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SUMMARY

This paper addresses issues on coding design in the context of control of systems equipped with low-

energy sensors networks. We particularly focus on issues concerning minimum bit and energy-aware

coding. To this aim, we devise a coding strategy with the ability to quantify and to differentiate stand-

still signal events from changes in the source (level crossing detector). Coding is effectuated by defining

at least 3-valued alphabet for the minimum bit case, and (2L + 1)-valued alphabet for a general case

with a precision depending on L. Energy saves are studied in two different scenarios; (1) in the word-

by-word transmission case, the stand-still signal event is modulated with a low power transmission

mechanisms, whereas the changes of levels will be modulated with high-power, (2) in the package-

based transmission case, an entropy variable length coding is added to the previous encoding process.

Entropy coding assigns some probability distribution to the events, so that the mean transmission

energy can be substantially improved for systems where the stand-still events have higher probability

to arise (i.e. stable systems). The paper studies the stability properties needed for this type of coding
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to operate properly, and quantify the energy saves for each of the considered scenarios. Copyright c©

2008 John Wiley & Sons, Ltd.

key words:

Differential coding, Entropy coding, Networked controlled systems, NCS, Quantized systems.

1. Introduction

Wireless low-cost sensor networks are an expanded technology in many new and varied areas
such as: traffic monitoring and control (urban, highways), undersea monitoring/exploration,
environment sensing (forest, farms, etc.), building services, large instruments with distributed
sensing and actuators (Tokamak, telescopes), etc.

In this context, future generation of this type of sensors are expected to be packaged together
with communication protocols, RF electronics, and energy management systems. Therefore,
the development of such integrated sensors will be driven by constraints like: low cost, ease
of replacement, low energy consumption, and energy-efficient communication links. In turn,
these constraints bring new problems to be considered in the exploitation of this information.
For instance, low cost will induce sensors with low resolution (binary sensors, at the extreme)
advocating for minimum bit coding strategies, low consumption will impose issues on efficient
sensor energy management (sleep and wake-up modes, differentiation of stand-still event),
ease of replacement will imply the system ability to keep safe operation in a failure of one or
several sensors, and finally communication links and protocols should be designed to account
for energy savings, information loss, and varying fading characteristics. Some of the coding
strategies proposed in the literature [8], [4], [11], [12], [10], [6], [1], often disregards issues
related with energy use, and discrimination of type of events. The objective of this paper is
specifically to treat aspect related to the energy management, in relation with the particular
code to be used. To this aim, we propose to use a coding strategy based in the following 3
main ingredients:

• Differential coding (see [3], [7], [5]) encodes the differences (error prediction) between
successive samples rather than the samples themselves. Since differences between samples
are expected to be smaller than the actual samples amplitudes, fewer bits are required
to represent the differences. However, in its standard form no specific distinction is made
for the stand-still events.

• Event-based coding has the ability to quantify and to differentiate stand-still signal
events from changes in the source (level crossing detector). Coding is effectuated by
defining at least 3-valued alphabet for the minimum bit case, and (2L+1)-valued alphabet
for a general case with a precision inversely proportional to L ∈ Z

+. Hence, the stand-
still signal event is modulated with a low-power signal, whereas the changes of levels will
be modulated with a high-power one.

• Entropy coding can be added to improve the energy use by assigning a probability
distribution to the events. In that way, the mean transmission energy can be substantially
improved for systems where the stand-still events may have high probability to occur
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(i.e. stable systems).
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Figure 1. Block diagram of the non uniform entropy coding in the feedback loop.

A pre-requisite for the entropy coding strategy is to design a mechanism with the ability to
quantify and to differentiate stand-still signal events, from changes in the source (level crossing
detector, denoted here as ϕLD ). For instance, this can be done by defining an alphabet where
the source signal information is contained in the time interval between level crossing and in
the direction of the level crossing. As suggested in [9], by assigning strings of the 2-tuple 00
to represent the time between signal level crossing, and 01 and 10 to denote the direction of
level crossing, the output of the level crossing detector contains a high probability of the 0
symbol with makes it suitable for an entropy encoder to attain a “good” overall compression
ratio, and hence (as it will be shown here), a substantial improvements of energy saves. A
fundamental difference with the classical Differential algorithm (i.e. delta modulation, see [3])
is that the error is coded on the basis of a 3-valued alphabet rather than a 2-valued one. If the
levels are uniformly spaced and constant then the signal prediction precision, and hence the
resulting closed-loop behavior, will be limited by the size of the level spacing. One alternative
to improve the prediction precision is to make this level adaptive in the same spirit as [5], but
in this context the stability analysis will be much more involved. Instead, we propose here to
increase the number of levels to 2L + 1, where L ∈ Z

+, so as to match the required precision.
This leads to a 2L + 1-word alphabet, which can still be combined with a energy-efficient
variable length (VLE) entropy coding to improve the use of energy for cases and systems
where the stand-still events have a substantial probability to arise.

The overall coding strategy studied here is shown in Figure 1, and it is composed of two main
blocks: an event-based (EB) coding, and a variable length-block entropy (VLE) coding scheme.
The paper aims at studding the closed-loop properties of such arrangement, and investigate
and evaluate the possible improvement in term of energy saves that the scheme may provide.
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1.1. Definitions

Signals are sampled on the basis of the time interval Ts, that is at Ts, 2Ts, ...kTs.

rk: reference signal,
xk: system output,
x̂k: estimated(reconstructed) output,
x̃k: true estimated error, x̃k = xk − x̂k,
ˆ̃xk: approximated estimated error, obtained after reconstruction, i.e. ˆ̃xk = {ϕ−1

LD ◦ϕLD}(x̃k),
with ϕ−1

LD ◦ ϕLD 6= 1.

∆: step interval used for level detection and to reconstruct ˆ̃xk,
δk: (2L + 1)-level valued integer signal, belonging to the interval [−L,L], with L > 1,∈ Z+

νk: ⌈log2(2L + 1)⌉-bits binary signal
ηj : binary signal to be send by the channel (output of the VLE block) in asynchronous

manner, at the time instants multiples of Ts. The index j captures this asynchronism.
uk: control input

1.2. Assumptions

The hypothesis used in the results presented in this paper, are the following:

• The transmitted information is binary
• Only encoder-to-decoder information transmission is allowed (feedback between decoder

to encoder is not allowed here),
• Reliable noiseless channel transmission is considered (no data lost, or information

distortion, no transmission delays). See [2] for the treatment of transmission delay in
this context.

2. Problem set up

We consider the following SISO discrete-time linear system (possible unstable), of the form,

xk =
B(q−1)

A(q−1)
uk (1)

together with a RST controller,

uk =
R(q−1)

S(q−1)

{
γ

T (q−1)
rk − x̂k

}

(2)

where rk is the reference, x̂k is the estimated of the system output xk, and
R(q−1), S(q−1), T (q−1) are the control polynomials in the delay operator q−1. They also satisfy:

T = RB, SA + RB = Acl, γ
△
= Acl(1)

with Acl being the stable closed-loop polynomial, and γ the static gain needed to reach unitary
zero-frequency gain. For simplicity, we will omit the use of the argument (q−1) when not
explicitly needed.
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The coding process consists of: 1) encoding the system output xk, 2) transmitting the coding
sequence through the communication channel, and 3) decoding the received information to
produce the estimated x̂k. The complete sequence can be seen as estimation process.

Forced synchronization under asynchronous transmission The time basis for the
system and the controller description is defined with respect to Ts. However, due to the variable
length characteristic inherent to the entropy coding, the transmission of the coded signal νj

is then done asynchronously at multiples of Ts. For instance, for a choice of a VLE coding of
length M = 3, the coded signal can be sent either at; Ts, or 2Ts, or 3Ts as shown in Table II.
The index j captures this asynchronism (more details on the VLE code is given in latter
sections).

It is assumed here that when the receiver does not receive information (this may happen
if the run sequence includes a stand-still event for some k) the receiver hold the last-received
value η̂k−1 until a new change of level is detected. By this mechanism, the signals at the receiver
can be re-synchronized to the time basis Ts. This is the reason why the control formulation is
stated in a discrete-time synchronous representation with the sole index k, as described next.

Nominal closed-loop transfer function Assume a perfect transmission process (i.e.
x̂k ≡ xk), then the control law (2) gives the following nominal closed-loop relation,

xk =
γ

Acl(q−1)
rk

Perturbed closed-loop transfer function Consider the case of interest where information
is transmitted by the channel and quantized, i.e. x̂k 6= xk. Then, the error transfer function is

xk =
γ

Acl(q−1)
rk + W (q−1)x̃k

where x̃k = xk − x̂k is the estimation error, and W = BR/Acl. As Acl defines a stable
polynomial, the output xk is kept bounded as long as x̃k is bounded as well.

The problem is then to design the coding process that defines the output x̂k preserving
closed-loop properties.

2.1. Coding Process

The coding (encoding/decoding) process is composed of several steps, described by the
following operations:

xk 7→
︸︷︷︸

EBE

νk 7→
︸︷︷︸

V LE

ηk ⇒
︸︷︷︸

channel

η̂k 7→
︸︷︷︸

V LD

ν̂k 7→
︸︷︷︸

EBD

x̂k

As shown in Figure 1, the encoder (respectively the inverse decoder) operation is composed of
two separate blocks:

• The event-based encoder EBE (respectively, event-based decoder EBD). This block maps
xk 7→ νk (respectively, the decoder maps ν̂k 7→ x̂k). This block includes a level detector
ϕLD, and a model-based predictor, MBP, similar to the one proposed in [3], and
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• A variable length entropy encoder VLE (respectively, variable length decoder VLD)
mapping the binary signal νk (run sequence, see TableII) to the M -bits ηj (respectively,
the decoder maps η̂j 7→ ν̂k). This block includes the synchronization process described
before.

We first address the description of the EBC and the resulting stability results, then in latter
section we discuss the VLE algorithm in connection with the Energy saves.

3. Description of the Event-based Coding EBC

Elements composing the Event-based Coding EBC are the level detector ϕLD, and the model-
based predictor.

3.1. The Level Detector ϕLD

The operation principe of the level detector is shown in Figure 2. The signal detection levels
are uniformly spaced by the quantum ∆. The level detector device produces a signal (identified
by ′01′ or ′10′) whenever a level crossing takes place, and a ′00′ if the signal remains within
the level. While two symbols are used to characterize the level changes, one more symbol can
be used to quantize time intervals. Then 01 indicates upward crossing, 10 downward crossing,
and 00 is used to code the time-interval between crossing.

To illustrate this, consider the example of Figure 2 (L=1), see [9] for more details. We assume
that uniform samples are taken every time Ts, then m samples are taken in the time interval
Ti = ti − ti−1 before a cross level takes place. As two levels (upward) crossing happen within
this interval, the binary representation of this situation by the level crossing detector produce
the following signal,

01, 00, 00, . . . 00
︸ ︷︷ ︸

m−pairs

, 01

This sequence has then high probability of 0′s, and thus suited for entropy coding.

To make this process operational, we introduce the operator ϕLD : x̃k 7→ νk, which takes
the error signal, x̃k, and codes the output νk into a 2L+1-valued one δk ∈ {−L, ,−1, 0, 1, , L}.
That is:

lk =

⌊
x̃k

∆
+

1

2

⌋

δk =







L if lk > lk−1 and L levels are crossed upwards
1 if lk > lk−1 and 1 level is crossed upwards
0 if lk = lk−1; and signal stay at the actual level

−1 if lk < lk−1 and 1 level is crossed downwards
−L if lk < lk−1 and L levels are crossed downwards

with ∆ the level threshold and ⌊·⌋ the floor operator which rounds to the smaller integer.
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Figure 2. Illustration of the level detector working operation principle for L = 1.

For instance with L = 1, the 3-valued signal δk is transformed into a 2-bits binary number
νk ∈ {00, 01, 10}, by the following operation.

νk =







00 if δk = 0
01 if δk = −1
10 if δk = 1

The combination ‘11′ is not used in this process.

3.2. The model-based predictor

Has the role to estimate (reconstruct) the encoded signal xk, namely x̂k, from the 2-bits binary
signal νk. It is composed of:

• The inverse of the level detector: ϕ−1
LD : νk 7→ δk 7→ ˆ̃xk, which equations are:

δk =







0 if νk = 00
−1 if νk = 01

1 if νk = 10
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and,
ˆ̃xk = ˆ̃xk−1 + ∆ · δk

Due to the quantization, this map does not describe an “exact inverse operator” as it
will be explained latter.

• The predictor. The model-based predictor, as its name indicated, uses the target closed-
loop model as a basis for its design. The predictor is a dynamic operator mapping the
“reconstructed” error ˆ̃xk to the “reconstructed” state x̂k. Its structure is inspired by our
previous works in [3], [5], and also in [6]. The predictor is a dynamic linear discrete-time
operator that maps the output of the inverse level detector, to the signal prediction
x̂k. Its structure depends upon the particular control used (state feedback or output
feedback). For instance, for the RST-control discussed here, it has the following form:

x̂k = W
[ γ

T
rk + ˆ̃xk

]

, W
△
=

BR

Acl

(3)

Which results in the following error equation:

x̃k = W
[

x̃k − ˆ̃xk

]

(4)

Due to the fact that the VLE block is a distortion-less coding, and for simplicity reasons
and without loss of generality, the stability properties of the first coding block, are basically
the same as those with the VLE block, which is mainly used for energy efficiency transmission.

4. Error system and stability conditions

Following the assumptions made in this paper (lossless channel transmission), we then have

that νk = ν̂k, and that δk = δ̂k. In this case binary variables are not needed, and hence error
equation can be described by real variables only.

4.1. Error equations

Introducing the following error definitions:

• ek = xk − γ
Acl

rk: the tracking error,
• x̃k = xk − x̂k: the prediction error, and
• εk = x̃k − ˆ̃xk: quantized error due to the non exact inverse mapping of the level detector,

i.e. due to the map ϕLD ◦ ϕ−1
LD.

we have the closed-loop error system:

ek = W (q−1)x̃k (5)

x̃k = W (q−1)εk (6)

with W = BR/Acl being the stable operator defined previously. Note that the εk = εk(x̃k),
and thereby the above error equation can be seen as two systems in cascade, i.e. the output
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of the autonomous system (6) is the input of the stable system (5). For stability purposes it
is thus sufficient to demonstrate the stability properties of the sub-system (6).

Note that εk writes as:

εk = x̃k − ˆ̃xk

= x̃k − ϕLD ◦ ϕ−1
LD {x̃k}

= x̃k − ϕ̃LD {x̃k}

where ϕ̃LD
△
= ϕLD ◦ ϕ−1

LD : x̃k 7→ ˆ̃xk. Note that this map is dynamic, defined by the following
relation:

ˆ̃xk = ˆ̃xk−1 + ∆ · δk (7)

with δk = f(x̃k) as defined before. The sub-system (6)-(7) can be then seen as a feedback
system,i.e.

x̃k = W (q−1)εk

= W (q−1)
(

x̃k − ˆ̃xk

)

= W (q−1)

(

x̃k −
∆

1 − q−1
δk(x̃k)

)

Ideally we would like that the map ϕ̃LD be a linear map with unitary gain. This ideal goal is
hampered by several factors:

• unknown initial conditions of x̃0,
• badly chosen Ts, and ∆, and
• chattering in the neighborhood of the quantum ∆.

In particular, large sampling times Ts, and too small quantum ∆ may result in signal variation
of more than one level, which may leads to unrecovered bias in the estimated, leading to
potential instabilities for unstable open-loop systems. This stability issues are analyzed next
for a system of one dimension.

4.2. Stability properties

Consider the stabilization problem (r = 0) of the following simple unstable system B(q−1)
A(q−1) =

bq−1

1−aq−1 , with 2 > |a| > 1, and the control law u = −kx̂k. Let 1 > ac > 0 be the desired

closed loop poles, the required gain to reach such closed-loop specification is k = (a − ac)/b.

This particular choice leads to the error equations (5)-(6) with W (q−1) = (a−ac)q
−1

1−acq−1 . Due to
the cascade structure of such error equation arrangement, we mainly will concentrate in the
equation (6) which captures most of the difficulties. To this aim we will concentrate on the
following set of equations, which describes the error feedback interconnection.

x̃k+1 = acx̃k + (a − ac)εk, εk = x̃k − ˆ̃xk (8)

ˆ̃xk = ˆ̃xk−1 + ∆δk, lk =

⌊
x̃k

∆
+

1

2

⌋

(9)

The analysis is divided into two steps:
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• Rate level condition. We first derive conditions on a, and a domain Bρ1
for x̃k that

ensures that no more than one level change can be effectuated, i.e. |lk − lk−1| ≤ 1,
• Invariance condition. Then, by a Lyapunov-like analysis we show that this domain is

indeed an invariant; solutions x̃k starting in Bρ1 do not leave this domain.

4.3. Rate level condition

We seek here to establish condition on |x̃k|, ∀k ∈ Z
+ such that the rate change in the level

detector be at most one. To be consistent with this aim, we need to assume in the sequel that
the encoder/decoder internal states are suitable initialized. That is, x̂0, and l0 are such that:
|ε0| ≤ ∆/2, and ˆ̃x0 = ∆l0 at k = 0.

Lemma 1. Consider unstable systems limited by the relation a < 2 + ac < 3, and let define

the compact set, Bρ1 , as:

Bρ1
= {x̃k : |x̃k| < ρ1} , ρ1 =

(1 − (a−ac)
2 )

1 − ac

∆

with ρ1 > 0. Then for all |x̃k| ∈ Bρ1 the following holds, ∀k ∈ Z
+:

i) |x̃k − x̃k−1| ≤ ∆,

furthermore, i) implies the following two equivalent inequalities:

ii) |lk − lk−1| ≤ 1

iii) |εk| ≤ ∆/2

Proof. Let us start with the last part of this result, i.e. (i) ⇒ {(ii) ⇔ (iii)}. By inspection,
it is easy to see that (i) ⇒ (ii); if the rate of change of x̃k is strictly smaller than ∆ then the
level change is limited, by definition, to a maximum one. In turn, (ii) ⇒ (iii), results from the
following arguments.

If the initialization condition ˆ̃x0 = ∆l0 and (ii) holds, then we have that ˆ̃xk = ∆lk, ∀k ∈ Z
+.

Then it follows that the error between the true estimation error, and the reconstructed one is
bounded by the amount ∆/2, i.e.

εk = x̃k − ˆ̃xk = x̃k − ∆lk = x̃k − ∆

⌊
x̃k

∆
+

1

2

⌋

= ∆

(
x̃k

∆
−

⌊
x̃k

∆
+

1

2

⌋)

.

Thus, we obtain

|εk| ≤
∆

2
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Inversely, if (iii) holds, it is easy by inspection to see that (ii) is true.
Now the first part of the lemma (i) is proven. From (8) we have

|x̃k+1 − x̃k| < (1 − ac)|x̃k| + (a − ac)|εk|

assume for the moment that (iii) holds, then condition for fulfilling i) is that

|x̃k+1 − x̃k| < (1 − ac)|x̃k| + (a − ac)|∆/2 < ∆

or equivalently that

|x̃k| <
(1 − (a−ac)

2 )

1 − ac

∆ = ρ1 (10)

For this expression to be valid (i.e. ρ1 > 0) , we require the condition a < 2 + ac < 3. To
conclude, assume that (10) holds independently to (i)− (iii) (as it will be shown latter in the
next section). Now if (i) holds we just show that this implies (iii), which in turn and together
with (10), implies (i).

4.4. Invariance condition

Question here is to find under which conditions we can ensure the invariance of the set Bρ1 .
This invariance condition is clearly needed to preserve the rate level condition mentioned
previously. We assume initially that the observation error is inside that set, and we look for
the condition such that this signal does not leave Bρ1

.

To this aim, consider the Lyapunov function Vk = x̃2
k, and its rate variation ∇Vk

△
= x̃2

k+1−x̃2
k,

i.e.
∇Vk = (a2

c − 1)|x̃k|
2 + 2(a − ac)acεkx̃k + (a − ac)

2ε2
k

≤ (a2
c − 1)|x̃k|

2 + (a − ac)ac|x̃k|∆ +
(a − ac)

4

2

∆2

△
= Φ(|x̃k|)

Where the last inequality results from the hypothesis that initially we assume x̃k ∈ Bρ1
, or

equivalently (see Lemma 1) that |εk| ≤ ∆/2.
The shape of the polynomial Φ(|x̃k|) is shown in Figure 3, this function has two roots, one

negative and other positive. The positive root, is ρ0, and is given by

ρ0 =
(a − ac)

2(1 − ac)
∆

It is necessary for stability that ρ0 < ρ1, else a local stability region may not exist. It is easy
to show that this condition is valid as long as a < ac + 1, which is the same condition already
assumed by Lemma 1.

The value of ρ0 defines the limit (somewhat conservative) after which the function Vk, and
hence the norm of xk decreases. Below that limit the function may grow. The worst case growth
in the interval |x̃k| ∈ [0, ρ0], can be estimated from the relation

x̃2
k+1 ≤

(

ac|x̃k| +
(a − ac)

2
∆

)2
△
= ψ(|x̃k|)

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2008; Control with limited

information:1–22

Prepared using rncauth.cls



12

|xk|

ρ0

Φ(|x̃k|)

ρ1

Figure 3. Φ(|x̃k|).

As the function ψ(|x̃k|) is convex in |x̃k| ∈ [0, ρ0] its maximum is located at the extremes of
this interval. The worst case growth is then defined by the following relation:

xmax = max
{√

ψ(0),
√

ψ(ρ0)
}

= ∆
(a − ac)

2(1 − ac)

Finally, the set Bρ1
is invariant if xmax < ρ1, i.e.

∆
(a − ac)

2(1 − ac)
< ∆

(1 − (a−ac)
2 )

1 − ac

working out details of this inequality, it can be shown that this equality holds if a−ac < 1, for
all ac ∈ (0, 1). Note that this is a stronger condition than the one in Lemma 1 as it is derived
from a more conservative analysis.

The following theorem summarizes the main result.

Theorem 1. Assume that the coding algorithm is initialized such that x̂0, and l0 are such

that: ε0 < ∆/2, and ˆ̃x0 = ∆l0. Consider system satisfying a− ac < 1, with initial condition in

the set x̃0 ∈ Bρ1
. Then:

• x̃k ∈ Bρ1 , ∀k ∈ Z
+,
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• ∃k0 : |x̃k| ≤ ρ0, ∀k ≥ k0, and

• limk→∞ d(xk,Bβ) = 0.

where d(xk,Bβ) is the minimum Euclidean distance from xk to any point within the ball

Bβ := {x ∈ R : ‖x‖ < β},

and β is a constant that depends on ρ0, and on the infinite norm of W (q−1).

Proof. The first two statements follow from the previous analysis, the last statement result
from equation (5), i.e; |xk| ≤ ||W || · |x̃k|. Details for the derivation of this property are similar
to the ones used in [3], and [5].

4.5. Stability of the 2L+1 level detector

We consider now the case of a 2L + 1-level detector. Increase of level numbers allows for a
better system precision, but also permits to the ability to handle systems with a higher level
of instability. It is also important to have rules for the design of L and ∆ as a function of the
desired specifications.

Consider the following problem. Given a system (a, b), and a desired closed loop system
precision and pole location (ρ2, ac), being ρ2 the desired asymptotic maximum value of the
regulation error ek, we wish to find how many level values 2L+1, and the level width ∆ so that
the system is stable (in the sense defined below) and reply to the given specifications. Because
the nature of the problem treated here, the result can only be local. Then, the attraction
domain also need to be computed as a function of the design parameters.

Theorem 2. Given a, b, ac, and ρ2, and assuming that the coding algorithm is initialized such

that: ε0 < ∆/2, and ˆ̃x0 = ∆l0. Then, if the estimation error is initially within the set

Bρ1
= {|x̃k| <

L − |a−ac|
2

|1 − ac|
∆}

the tracking error will converge to a domain bounded by ρ2, provided that (L, ∆) are chosen to

satisfy the following inequalities:

∆ ≤ 2
(1 − ac)

2

(a − ac)2
ρ2 (11)

L ≥ ⌈|a − ac|⌉ (12)

Proof. The proof is realized in two steps:
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1. Number of levels L design Assuming first that ∆ is given, we seek to establish a
condition on L to ensure that the rate of change of the encoded error prediction does not over
exceed L levels at any time, that means |x̃k+1 − x̃k| < L∆, for all k. As before, this condition
implies that the error εk = x̃k − ˆ̃xk is always bounded as |εk| ≤ ∆/2. Assuming this holds, we
have

|x̃k+1 − x̃k| ≤ |1 − ac||x̃k| + |a − ac||εk|

≤ |1 − ac||x̃k| + |a − ac|∆/2

≤ L∆

where the last inequality reflects the desired objective. As in Lemma 1, from here we get that

|x̃k| <
(L − |a−ac|

2 )

|1 − ac|
∆ = ρ1 (13)

Now following the same steps as in the invariant condition of Lemma 1, with ρ0 = |a−ac|
2|1−ac|

∆,

the condition on L follows from the necessity of having ρ1 > ρ0. This results in

L ≥ |a − ac|

which gives the choice of L = ⌈|a − ac|⌉ with ⌈·⌉ being the ceil function.

2. Level width ∆ design Consider the function vk = x2
k, and its rate variation ∇vk ,

x2
k+1 − x2

k, we have previously seen that x̃k is bounded by ρ1 ∀k and there exists a
k0 : |x̃k| < ρ0 ∀k ≥ k0. Moreover the closed loop system is stable, so we assure that xk0

is
bounded. Now, all the analysis is realized for k > k0

∇vk =(a2
c − 1)|xk|

2 + 2(a − ac)acxkx̃k + (a − ac)
2x̃2

k

≤(a2
c − 1)|xk|

2 + 2(a − ac)ac|xk|ρ0 + (a − ac)
2ρ2

0

,φ2(|xk|)

The function φ2 is negative for |xk| > a−ac

1−ac

ρ0, so xk will decrease until a−ac

1−ac

ρ0 and
after with the same analysis of convexity with φ2 as Φ , we assure that for any xk0 ,
∃k1 : ∀k > k1 |xk| < a−ac

1−ac

ρ0. Hence, we obtain that the regulation error converges in

finite time to ρ2 = a−ac

1−ac

ρ0. This analysis leads to

∆ = 2
(1 − ac)

2

(a − ac)2
ρ2

5. Energy saves

In this section, we discuss energy saves resulting from the previous scheme in two possible
contexts:

• Word-by-word transmissions, and
• Packet-based transmissions

In the latter case, we introduce an additional entropy encoding algorithm that is suited the
energy efficiency of the transmission.
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5.1. Word-by-word transmission

In this scenario we assume that we dispose of a transmission mechanisms that transmit a
single word-code per unit of time Ts, where Ts in our context is the sampling time used in our
problem formulation. We assume also that we have to our disposal, two transmission power
levels; PH is the high power level, whereas PL describes the low power one. This set up allows
for ”sleep” transmission modes, where the stand-till events are transmitted with a low-power,
whereas changes in the signal uses high-power instead.

Consider the use of the 3-word code described previously, and assume that the coding
sequence is independent and identically distributed, and that the upward crossing frequency
equals the downwards crossing frequency, the probability of each event to happen is

p = P(00), P(01) = P(10) =
1

2
(1 − p)

where p ∈ [0, 1] is the probability to have an stand-still event. Then we can associate the power
PL to the code 00, and PH to the events 01, and 10. This is summarized in Table I.

Codeword Power distribution Associated Probability

00–stand-still PL–low power p

01–source change PH–high power 1
2 (1 − p)

10–source change PH–high power 1
2 (1 − p)

Table I. Power distribution and associated probability as a function of the codeword.

We are interested here in quantifying the mean energy per unit of time Ts as a function of
p, and PH , and PL. We can then define this mean energy as:

ET = lim
N→∞

1

N

N∑

k=1

Ek = lim
N→∞

1

N

N∑

k=1

TsPk

where Ek = TsPk correspond to the delivered energy per period with Pk ∈ {PH , PL}. Under
the assumptions taking here, the mean power use can be substituted by its probability value,
leading to the following expression for ET

ET = Ts lim
N→∞

1

N

N∑

k=1

Pk

= Ts (P(00)PL + P(01)PH + P(10)PH)

= TsPH
︸ ︷︷ ︸

Total energy

−Tsp(PH − PL)
︸ ︷︷ ︸

Energy saves

(14)

The expression above suggests as expected that energy saves, we can maximized by taking
PL as small as possible, and it also quantifies the impact of those saves as a function of the
probability to the stand-still events. Energy-efficiency of this proposed coding scheme can then
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substantial improved for systems where the prediction error is within the stand-still zone (i.e.
low perturbed systems including stable ones). Note also that the size of ∆ will also have an
important impact as this will affect the probability p.

5.2. Packet-based transmission

We consider a different scenario, where bits are sent in a packet fashion. We assume that we
dispose for each package of a fixed amount of energy, E0 = (P0/m)(mTs) but that we allow
to distribute this energy along the time-interval TI = mTs, by changing the power associated
to each sent package P0/m. Note that both the time-interval and the associated power per
package will vary in time as a function of the positive integer 1 ≤ m ≤ (2(M−1) − 1), where M
is the block length of the variable length entropy coding described next. The idea is shown by
Fig. 4.

Figure 4. Transmission power distribution in the variable lenght entropy coding

Variable length entropy coding VLE Entropy codes are typically used to reach high
compression rates. In here we show the interplay of these benefits with respect to energy saves
in the context described above. The main idea is to assign some probability distribution to the
events, so that the mean energy per period can be optimized. Run-length codes∗, are a class
of variable-length codes that are sub-optimal in term of compaction ratio (when compared
to the Huffman code), but have the advantage of avoiding buffering at the decoder side, and
therefore reducing data transmission latency.

The VLE of length M can be described as a memory map from νk to ηj . The VLE block
contains a buffer of dimension l that stores information of past values of νk. The buffer
dimension l depends on M . The buffer information is used to build a run sequence resulting
from the composition of νk−l, ..., νk. This sequence, which is a variable-length binary signal,
is named the “run sequence” used to produce the output ηj . The variable-length nature of
this sequence introduces a variable latency (asynchronous output) which is multiple of Ts. An
example of a coding scheme of block length M = 3, inspired from [9], is described in Table II.

As a metric for energy-improvements, let consider again the mean energy for unit of time
ET , written as the product of the mean power Pm times the time interval under consideration

∗Class of coding strategy that can decode information instantaneously.
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Run sequence Transmission period Output ηj

νk−2, νk−1, νk (sec) (M = 3)

01 Ts 000

10 Ts 001

00 01 2Ts 010

00 10 2Ts 011

00 00 01 3Ts 100

00 00 10 3Ts 101

00 00 00 3Ts 110

unused - 111

Table II. Run-length encoding.

Ts. It follows then that

ET = PmTs =
E0

Tm

Ts

where Tm is the mean transmission period that need to be calculated. For the case shown in
Table II, Tm can be calculated using the associated probability values, i.e.

Tm =Ts · 2(·
1 − p

2
+ 2Ts · 2·

1 − p

2
+3Ts · (2 · p2 1 − p

2
+ p3)

=Ts((1 − p)(1 + 2p + 3p2) + 3p3)

=Ts

1 − p3

1 − p

Note that, for the case of of a VLE of block length M bits, the result generalized to

Tm = Ts

1 − p(2(M−1)−1)

1 − p

And hence the ET is given for the general case as:

ET = E0
1 − p

1 − p(2(M−1)−1)
= E0f(p,M)

with extreme values being:

Emax = lim
p→0

ET = E0, Emin = lim
p→1

ET =
E0

(2(M−1) − 1)
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For comparison purposes, it is suited to compute the ratio between the mean energy cost using
VLE, and the energy cost not using the VLE. This last cost can be computed by first noticing
that the Energy cost per bit is assumed to be constant and equal to E0/M , hence as two bits
are sent in the case of not using VLE, the energy cost for that case will be 2E0/M . Then we
have

α(p,M) =
ET

2E0/M
=

M

2
f(p,M)

Ratios α < 1, provide energy saves , whereas ratios α > 1, have a penalty energy cost. Table III
gives the efficiency ratio α, for different values of M and p.

α

p = 0; p = 0.4; p = 0.8; p = 1

M a = 1.6 a = 1.1

3 1.50 0.96 0.61 0.50

4 2.00 1.20 0.51 0.29

5 2.50 1.50 0.52 0.17

6 3.00 1.80 0.60 0.09

Table III. Efficiency-energy ratio α(p, M) for p = 0,p = 0.4, p = 0.8 and p = 1

From this table we can see that for a given probability p it becomes critical to select the
code block length M .

6. Simulation evaluation

The purpose of this section is to evaluate in simulation the proposed algorithm and to discuss
several issues concerning the algorithm implementation, and energy saves.

We consider the following simple system

B(q−1)

A(q−1)
=

bq−1

1 − aq−1
(15)

The controller is: uk = −kx̂k + γrk obtained from the closed-loop specification given by
Acl = (1 − aclq

−1), k = a−acl

b
and γ = 1 − ac. The system in the simulation is given by:

a = 1.1, b = 1, ac = 0.9, Ts = 0.05 (sec), x0 = 0 and x̂0 = −0.01 so x̃0 = 0.01, and the
asymptotic bound on the regulation error is ρ2 = 0.04, with the analysis of Theorem 2 we
obtain L = 1 and ∆ = 0.02.
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Figure 5. Simulation results with ∆ = 0.02 ; Ts = 0.05 yielding |lk − lk−1| ≤ 1. Output and reference

(upper), x̃ vs.ˆ̃x (middle), and lk − lk−1 (lower)

Initial conditions of the predictor at the encoder side x̂0 need to be synchronized with initial
condition predictor at the decoder side. This requires a specific initialization procedure that
send this initial information before the coding process is triggered. The Figure 5, shows a
simulation where parameters are selected to satisfy the stability conditions. As a consequence,
the change of level is limited to one.

6.1. Event distribution and its impact in the energy saves

Note that practically all parameters of the control scheme affect the spectrum of the evolution
of δk, and in particular the ∆, and Ts, but also the magnitude of open-loop unstable poles.
Figure 6 shows the resulting histogram of δk for two simulations with two different values of
a.

The results show that for small values of a the frequency spectrum of δk is reduced, and
hence the event δk = 0 has higher probability to occur. We recall that distributions with
high roll-off will be benefic for data compression, as illustrated by the VLE algorithm. We
can then conclude that open-loop instable systems with a high degree of instability are less
adapted for entropy coding. The resulting compression ratio are reported in Table ??. Best
energy-efficiency rates are thus obtained for the cases where p is higher, i.e. the bottom figures
in Fig.6.
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Figure 6. Simulations with ∆ = 0.02; Ts = 0.05; a = 1.6 (upper), ∆ = 0.02; Ts = 0.05; a = 1.1

(bottom), Time evolution of δk (left), histogram of events (right)

From the Table III we can see that for a = 1.1, the best choice is a VLE coding of length
M = 4, or M = 5, whereas for the system with a = 1.6 only the VLE with M = 3 improves
over the one without entropy coding.

7. Conclusions

In this paper we have investigated new event-based coding algorithms that are suited to
improve the energy transmission efficiency in the context of networked controlled systems. We
have also study the energy impact of using entropy coding and the event-based algorithms.
The main motivation has been to explore the benefits in terms of mean energy per period.
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In particular we have analyzed the case of variable-length encoder VLE, which in spite of its
sub-optimality do not require buffering at the decoder side, and hence reduce latency.

It has been shown that the scheme results in a local stable system with an attraction domain
and a final precision depending on the value of the level granularity ∆. It was also possible
to devise a design algorithm that determines the number of levels (or bits)and the size of ∆
needed to reach a given precision.

Finally, we have evaluated the energy saves that can be reached in two possible scenarios;
word-by-word, and packaged-based transmissions. The first case,which better adapted to
scenarios where sleep modes can be implemented with low-power, the energy saves are directly
proportional to the probability, p to these events to occur. In the second case, we have analyzed
the energy impact of using VLE. We have derived a energy-efficiency ratio, α that quantifies
the potential energy saves as a function of p, and the VLE code length, M . Here the optimal
choices are more involved as this efficiency ratio depends nonlinearly on p, and M . However,
for a given p it is still possible to find the optimal value of M .
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