements can only be performed
when the manipulator gripper is in the raised position. The desired movement is thus that indi-
cated in figure 1 («U-shaped» cycle). The following technological choices have been carried
out:

-t ---- Horizontal movement:
. * Double-acting cylinder driven by a bistable valve
! A » Two sensors (rightmost and leftmost positions)
v* + I Vertical movement:
' * Double-acting cylinder driven by a monostable valve

l%l%l I » Two sensors (raised and low positions)

- . Manipulator gripper:
PICk.mg Plac.mg * Drawing up system using a Venturi device and a monostable
station station valve

Operation cycle ¢ No vacuum sensor

Figure 1. Manipulator to control

2/20

The control specifications to be used herein must therefore comprise the following asser-

tions:

* The manipulator gripper may only move horizontally while in the raised position.

* The manipulator gripper may only drop down at the picking station or at the placing station.

* When the manipulator gripper is in the raised position at the picking station, pressing the
«Start» button causes the gripper to drop down.

» The product is considered to be seized if the drawing up system is triggered within a second
of contact (low position at the picking station).

» For a double-acting cylinder driven by a bistable valve, the movement controls must not be
simultaneous.

The complete list of assertions necessary to design the control for this manipulator will be
provided in section 5.1. At this point however, it is important to highlight the following:

* As shown by the narrower previous set of assertions, the control specifications of a logic
system can make reference to logic variable states, to state changes in these logic variables
(events), or to physical time values. The formalism that supports the design method is to be
endowed with the capability of expressing these three types of variables.

» A set of specifications does not necessarily have to be consistent. The design method must
therefore be capable of detecting possible inconsistencies in the specifications and then pro-
posing solutions that enable resolving these problems.

Control laws are to be designed on the basis of this list of assertions. For a dynamic logic
control system with n boolean input variables U,(#) to U,(#) and m boolean output variables

Y,(?) to Y, (), the target control laws must specify at each time 7 the output values as func-

tions of input values, which leads to (Cassandras, 1999):

Y, () = HU(D), ..., U, (D)

Ym(t) = fm(Ul(t)’ LR Un(t))

The search for solutions to this system of m equations generally requires a reformulation
of the problem in the form of a state model, thereby necessitating the introduction of other var-

iables, state variables X; recording the system evolution. Regardless of the advantages inherent

in this approach, it displays the disadvantage of merely providing specific solutions, at a given
point in time, as exemplified in the form of «Y; becomes true when U, becomes false and if

variables X, , X5 and X; are false while variables X5 and X, true», but never a general solu-

tion that holds true regardless of the date considered. Moreover, modelling a state automaton-
based dynamic system corresponds to an imperative design approach, whereas control system
specifications are in most cases given in declarative form. The transition from one of these rep-
resentation modes to the other always requires a major effort.

For both of these reasons, the proposed design method relies upon a special formalism that
has been developed by our research team. The basic elements of this formalism consist of the

time functions U,(#), Y,(¢). The operations that enable composing these functions lead to de-

fining an algebraic structure in which the simultaneous manipulation of boolean variable states,
state changes of these variables (events) and physical time values is possible. As a consequence,

3/20

this algebra has been denoted algebra /I since it yields a framework for integrating the three
types of variables; the next section presents a detailed examination of this algebra.

In sum, the proposed design method for dependable logic control systems calls for devel-
oping, on the basis of specifications given in the form of assertions in natural language, a set of
control laws in the form of time functions. This method requires (see figure 2) formalising spec-
ifications into relations within the algebra /I as well as checking the consistency of the set of

assertions and generating the expected control laws from the consistent set of specifications ob-
tained.

Specifications in the form of assertions
expressed with natural language

Formalisation of the specifications
into algebra /I relations

v

Consistency checking
and inconsistencies removal

v

Generation of control laws

Control laws

Figure 2. Method overview

3 Formal framework: a boolean algebra for binary signals

3.1 Binary signal modelling

As mentioned in the previous section, the algebra /I shall provide a formal framework to

represent and to manipulate boolean variable states, events and physical delays. When defining
this algebra, the main idea was to consider binary signals, i.e. functions describing the evolu-
tions of boolean values in time.

These evolutions are usually represented by timing diagrams. Though this representation
is quite useful for control engineers, it is not at all based on a sound formalism. Hence the first

step in the definition of the algebra I/ is aimed at giving a formal definition of binary signals:

piecewise-continuous functions from R toB = {0, 1} . The elements of /I are consequent-
ly formally defined in the following way:

I={f:IR" >IB|VielR" :(3g,>0:(V(e, &) € (0,8)", f(t—&,)=f(t—£))) }

4/20

The figure 3 shows an example of a function element of /. Attention shall be paid to the
right-continuity used at the dates #; and #; and to the double-discontinuity at the dates ¢, and

t4 , mandatory to model events.

f(9) . 5 o o ® f(t) =1
L4 . IS , of(t) =0

b t ty t

Figure 3. Graphical representation of a binary signal

To distinguish operations on elements of I/ from operations on booleans, different nota-
tions are used. « A » will denote the logical AND operation between two booleans, « v » the log-
ical OR operation between two booleans, «—» the NOT operation on a boolean. The notations

« - », «+t»and « ~ » will be used for operations on /I . Furthermore, differents notations will be
used for functions and for values of functions at a given time t. For instance, f, g, # will denote
three functions, elements of 77, and f{(t), g(¢), h(¢) three booleans.

Il contains two special elements 1* (the one element) and 0* (the zero element) defined
as follows:
R > IB - R SIB
1*(2) > 1 0*(¢1) > 0

3.2 Structure of boolean algebra

To compose the elements of 77, three closed operations have been defined:

AND operation OR operation NOT operation
1 1 =1
(,8) > (8) (,e)>(+e) f=>f
Where V7 e IR,
(f -&)(1) = f(t) ng() (f+g)(1) = (1) v g(?) f(6 = A1)

1, ., +, _, 1*,0%) is a boolean algebra (Grimaldi 2000) because the following condi-
tions are satisfied forall £, g, h € Il

frg=gf ftg=g+f Commutative laws
f-(g+h)y=(-2)+(-h) f+(g-h)=((+g)- (f+th) Distributive laws
f-1% =f f+0* =f Identity laws
f-f = 0% f+f = 1% Inverse laws
0% £ 1*

5/20

As (I, . ,+, 1, 0*) is a boolean algebra, the following statements hold:

f-f=r f+f=f Idempotent laws

f- 0% = 0% f+1* = 1* Dominance laws

f-(ftg) =1 f+(f-g)=f Absorption laws

f-(g-h)=(-2g-h f+(g+h)=(f+tg)+h Associative laws
]3 =f Law of the double complement

(f-g)=f+g (f+tg)=f-2 De Morgan’s laws

The three basis operations (AND, OR, NOT) enable to combine binary signals only in a
combinatory way, i.e. to obtain a signal whose value at each date is obtained from the values of
the operands at the same time. Sequential and timed operations are to be defined to describe
more complex behaviours, such as those included in the specifications of industrial control sys-
tems.

3.3 Sequential operations

Two binary operations, denoted SR(s, ») and RS(s, r), have been therefore defined. The
formal statements of these operations are:

SR operation RS operation
/| /|
(s,7) > SR(s, 1) (s,7) > RS(s, r)

Where V¢ € IR o ,
SR(s, r)(t) = s(¢) v [3It; < t|((s(t1) =1)A(Vd e (t,t],(r(d) =0)))]
RS(s,r)(t) = (s(t) A=r(t)) v [Tt < t|((s(t1) =1)A(Vd e [t,t],(r(d) =0)))]

The figure 4 shows the graphical representation of two binary signals s and r as well as
the results of SR and RS operations on these signals. It matters to highlight that SR describes

the behaviour of a set dominant memory, while RS describes the behaviour of a reset dominant
memory.

s (’)J L] ? 7 L
—O @ O L 4 O L 4 >
r(t) i i ? t
e) L O @ O >
SR(s, r)(1) | | | T T :
O O L 4 O @ O *—>»
RS(s, r)(1) | | SRR | !
{(—(@ O —O @ >

Figure 4. Graphical representation of SR(s, ») and RS(s, r) functions

6/20

The value of the function SR(s,) (respectively RS(s,)) is thus determined at each in-
stant t as the logical OR between two booleans. The first boolean is the value of the function s
(respectively s - 7) at ¢. The second boolean is the value of a predicate at the same date. The
truthfulness of this predicate depends on the existence of a former date 7, , such as s(#;) (re-
spectively (s -7)(¢;)) was 1 and since which the value of the r function has remained always

equal to 0.
With these definitions, the following laws have been established:

SR(s,ry+ry) = SR(s,r;)-SR(s, 1,) RS(s,r) = SR(s -7, r)
RS(s,r; +7y) = RS(s,r;) - RS(s, ry) SR(s,r) = SR(s,7r)+s

RS(s,7) = RS(s+r-f,r)
SR(s| +55,7) = SR(s|,7) +SR(s,, 1)

SR(s,r)-r=s-71
RS(s;+5,5,7) = RS(sy,7)+ RS(s,,7) RS(s,r)-s = s-F

SRs,5) = SR(s, 1%) = RS(s, 1%) = 0%
RS(s.5) = s (s;) = s>l< (S,*) =]
RSGo.) = 0° SR(1%,7) = 1 SR(1%,7) = 7

SR(0%, r) = 0% RS(0%, r) = 0%

r-RS(s,r) = 0*

3.4 Timed operations

To state delayed signals in a formal way, two unary operations, denoted TON and TOF,
have been defined. The formal statements of these operations are:

TON operation TOF operation
n—1 n—1
f—>d/f f—>f/d

Where V7 € IR,

0 Vi<d

(d/N() = { (Vt, e (t—d,t],(f(1)) = 1)) Vi2d

(31, € (0,11, (f(t;) = 1)) Vi<d
(3t, e (t—d, 1], (f(t,) = 1)) Vizd

(f7d) (1) =

71720

The figure 5 shows the graphical representation of a binary signal f and of the results of
TON and TOF operations on this signal. TON behaves as a «<ON -delay Timer». TOF behaves
as a «OFF -delay Timer».

o1t 7 | ?
—O @ L O >
(dl/f)(t) [[| | !
—C O @ O @ >
|2, 2, |, !
)@ | o e—0
Q O @

j

Figure 5. Graphical representation of the results of TON and TOF operations

The TON and TOF operations transform a function f into two new functions d/f and
f/d . For each date ¢, the value of these new functions depends on the value of a predicate that
checks the value of the f function on a period of time (¢ —d, ¢].
With these definitions, the following laws have been established:

f=r+d/f f/d = f+f/d
d/(f-g) = (d/f)-(d/g) (f+g)/d = f/d+g/d
(d,/f)-(dy/f) = max(d,,d,)/f (f/d,)+(f/dy) = f/max(d,,d,)
d,/f)+(dy/f) = min(d,, d,)/f (f/d)) - (f/dy) = f/min(d,, d,)
d,/(d,/f) = sum(d,,dy)/f (f/d))/d, = f/sum(d,,d,)
Vi>d (d/f) =f/d Vi>d (f/d) = d/f

3.5 Events modelling

An event related to a given signal f must be true only when the value of this signal changes
(see figure 6).

S(9) ® O °
S — . S
TA) . . t
0 T ? i
/

Figure 6. Graphical representation of the results of RE and FE operations

To state formally that kind of signal, two unary operations: Rising Edge (RE), and Falling
Edge (FE), must be defined as follows:

RE operation FE operation
m—-1 n—-1n
=17 [

8/20

Where V7 e IR,
ML) = (D) A (Tey> 0 : Ve € (0, &), f(t— &) = 0)
LAt) = —f(t) A (Fgy > 0 : Ve € (0, g)), f(t—€) = 1)

The RE and FE operations transform a function f into two new functions Tf and {f. For
each date 7, the value of these new functions depends on the value of 1 at the date ¢ and the
value of a predicate that checks the value of the function f on a period of time (7 — g, 7).

With these definitions, the following laws have been established:

(ON+r=1r
-z v
(Tf)-f=Tf ie{l, n} ie{l,n} je{l, n}
j#i
Tf =1)
OIS B S VA O
(‘Lf)"‘]? =]7 ief{l,n} ief{l,n} je{l,n}
j#i
(N -f = 1f
WIT A= X (¥ T &6y
J/f — Tf ie{l,n} ie{l,n} je{l,n}
j#i
T =)
szl
TN = If ie{l,n} ie{l,n} je.{l,n}

J#*i

3.6 Equality and partial ordering relations

An obvious relation in the algebra /7 is the equality between two signals, denoted =, which
states that the values of these signals are equal, whatever the considered date.

Moreover as (11, . , +, _, 1*, 0*) is a boolean algebra, the relation < defined as follows is
a partial ordering relation (Grimaldi, 2000).

If(f,g) ell,define f<g,iff-g=f
Astherelation < is a partial ordering relation, this relation is reflexive, antisymmetric and
transitive. This relation can be also stated in the following way:

Vie IR™ , i) n—g(t) = 0 or Vie IR, —f(t)va(t) = 1
That means in natural language: «For all dates #; such as f{(7;) is true, the value of g(;) is true

too».

For all f, g elements of /I, the 6 following relations have been proved equivalent:
f<g f-e=rf f+g=1%
g </ [+ =¢ fg = 0%

97/20

The following results whose usefulness when consistency checking will be shown in sec-
tion 5.3 have been proved too:

(F+g)<h {fﬁh {fﬁg

. f<(g-h o

This partial ordering relation is the cornerstone of the design method of dependable con-
trol systems as described in the next section.

4 Contribution of the algebra 1/ to the design of dependable control systems

As sketched in the second section of this article, the algebra /7 is the underlying theory of
the developed design method. The objective of the current section is to show how this algebra
is employed in the three steps of the design method:

» Formalisation of the specifications into algebra /I relations,
» Consistency checking and inconsistencies removal,
* Control laws generation.

The latter two steps will be presented jointly thanks to a simple example: a single output
control system.

4.1 Specifications formalisation

The operations and relations of the algebra I enable to state formally specifications given
in the form of assertions in natural language and including boolean variable states, events and
physical delays. Some usual assertions that can easily be obtained from control systems speci-

10/20

fications and the equivalent formal relations are presented in table 1. A larger set of assertions
will be given in the fifth section.

Assertions given in natural language Equivalent formal relations
The values of the f and g signals are always equal. f=g
The values of the f and g signals are never simultaneously true. f-g = 0%
At each time, at least one of the values of the fand g signals is _
true. fteg =
When the value of the signal f'is true, the value of the signal g <
is true. f<g
It is sufficient that the value of the signal f'is true to get the
; f<g
value of the signal g true.
The value of the signal f must be true to obtain the value of the -
signal g true. gsforf=<g
The value of the signal f is never true more than 3 seconds. 3s/f = 0*
When the value of the signal f becomes true, the value of the 2
. . . (TH<g
signal g signal is true.
When the value of the signal f becomes false, the value of the
¢ (=g

signal g signal is true.

Table 1: Assertions and formal relations

4.2 Generation of a control law from a formal specification

Let us consider an elementary single output control system whose output O is assumed to
be specified by the following two relations:

{ (la) A<O
(Ib) BSO

A, B and O are binary signals. A and B can be two inputs of the control system or complex
statements using the operations of the algebra /. The searched control law shall relate O to an
expression involving A and B. The solution of each of these relations is quite easy to obtain:

* O = A+f, with f| € I, for the first relation (1a). This relation sets indeed that O(#) must

be true when A4(¢) is true, no matter what its value is when A(¢) is false.
« O=B - f> with f; € I, for the second one (1b). O(#) must be false when B(7) is true, no

matter what its value is when B(t) is false.

4.2.1 Relations set analysis
When analysing the set of the two relations, three cases can be pointed out:

e There is no solution if the statement 4 - B = 0* holds. In that case, there is indeed at least

11/20

one date such as (4 - B)(¢;) = 1, that leads to inconsistency (O(¢;) should be at the same
time true and false).

« There is an unique solution: O = A, if the statement A = B hold.
* There is an infinite number of solutions (the output is not completely specified) if

A-B = 0* and 4 # B . These solutions can be written in the form: O = (4+ B -f1) or

O = (A+f,)) B withf, el and f, € II.

The previous analysis showed how inconsistency and incompleteness can be detected
thanks to relations of the algebra . The inconsistency of a set of relations must be removed to
generate a control law; this shall be performed by introducing priority levels between relations.

Incompleteness does not prevent to generate a control law; all you have to do is to choose a pos-
sible solution.

4.2.2 Control laws

To establish a control law, whatever the value of 4 - B , the three situations described in
table 2 are to be considered.

Situation # 1: No inconsistency (4 - B = 0%)

(la) 4<0
The consistent specificationis: { (1b) B< O
A-B = 0%
The form of the control law is: O, = (4 +B fi)or O = (A+f5)- B with (f1,.1o) € .

Situation # 2: Initial inconsistency (4 - B # 0*)
The relation (1a) is dominant beside the relation (1b), denoted (1b) « (1a).

(la) A<0 {(la)ASO

The consistent specification is: (1b) B<O equivalent to - o
(Ib) 4-B<O

(1b)«(1a)
The form of the control law is: O, = (4 + B -f) with fe II.

Situation # 3: Initial inconsistency (4 - B # 0*)
The relation (1b) is dominant beside the relation (1a).

(la) A<0

The consistent specification is: (1b) B<O equivalent to (la)4-B<O

(1b) B<O
(la) «(1b)

The form of the control law is: 05 = B -(A+/f) with fe Il

Table 2: General solutions

12/20

Attention shall be paid that for the dates ¢, such as A(¢,) v B(¢;) = 0, the value O(t;) of

the solution O can be true or false according to the choice made for f, f;, £, . In order to obtain

deterministic control laws, i.e. control laws involving only the A and B signals and no specific
designer's choices, one of the following solutions is to be chosen:

At these dates ¢;, O(¢;) = 0, that leads to:

0,=4 0, =4 O;=4-B
 Atthese dates #;, O(¢;) = 1, thatleads to:

0, =B 0,=A+B O, =B

» At these dates #;, O(¢;) keeps the last value determined by the assertions set (memory

behaviour), that leads to:
O, = SR(4,B) or O, = RS(4, B) O, = SR(4, B) O, = RS(4, B)

The last solution will be adopted herein for it seems closer to industrial concerns and prac-
tice.

S5 Application example

This section is aimed at dealing with a real example coming from an industrial assembly
line and depicted in the figure 1. The expected operation mode («U-shaped» cycle) of this ex-
ample has been sketched previously; the inputs and the outputs of the control system to design
are given in the figure 7.

Start —»
Emergency Stop (ES) —» —> Draw_up
Low Position (Low_pos) —» — Drop_down
Raised Position (Rai_pos) > — Move Picking Station (Mv_pick)
lgizléiﬁg ggggﬁ gi;—:gg — Move Placing Station (Mv_plac)

Figure 7. Inputs and outputs of the control system to design

5.1 Control system specifications

The expected behaviour of the control system with regard to the application requirements
may be expressed by the set of assertions given hereafter. Among these 16 assertions, the first
three ones (A1 to A3) are related to safety requirements, the following ten ones (A4 to A13) to
vivacity requirements (what must be done to perform the production task), the assertions A14 a
and A15 express constraints coming from actuators features and the last one (A16) is an as-
sumption on the correct operation of the sensors (the problem of sensors monitoring will not be
dealt with in this study).

A1l The manipulator gripper may only move horizontally while in the raised position.

A2 The manipulator gripper may only drop down at the picking station or at the placing station.
A3 In case of Emergency Stop, all the movement controls must be reset.

A4 When the manipulator gripper is in the raised position at the picking station, pressing the

«Start» button causes the gripper to drop down.

A5 When the manipulator gripper is in the low position at the picking station, the part must be

13/20

seized using the drawing up system.

A6 When the part is held at the picking station, the manipulator gripper must move up.

A7 When the part is held at the picking station, the manipulator gripper must move towards
the placing station.

A8 When the part is held at the placing station, the manipulator gripper must drop down.

A9 When the part is put down at the placing station, the manipulator gripper must move up.

A10 When the part is put down at the placing station, the manipulator gripper must come back
to the picking station.

A11 The drawing up system must be reset in the low position at the placing station.

A12 The part is considered to be held if the drawing up system is triggered within a second of
contact (low position at the picking station).

A13 If the drawing up system is reset, the part is no more held.

Al4 For a double-acting cylinder driven by a bistable valve, the two movement controls must
not be simultaneous.

A15 For a double-acting cylinder driven by a bistable valve, the end of any movement shall reset
the control of this movement.

A16 No sensors failure may occur.

5.2 Specifications formalisation

The previous set of assertions can be translated into a set of formal relations (table 3) that
include input signals (Start, Emergency Stop (ES), Low Position (Low pos), Raised Position
(Rai_pos), Picking Station (Pic_sta), Placing Station (Pla_sta)), output signals (Draw_up,
Drop_down, Move Picking Station (Mv_pick), Move Placing Station (Mv_plac)), and internal
signals of the control system (Held part). The main objective of the design method is to state
from this relations set the control laws that link the output signals to the input signals and, if
necessary, to internal signals. Equations defining these internal signals are also to be defined.

It matters to highlight that some relations (A1, A2, A3) may be written in several equiv-
alent forms. This feature is quite interesting when checking consistency. It will be possible in-

14 /20

deed at this step of the design method to chose the most appropriate statement, as explained in

the next paragraph.

Assertion Assertions written on 1/
Al (Mv_plac + Mv_pick) < Rai_pos or {Rai_pos < Mv_plac
Rai_pos < Mv_pick
A2 Drop down < (Pla_sta + Pic_sta)
or Pla sta - Pic_sta < Drop down
ES <Mv_plac
A3 ES <Muv _plac - Mv_pick - Drop_down or < ES <Mv pick
ES < Drop_down
A4 Rai_pos - Pic_sta - TStart < Drop_down
AS Low pos - Pic_sta < Draw_up
A6 Pic_sta - Held part < Drop_down
A7 Pic_sta - Held part < Mv plac
A8 Pla sta - Held part < Drop down
A9 Pla_sta - Held part < Drop_down
AlO Pla_sta - Held part < Mv pick
All Low pos - Pla_sta < Draw_up
Al2 Is/(Draw_up - Low _pos - Pic_sta) < Held part
Al3 Draw_up < Held part
Al4 Mv_pick - Mv_plac = 0*
ALS {Pla_sta < @
Pic_sta <Mv_pick
Al6

{ Pic_sta- Pla sta = 0*
Rai_pos - Low pos = 0*

Table 3: Formal specifications of the control system

5.3 Consistency checking

When dealing with a set of formal relations involving several output and internal signals,
consistency checking comprises three steps:
* Assertions labelling
* Dependency analysis
* Consistency checking for each output or internal signal (this step has been already

described in 4.2)

15720

Consistency of a set of relations depends indeed not only on the consistency of the rela-
tions defining a given output signal, as previously shown, but moreover on the lack of cross-

references in the relations set, e.g. the output O, is defined from the internal signal /S) that is

itself defined from O; . The first two steps are aimed at checking cross-references while the last

step looks for inconsistencies in the specification of each signal.

5.3.1 Assertions labelling

This step is aimed at ranking each of the relations of the set of specifications into one of the
following categories:

+ Relations stating formally assertions that involve only input signals. These relations are
assumptions.

» Relations stating formally assertions that involve only one output or internal signal and
input signals. Each of this relation will be used to build the control law of the given output
or internal signal from input signals.

» Relations stating formally assertions that involve several output or internal signals. In that
case, either the relation can be decomposed in elementary relations (relations comprising
only one output or internal signal) as stated in section 3.6, that leads to the previous case, or
the designer has to decide which signal will be function of the other ones.

From this analysis it is possible to determine the assertions that must be employed to elab-
orate an internal or output signal and on which other signals the considered signal depends. The
result of this analysis for the control system of the pneumatic manipulator is presented in table 4.

Internal or | Assertions to be used
output signal |to generate the signal

Draw_up AS, All Low pos (A5, All), Pla_sta (All), Pic_sta (AS)
Held part Al2, Al13 Low _pos (A12), Pic_sta (A12), Draw_up (A12, A13)
A2, A3c, A4, ES (A3c), Start (A4), Rai_pos (A4), Pla_sta (A2, A8,

Signals involved in the assertions

Drop_down A6,A8,A9 |A9), Pic sta (A2, A4, A6), Held part (A6, A8, A9)
Mv olac Ala, A3a, ES (A3a), Rai_pos (Ala), Pla_sta (A15a),
P A7, AlSa Pic_sta (A7), Held part (A7)
My pick Alb, A3b, A10 |ES (A3b), Rai_pos (Alb), Pla_sta (A10),

Al4, A15b Pic_sta (A15b), Held part (A10), Mv_plac (A14)
Table 4: Dependency relations derived from assertions labelling

5.3.2 Dependency analysis

From the previous results a dependency graph can be easily built. If this graph does not in-
clude any cycle, no cross-reference lies within the assertions set. Conversely any cycle found
when analysing the dependency graph enables to point out specifications inconsistency. In that
case, part of the assertions set must be modified in order to eliminate the inconsistencies.

The table 4 shows that the set of assertions of the studied example does not include any
inconsistency.

16 /20

5.3.3 Consistency checking for each output or internal signal

The principle of this step has been already described in section 4.2. The results of this
analysis for this example are given in table 5.

Internal or

. Consistent specification
output signal

Draw_up { (A3) Low_pos - Pic_sta < Draw_up Pick sta - Pla sta = 0*
(Al11l) Low_pos - Pla_sta < Draw_up
Held part { (A12) 1s/(Draw_up - Low pos - Pic_sta) < Held part
(A13) Draw_up < Held part
(A2) Pla sta- Pic_sta < Drop down
(A3c) ES < Drop_down Pic sta-Pla sta = 0*
Drop_down (A4) Rai_pos - Pic_sta - TStart <Drop down (A4) « (A3c)
(A6) Pic_sta - Held part < Drop_down (A8) «(A3c)
(A8) Pla sta- Held part < Drop down (A4) « (A6)

(A9) Pla sta- Held part < Drop down

i <
(Ala) Rai_pos < Mv_plac Pic_sta-Pla sta = 0*

Mv_plac (A3a) ES<Mv_plac (A7) « (Ala)
(A7) Pic_sta- Held part <Mv plac (A7) « (A3a)

(Al15a) Pla_sta <Mv plac

(Alb) Rai pos <Mv pick

- Pic sta-Pla sta = 0*
(A3b) ES <Mv pick

ok (A10) « (Alb)
Mv_pic (A10) Pla sta- Held part <Mv pick (A10) « (A3b)
(A14) Mv_plac < Mv pick (A10) « (A14)

(A15b) Pic_sta < Mv pick

Table 5: Consistent specification of the control system

Attention shall be paid on the use of a constraint coming from the assertion A16 to obtain
consistent specifications for the signals Draw_up, Mv_pla, Mv_pick and Drop _down as well as
on the priority levels introduced for the same purpose in the relations sets of the latter three sig-
nals.

17720

5.4 Control laws

Applying the synthesis technique indicated in the section 4.2.2 leads to the control laws as
well as to the internal signal definition herein:

Draw_up = RS[(Low_pos - Pic_sta), (Low pos - Pla_sta)]
Held part = RS[1s/(Draw_up - Low_pos - Pic_sta), Draw_up]
(Rai_pos - Pic_sta - TStart + Pla_sta - Held part),
Drop_down = RS[}
(Pic_sta - Held part + Pla sta - Held part + Pla sta - Pic_sta + ES)
Mv plac = RS[(Pic_sta - Held part), (Pla_sta + Rais_pos + ES)]
Mv pick = RS[(Pla_sta - Held part), (Pic_sta + Rai_pos + ES + Mv_plac)]

This set of formal statements can be easily translated into a Programmable Logic Control-
ler (PLC) program written in a standardized language (IEC 1993), like Ladder Diagram, a wide-
spread programming language for PLCs (figure 8). It matters to highlight that the instruction
lines of this program are ordered according to the dependency constraints previously obtained.
The variable Held part, for instance, must be elaborated once the output Draw_up is computed,

18/20

for Held part depends on Draw_up. Conversely the current state of this variable is used to com-
pute the three outputs Drop_down, Mv_plac, Mv_plick.

R1

R2

R3

R4

RS

Figure 8. PLC program developed from the control laws of the example

| to———t

| Low pos Pic sta | RS |

- |- | === IS Ql

| Low pos Pla sta | \

- |- | === IR1 |

| +-——=+

|

| +————= + -———+
| Draw_up Low pos Pic sta | TON | | RS |
tommm | T I |TI-===1IN Q|--IS Q|
| 1s-|PT \ | \
| Draw_up +----- + \
- | /] ====————— [R1 |
| +-———+
|

| +-—==+

| Rai pos Pic sta Start | RS |
el e | TI====|P|=t===|S Q|-====-==-
| | Pla sta Held part | | |
e | o |

| \ \

| Pic sta Held part \ \
-t |- | ===t IRL |

| | Pla sta Held part | +————+

[=1 === |/ 1-===+

| | Pic sta Pla sta

| =/ |/ 1-===+

I ES \

[= [B +

|

| +————t

| Pic sta Held part | RS |

- === | === S Ql-——="=7=—-
| Pla sta \

tm—tm———— | |====-- Fmmm [R1 |

[Rais pos | to———t

[= |/]===== +

I ES \

[= | === +

|

| +————t

| Pla sta Held part | RS |

- === R S Ql-——="=7=—-
| Pic sta \

tm—tm———— | |====-- Fmmm [R1 |

[Rais pos | to———t

[= |/]===== +

I ES \

[= | === +

| | Mv pla

[= | === +

Held part

—_—— () _____

AS

All

Al2

Al3

A4
A8

A6,
A9
A2
A3c

A7

AlSa
Ala
A3a

Al10

Al5b
Alb
A3b
Al4

Bridging the gap between control laws design and control software development is there-
fore an indirect benefit of the proposed design method.

6 Conclusion

Formal design methods may contribute efficiently to improve control systems dependabil-
ity by preventing designer's faults. The first advantage of the formal method presented in this
article is the ability to detect and to remove inconsistencies within the specifications of a given
control system; these inconsistencies may take place in the specifications of a single output or
of a set of outputs. From the consistent set of specifications obtained, control laws are stated by

formal manipulations in the algebra 1/, the formal framework that underlies this design method.

19/20

At last, the control laws may be used to obtain a control software compliant with the specifica-
tions. The whole design method has been applied successfully to several industrial cases.

The main weak point of this method lies in the need of manipulating formal statements that
are not user-friendly for automation engineers. In order to overcome this problem, our current
works are aimed at developing a software assistance tool supporting the method. This software
will embed operations, relations and theorems of the algebra /. An other further prospect con-
cerns the development of a library of formal relations stating formally assertions commonly
found in industrial systems specifications. Using this library will ease industrial acceptance of
this design method.

References

BERARD, B., BIDOIT, M., FINKEL, A., LAROUSSINIE, F., PETIT, A., PETRUCCI, L.,
SCHNOEBELEN, P., 1999, Systems and Software Verification: Model-Checking tech-
niques and tools, (Heidelberg: Springer-Verlag).

CASSANDRAS, C.G., LAFORTUNE, S., 1999, Introduction to Discrete Event Systems, (Bos-
ton: Kluwer).

FAURE, J.-M., LESAGE, J.-J., 2001, Methods for safe control systems design and implemen-
tations, Proceedings of 10th IFAC Symposium on Information Control Problems in Man-
ufacturing, Vienna (Austria), CDRom paper, 6 pages.

GOUYON, D., PETIN, J.F., GOUIN, A., 2004, A pragmatic approach for modular control syn-
thesis and implementation, /nternational Journal of Production Research, same issue.

GRIMALDI, R.P., 2000, Discrete and Combinatorial Mathematics: An Applied Introduction,
(New-York: Addison-Wesley).

INTERNATIONAL ELECTROTECHNICAL COMMISSION, 1993, IEC 61131-3, Program-
mable controllers - programming languages.

LAPRIE, J.C., 1992, Dependability: basic concepts & terminology, (Springer-Verlag).

RAMADGE, P.J., WONHAM, W.M., 1989, The control of discrete-event systems. Proceed-
ings of the IEEE, 77, 81-97.

ROUSSEL, J.-M., DENIS, B., 2002, Safety properties verification of ladder diagram programs,
Journal Européen des Systemes Automatisés, 36, 905-917.

ROUSSEL, J.-M., FAURE, J.-M., 2002, An algebraic approach for PLC programs verification,
Proceedings of 6th International Workshop on Discrete Event Systems (WODES'02),
Zaragoza, Spain, pp. 303-308.

ZAYTOON, J., CARRE-MENETRIER, V., 2001, Synthesis of control implementation for dis-
crete manufacturing systems, International Journal of Production Research, 39,329-345

20/20

