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Abstract

Over the last ten years blind source separatiols{B&s become a prominent processing tool
in the study of human electroencephalography (ER@hout relying on head modeling BSS aims at
estimating both the waveform and the scalp spp#itiern of the intracranial dipolar current
responsible of the observed EEG. In this reviewbegin by placing the BSS linear instantaneous
model of EEG within the framework of brain volumenduction theory. We then review the concept
and current practice of BSS based on second-otastEs (SOS) and on higher-order statistics
(HOS), the latter better known as independent caompbanalysis (ICA). Using neurophysiological
knowledge we consider the fitness of SOS-basedif8-based methods for the extraction of
spontaneous and induced EEG and their separationdktra-cranial artifacts. We then illustrate a
general BSS scheme operating in the time-frequdooyain using SOS only. The scheme readily
extends to further data expansions in order toucapxperimental source of variations as well. A
simple and efficient implementation based on th@eximate joint diagonalization of Fourier
cospectral matrices is described (AJDC). We corectlidcussing useful aspects of BSS analysis of

EEG, including its assumptions and limitations.
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Introduction

Recent studies on human electroencephalogram (BEG)ased on the theory of brain
volume conduction. It is well established that gle@erators of brain electric fields recordable from
the scalp are macroscopic post-synaptic potertiasted by assemblies of pyramidal cells of the
neocortex (Speckmann and Elger, 2005). Pyramidisl @ee aligned and oriented perpendicularly to
the cortical surface. Their synchrony is possibbnks to a dense net of local horizontal connestion
(mostly <1mm). At recording distances larger theaut three/four times the diameter of the
synchronized assemblies the resulting potentiahbeh as if it were produced by electric dipoleks; al
higher terms of the multipole expansion vanishaedbtain the often invoked dipole approximation
(Lopes Da Silva and Van Rotterdam, 2005; NunezSardvasan, 2006, Ch. 3). Three physical
phenomena are important for the arguments we ativatghis study. First, unless dipoles are
moving there is no appreciable delay in the scaiser measurement (Lopes da Silva and Van
Rotterdam, 2005). Second, in brain electric fiegldse is no appreciable electro-magnetic coupling
(magnetic induction) in the frequencies up to alddiHz, thus the quasi-static approximation of
Maxwell equations holds throughout the spectrunmigfrest (Nunez and Srinivasan, 2006, p. 535-
540). Finally, for source oscillations below 40ldhas been verified experimentally that capacitive
effects are also negligible, implying that poteintiéference is in phase with the corresponding
generator (Nunez and Srinivasan, 2006, p. 61).& heenomena strongly support gugperposition
principle, according to which the relation between neocaltiipolar fields and scalp potentials may
be approximated by a system of linear equations/é8a1987). Whether this is a great simplification
we need to keep in mind that it does not hold touell cerebral phenomena. Rather, it does at the

macroscopic spatial scale we are interested in here

A common approach to the study of human EEG ieszdbe patterns in space and time and
link empirical findings with anatomical and physiglcal knowledge. The problem is characterized
by high temporal resolution (about 1ms) and lowtigbeesolution (several cth For example, it has
been estimated that without time averaging abounh#libn contiguous neurons must be

synchronously active as to produce observable gmagmntials (Nunez and Srinivasan, 2006, p. 21).
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Such a cluster would realistically extend over salvent of cortical gyral surface, whereas
disentangling fields emitted by cortical functiomnalits may require much higher precision. Because
of volume conduction, scalp EEG potentials desailvéxture of the fields emitted by several dipoles
extending over large cortical areas. Practicafiygrider to improve the spatial resolution it isaft
necessary to trade in the temporal one operatimg $orm of temporal averaging. In summary, the
path followed by much of current EEG research i§gdolate” in space and time the generators of the
observed EEG as much as possible, counteractingittieg caused by volume conduction and

maximizing the signal-to-noise ratio (SNR).

Over the years we have assisted to the developohesteral classes of methods to improve
the spatial specificity. Those include, among atheurface and cortical Laplacian (Nunez and
Srinivasan, 2006), equivalent dipole fitting (Moskeal., 1992) and distributed minimum norm
(model-driven) or minimum variance (data-driven)drse solutions (Greenblatt et al., 2005; Lopes
da Silva, 2004). Targeted attempts include spaggifin approaches (Gorodnitsky et al., 1995; Cotter
et al., 2005) and spatial filters known as beam&miRodriguez-Rivera et al., 2006; Congedo,
2006). Surface Laplacian methods apply a spatigd-pass filtering to the scalp potential by
estimating their second spatial derivative. Theyte overemphasize high spatial frequency and
radial (to the scalp surface) dipolar fields. Irsgesolutions seedource localizationn a chosen
solution space and rely on geometrical models @hiad tissue. Unfortunately, the accurate
description of EEG volume conduction is complicabgdnhomogeneity (resistivity varies with type
of tissue) and anisotropy (resistivity varies iffatient directions); therefore source localization

methods are inevitably undermined by geometricalefing error.

Another approach that persists in EEG literatutdired source separation (BSS). First
studied in our laboratory during the first halftbé 80’s (Ans et al., 1985; Hérault and Jutten6)98
BSS has enjoyed considerable interest worldwidg amlecade later, inspired by the seminal papers
of Jutten and Hérault (1991), Comon (1994) and &edl Sejnowski (1995). BSS has today greatly

expanded encompassing a wide range of enginegoplgations such as speech enhancement, image
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processing, geophysical data analysis, wirelessraomcation and biological signal analysis
(Hyvarinen et al., 2001; Cichocki and Amari, 20Q20i et al., 2005). Such ubiquity springs from the
“blind” nature of the BSS problem formulation: nodwledge of volume conduction or of source
waveform is assumed. The problem may be attacked $everal perspectives; several hundred BSS
algorithms have been proposed over the last 2G yeiéin more added on every year. Typically, such
methods are based on the cancellation of secord statistics (SOS) and/or of higher (than two)
order statistics (HOS). Their commonality residethie assumption of a certain degree of source
spatial independenceavhich is precisely modeled by the cancellatiothoke statistics. Both HOS

and SOS have been employed with success in EE@.drkdoday established for denoising/artifact
rejection (Vigério, 1997; Jung et al., 2000; Vorobynd Cichocki, 2002; Iriarte et al., 2003; Jogte
al., 2004; Kierkels at al., 2006; Fitzgibbon et aD07; Frank and Frishkoff, 2007; Halder at aD20
Phlypo et al., 2007; Romero et al., 2008; Crespref@at al., 2008), improving brain computer
interfaces (Qin et al., 2005; Serby et al., 200ang/and James, 2007; Dat and Guan, 2007;
Kachenoura et al., 2008) and for increasing the 8N&ngle-trial time-locked responses (Cao et al.,
2002; Sander et al., 2005; Lemm et al., 2006; Tdrad., 2006; Guimaraes et al., 2007; Zeman et al.,
2007). Yet, it appears that only four of the marigting algorithms have repeatedly occurred in EEG
literature. They are known as FastICA (Hyvarine399), JADE (Cardoso and Souloumiac, 1993),
InfoMax (Bell and Bejnowsky, 1995) and SOBI (Belbwani et al., 1997). FastICA, InfoMax and
JADE are ICA (HOS) methods, while SOBI is a SOShuodt JADE and SOBI are solved by
approximate joint diagonalizatiofCardoso and Souloumiac, 1993; Pham, 2001 b; 6er@002;

Ziehe et al., 2004; Vollgraf and Obermayer, 2006ard Zhang, 2007; Fadaili et al, 2007; Dégerine
and Kane, 2007), a powerful algebraic tool whidbves promising extensions that we will consider

in this study.

The BSS problem for the brain
For N scalp sensors amd<N EEG dipolar fields with fixed location and orientat in the
analyzed time interval, the linear BSS model singtites the superposition principle discussed

above, i.e.,
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v(t) = As(t) +#(t) (1.0)
wherev(t) DRV is thesensor measurement vegt ADR"™ is a time-invariant full column rank

mixing matrix, s(t) R holds the time-course of the source components(t) OR" is additive
noise, temporally white, possibly uncorrelate(s(t) and with spatially uncorrelated components.
Our source estimation is given by

&(t) = Bv(t) (1.1)
where BOR™ is calledthe demixingor separating matrixHereafter the caret indicates a statistical

estimation. Although this is the classical BSS medeneed a few clarifications for the EEG case:

first, by #(t) we modelinstrumentalnoise only. In the following we drop tl(t) term because the

instrumental (and quantization) noise of modern EgGipment is typically low (g1V). On the

other handbiological noise (extra-cerebral artifacts such as eye mormenand facial muscle
contractions) anénvironmentahoise (external electromagnetic interference) otagy a mixing
process as well, thus they are generally modeledmponents (s(t), along with cerebral ones.
Notice that while biological and environmental mogan be identified as separated components of

s(t), hence removed, source estimation will be affectethb underlying cerebraélackground noise

propagating with the same coefficients as the $i@elouchrani and Amin, 1998). Second, the
assumption of time-invariance of the mixing prodesd.0) must apply only locally. The demixing
matrix is assumed fixed for a given temporal iné&rtout may be allowed to change (slowly) across
successive intervals (Pham 2001 a; Li et al., 20863h a model allows changes in the location and
orientation of dipole layers over time. The assuams underlying model (1.0) are crucial for the

success of the source separation, thus will bensédered in more details in the discussion.

A suitable class of solutions to the brain BSS prdém
To tackle problem (1.1) assuming knowledge of senmsmmsurement only we need to reduce
the number of admissible solutioms this paper we are interested in weak restristiconverging

toward condition
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S(t) =Gs(t) , (1.2)
whereg(t) holds the time-course of the true (unknown) seymmcesses and thgstem matrix

G=BA=AP (1.3)
approximates a signed scaling (a diagonal matyiand raw permutatiorPj. Equation (1.2) is
obtained substituting (1.0) in (1.1) ignoring trese term in the former. Whether condition (1.2yma
be satisfied is a problem wfentifiability, which establish the theoretical ground of BS®ih€Tong
et al., 1990; Tong et al., 1991 a, b; Tong etl&193; Cardoso, 1998 a; Pham and Cardoso, 2001;
Pham, 2002; Theis, 2004). In turn, matching coadifil.2) implies that we can recover faithfully the
sourcewaveformout of ascale(including sign) angbermutation(order) indeterminacy. The idea suits

EEG well, since the waveform bears meaningful pilggical and clinical information. Notice the
correspondence between thBsource, itseparating vectofm™ row of B ) and itsscalp spatial

pattern(mixing vector) given by them™ columnof A=B". Hereafter superscript + indicates the
Moore-Penrose pseudo-inverse. The mono-dimensigmdlthose vectors and their sign/energy
indeterminacy implies the explicit modeling of #éentation and localization parameters of iiffe
source, but not its moment. This is also the cAgaverse solutions with good source localization
performance (Greenblatt et al., 2005). Nonethelesg;an evaluate the relative energy of each source
sorting them by decreasing valueeadblained varianceas illustrated in appendix (D). Moreover,
linearity allows switching back from the source@pato the sensor space. Substituting (1.1) into

(1.0) and dropping the noise term in the latteld@®&SS filtering
v'(t) = ARS(t) = ARBV(t). (1.4)
whereR is a diagonal matrix witm™ diagonal element equal to 1 if thé component is to be

retained and equal to O if it is to be removed.

Different approaches for solving the source separain problem
It has been known for a long time that in gendralBSS problem cannot be solved for
sources that are Gaussian, independent and idntcstributed (iid) (Darmois, 1953). The iid

condition implies that each sample of the sourecepmments is statistically independent from the
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others and that they all follow the same probapbdistribution. Therefore, in order to solve theBS
problem the sources must be either (1) possibj\biitl non-Gaussian or (2) not iid. In case (1), one
assumes that at most one source is Gaussian dritigfiare all mutually statistically independent.
The mutual independence assumption (spatial indkgpexe of all pair-wise sources) should not be
confused with the iid condition (temporal indepemzkeof successive samples within each source
process). Actually, the iid condition implies thmat temporal information is used, thus the method is
efficient regardless the temporal dependence atssuThose methods are knownraependent
component analysi@CA) (Jutten and Hérault, 1991; Comon, 1994, 199@vérinen et al., 2001).

ICA requires higher order statistics (HOS), exglagnwhy it may succeed only if at most one source
has Gaussian distribution: in fact Gaussian distitins are fully defined by their statistics upthe
second order (SOS). The idea of (2) is to breaktreGaussianity assumption. This can be done by
assuming that source components are all pair-wisereelated and that either (a) within each source
component the successive samples are temporatigiatad, (Tong et al., 1990; Molgedey and
Schuster, 1994; Belouchrani et al., 1997; ZieheMilder, 1998) or (b) samples in successive time
intervals do not have the same statistical distidioiii.e., they are non stationary (Matsuoka gt al
1995; Souloumiac, 1995; Choi and Cichocki, 200@mRand Cardoso, 2001; Choi et al., 2002).
Provided that source components have non-propaitgpectra or the time courses of their variance
(energy) vary differently, one can show that secomtr statistics are sufficient for solving the
source separation problem. Since second ordestgtatare sufficient, the method is able to separat

also Gaussian sources, contrary to ICA.

In summary, ICA methods require a higher indepandeassumption (HOS independence),
while SOS methods rely on a weaker uncorrelatisamagtion (SOS independence) coupled to the
assumption that source components display unigeetisp density signature (characteristic source
coloration) and/or unique source energy variatignature (characteristic non-stationarity). Wel wil
see that different source energy in different eixpental conditions is also a sufficient additional

condition allowing separation using SOS. If thessuanptions are fulfilled the separating matrix can

1 Such processes are caltmmlored in opposition to iid processes, which are calléite
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be identified uniquely, thus source can be recalargardless the true mixing proce@miform
performance property: see for example Cardoso, 2)98d regardless the iid condition for ICA or

the Gaussian condition for SOS BSS.

A recent trend in the literature on EEG source isjmn is the design of algorithms blending
spatial independence with other specific assumgtiS8nch an approach is callsemi-blind source
separation Different priors have been introduced in the ¢osttion pursuing spatial independence.

In a Bayesian framework Roberts (1998) introdugawon signal distributions, but those seems
little useful in EEG since typically the distriboiis are not known a-priori. Temporal constraintgeha
been introduced using ad hoc reference signalsimsexperimental stimulation or visual inspection
of the observed mixtures (James and Gibson, 2003nd Rajapakse, 2005). Zhang (2008) describes
a method to extract reference signals from therebdavaveforms designed to work even when the
interesting source signal is not visible in theaskied measurement. Spatial constraints have been
employed to recover sources of interest with knepatial topographies (Hesse and James, 2006; llle,
Berg and Scherg 2002). Spectral constraints hase &lso introduced to recover sources with known
spectral content (James and Hesse, 2005; Wangaameks,)2007; Barbati et al, 2008). Finally, a
flexible semi-blind ICA approach where one can npooate priors of experimental or physiological
origin as well has been proposed by Barbati R806). All BSS methods cited so far rely on the
spatial independence assumption. Other methods exexing definitely this assumption and
imposing instead positivity of sources and mixtute=e and Seung, 1999, 2001) or source sparsity
(Gribonval and Lesage, 2006; Li et al., 2006). Bheethods will not be considered in this study

despite their theoretical interest since so fair inge with EEG has been marginal.

SOS vs. HOS: statistical considerations

Joyce et al. (2004) reports that successful séparaf EEG data can be achieved using as
few as 100 data points using SOBI (SOS) and 1000ave using ICA (HOS) algorithms. This is a
known advantage of SOS-based BSS methods; an taietical efficiency allows performing BSS

on shorter time intervals, which is a safe strategyrevent serious departures from the linear
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instantaneous model assumptions (see discusdidnas blso been suggested that SOS estimations are
more robust with respect to noise as compared t8 Ei€limations (Belouchrani et al, 1997; Joyce et

al, 2004). We natice that this is not necessarilg.tFor instance, the estimation of kurtosis is
unaffected by white Gaussian noise, whereas thstisrue for SOS estimations. However, SOS
estimations are expected to be more robust withego outliers, in that their influence in ensésnb
average estimations is magnified by elevation éosticond power, whereas for HOS it is magnified

by elevation to the third and/or fourth power.

SOS vs. HOS: neurophysiological considerations

The hypothesis of spatial independence

Human neocortex is a prodigious net of local dothg interconnections. There are about as
many neurons (£f) as cortico-cortical fibers connecting them in 1h&5 cm range (Nunez and
Srinivasan, 2006, p. 7). Dense and sometimeslaligéd connections exist between the neocortex and
sub-cortical structures as well. Therefore, one askyif assuming independent time course of
cortical cell assemblies is reasonable. It has Bpenulated that forcing independence of the BSS
output may result in spurious source componentst(hi., 2006). A study on induced visual gamma
activity has also questioned the source non-Ganiggimssumption as required by ICA (Barbati et al.,
2008). In practice, the BSS output is never exantlgpendent, but just as independent as possible
and this may explain why BSS is useful with EEG.3H&hd SOS BSS may be both conceived as
spatial filters minimizing the dependence of thealied mixtures. For EEG data this is an effective
way to counteract the effect of volume conductlarfact, we have seen that the brain tissue behaves
approximately as a linear conductor, thus obsepatentials (mixtures) are more dependent than the
generating dipolar fields. The fundamental diffeebetween HOS and SOS BSS springs from the
kind of statistical information they try to extrdodbm the data. Thus, the critical question is vog¥

the respective statistics inform about the actaatee process, question to which we now turn.

10
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Extra-cerebral Artifacts

An important problem with EEG recording is the @nination of extra-cerebral artifacts.
The most common artifacts are electric signals geed by the eyes and muscles of the face, jaw and
neck. Artifacts have characteristic spatial, cdioraand non stationary signatures, well distinotf
EEG spontaneous activity (llle et al., 2002; LogasSilva, 2005 a). Still, their separation and
removal has remained a difficult task. Eye blinkes a@tributed to change of conductance due to the
moving eyelid on the cornea. They generate a patgeak which amplitude can be one order of
magnitude stronger than the EEG. Eye movementk Mmditional movements and saccades, are
attributed to the cornea-retina dipolar field. Togily, vertical and horizontal movements are
monitored by means of electrodes positioned abodenaxt to the eye, providing an orthogonal
space for movements in all possible direction. l@ndther hand, contamination by facial, jaw and
neck muscles typically manifests as persistentyoitage high-frequency signals (>20Hz: Whitham

et al., 2007) with focused spatial distribution aagidly decaying autocorrelation function.

The use of coloration has been suggested for segpEEEG from eye movements (Joyce et
al., 2004). In most comparative studies (Kierkelala 2006; Fitzgibbon et al., 2007; Halder at al,
2007; Romero et al., 2008) coloration have beend®uperior than non-Gaussianity for eye
movements removal, but Phlypo et al. (2007) foumdiclusive results (slightly favoring HOS) and
Frank and Friskhoff (2007) concluded clearly indaef HOS. We notice that the linear instantaneous
model (1.0) doerot admit rotating dipoles. Furthermore, the movementse two eyes are
extremely correlated, forming two spatially depeamdiipoles. Insomuch, in principle linear BSS
methods cannot resolve them. In effect, a methsdnaisig instantaneous mixing will try to model an
“average” big dipole covering both eyes, or in thidle of them and will try to explain the rotating
orientation by two or three orthogonal componefniss raises the problem of “misallocation of
variance” and will result in sub-optimal separat{énank and Frishkoff, 2007). Based on these
considerations we believe that a general BSS approased on the spatial independence assumption
is not optimal for separating EEG from eye moverserdgardless the use of SOS or HOS. To

accomplish this task semi-blind approaches appeae promising (e.g., llle, Berg & Scherg 2002).

11
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On the other hand, the separation of muscle contgtion appears easier to treat. Generally both SOS
and HOS methods perform correctly with them (CreSpacia et al., 2008), yet research on more

targeted approaches is in progress (Gasser 808b; De Clercq et al., 2006).

Spontaneous and induced EEG

Observed potentials are the summation of postgimpotentials over large cortical areas
caused by trains of action potentials carried ligraht fibers. The action potentials come in
trains/rest periods, resulting in sinusoidal oatiitins of the scalp potentials, with negative shift
during the train discharges and positive shiftsriurest. The periodicity of trains/rest periods ar
deemed responsible for high-amplitude EEG rhythossillations) up to about 12Hz, whereas higher
frequency (>12Hz) low-amplitude rhythms may refulim sustained (tonic) afferent discharges
(Speckmann and Elegr, 2005). There is no doubtath@&nportant portion of spontaneous EEG
activity is rhythmic, whence strongly colored (Néetheyer, 2005 a; Steriade, 2005; Buzsaki, 2006,
Ch. 6, 7). Some rhythmic waves come in more ordesst bursts. Typical examples are sleep
spindles (7-14Hz) (Niedermeyer, 2005 b; Steria@@52, frontal Theta (4-7Hz) and Beta (13-35Hz)
waves (Niedermeyer, 2005 a). Others are more sestaas it is the case for slow Delta (1-2Hz)
waves during deep sleep stages lll and IV (Niedgeme005 b), the Rolandic Mu rhythms (around
10Hz and 20Hz) and posterior Alpha rhythms (8-12(gdermeyer, 2005 a). In all cases brain
electric oscillations are not ever-lasting and oae always define time intervals when rhythmic
activity is present and others when it is absestutastantially reduced. Such intervals may be
precisely defined based on known reactivity prapsmf the rhythms. For example, in event-related
synchronization/desynchronization (ERD/ERS: Pfumédler and Lopes da Silva, 2004), which are
time locked, but not phase locked increases/deesaafshe oscillating energy (Steriade, 2005),
intervals may be defined before and after eveneéti@n the other hand event-related potentials
(ERP: Lopes Da Silva, 2005 b), which are both tlowked and phase-locked can be further
partitioned in several successive intervals conmggithe different peaks. Such source energy

variation signatures can be modeled precisely b8,26 we will specify.

12
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Transients

Another class of brain electric phenomena compfissnsient waves such as spikes, sharp
waves and spike-wave complexes in epileptic disaididermeyer, 2005 c), vertex waves during
sleep (Niedermeyer, 2005 b), etc. Transients agieackerized by abrupt and sometimes large
potential shifts. In general, those are not natyicdiaracterized by coloration, unless they redutis
the superposition of several continuous coloredesaVhis is the case, for example, of K-complexes
observed during sleep (Niedermeyer, 2005 b), wareha superposition of a slow wave (<1Hz) and a
Delta wave (1-4Hz) (Steriade, 2005). Nonetheleagsient activities are by definition spaced by
intervals of inactivity, hence the difference betwehe energy in their active and inactive intesval
(non stationarity) may be captured adequately b$ Statistics. However, due to their possible highly

non-Gaussian nature, this kind of phenomena igaitumodeled by HOS statistics.

In summary, it appears that a wide variety of sapebus and induced EEG phenomena are
captured appropriately by SOS statistics, howemetransient activity HOS may be better candidates.
So far SOS methods applied to EEG have concentnaa@aly on coloration (e.g., SOBI). The
validity of the coloration assumption for recoveriactual EEG dipolar fields has received
experimental support (Tang et al., 2004; Suthertardi Tang, 2006; Van Der Loo et al., 2007). We
have contended that source energy variation over i$ a ubiquitous property of EEG and it should
be exploited besides coloration. This is the fanfuSOS time-frequency approaches, which are well
established in other technical fields (Belouchami Amin, 1998; Pham 2002; Choi et al., 2002;
Bousbia-Salah et al., 2003). Here we pursue futtfispath in the context of experimental and

clinical EEG data.

Approximate joint diagonalization
The class of SOS BSS methods we are consideroaniistently solved bgpproximate joint
diagonalizationalgorithms (Cardoso and Souloumiac, 1993; Pha®il 20 Yeredor, 2002; Ziehe et

al., 2004; Vollgraf and Obermayer, 2006; Li and @pa2007; Fadaili et al, 2007; Dégerine and Kane,

13
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2007). Given a set of matrice®{ Q,,...}, the AJD seeks a matr B such that the produc I§Q1I_3>T :

I_3>Q2L5>T, ... are as diagonal as possible (subsciiptiridicates matrix transposition) . Given an

appropriate choice of thdiagonalization sefQ; Q.,...} such matrix B is indeed an estimation of

the separating matrix in (1.1) and one obtain @&mase of the mixing matrix & A=B*. Matrices
in {Q1, Q.,...} are chosen so as to hold in the off-diagonalieststatistics describing some form of

dependencamong the sensor measurement channels; then bhavildsanish those terms resulting

in linear combination vectors (the rows B ) extracting “independent” components from the
observed mixture via (1.1). More particularly, jbent diagonalization is applied on matrices that
changeaccording to the assumptions about the sourcey dteethose changes, when available, that
provide enough information to solve the BSS probléithe source process is assumed to be colored,
one may consider lagged covariance matrices o&kghthe source process is assumed to be non
stationary between blocks of data, one may consiolariance matrices estimated on different time
windows. In both situations, provided that soungectra are non proportional (colored sources) or
source energy varies differently (non stationawyrees), the additional matrices add information (in
fact, equations) sufficient for estimating all frrameters of the separating system. If the sasirce

both colored and non stationary, one can use @f &gith kinds of matrices, as we will illustrate.

The aforementioned popular JADE and SOBI algorithmesbased on AJD and this is the
case for many other BSS algorithms (for a revieeHeeis and Inouye, 2006). One advantage of
AJD algorithms is that they execute fast and daregtire setting parameters for convergence. In
particular, the algorithms by Pham (2001 b) andishe et al. (2004) enjoy sustained popularity
because of their good performance and computatéffiaiency. Like ICA algorithms, the AJD
approach allows extracting source components bypg,ovhich appears to us an effective way to
overcome the aforementioned limitation of assunpiaig-wise spatial independence of all EEG
source processes; source components may now beesdulependent between groups but not

necessarily independent within each group. Mathiealt, this amounts to require the products
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éQléT , I§Q2I§T, ... be block-diagonal instead of diagonal. Such amagyth has been foreseen by

Cardoso (1998 b) and is nowadays referred independent subspace analy@8A). Block-AJD
(B-AJD) allows seeking brain networks (groups gbeledent source processes) instead of just several
disjoint “hot spot”, which is in line with currettends in brain neurophysiology (e.g., Mantinilet a
2007). As per today B-AJD is limited in practice the necessity of specifying a-priori the

numerosity and composition of the groups (Thei®52@évotte and Theis, 2007). Research on AJD
algorithms is currently flourishing. Recent tremadlude pursuing decomposition by blocks and
seeking optimal weighting (e.g., Tichavski et 2008). We believe that the resulting improvements

hold promise for the BSS field and its applicatitm$iuman electroencephalogram.

SOS BSS methods solved by approximate joint diagolzation

The first proposed SOS method (Féty and UffeleB81Jong et al., 1991 b) exploited signal
coloration. It consisted on joint diagonalizatidrtwo matrices, the covariance matrix and a lagged
covariance matrix, allowing an exact solution Via well-known generalized eigenvalue-eigenvector
decomposition (Choi et al., 2002; Parra and S&@a3). The corresponding procedure for exploiting
energy time variation traces back to the work afl8amiac (1995); if the energy of a source
component changes in two successive time intertrads, the component can be estimated by joint
diagonalization of the two covariance matricesnested on those intervals. Importantly, if the seurc
is active in one interval and inactive in the ottier obtained filter is optimal (Souloumiac, 1995).
Along these lines see the discussiorsoper-efficiencyn Pham and Cardoso (2001). Although very
simple and fast, these two-matrix joint diagondl@amethods are very sensitive to estimation srror
of those matrices. If the noise covariance stracisidifferent in the two matrices then the joint
diagonalization of the signal structure is sevediyorted. A considerable improvement is obtained
by AJD of a larger set of matrices. This ideat figgplied in SOBI for colored source components
(Belouchrani et al., 1997), has been then apptiethh stationary source components (Choi and
Cichocki 2000; Pham and Cardoso, 2001) and firettgnded to both colored and non stationary

source components (Belouchrani and Amin, 1998; PRAOR).
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Practically, in many SOS methods such as SOBI #lt@ are first whitened and normalized
(sometimes it is said they are sphered) as

z(t) = Hv(t) |
where H ORM™ s such that the covariance z(t) is the identity. Then, the AJD ofsatof

delayed covariance matrices (several lags: SOBt)/ca a set of covariance matrices on several
windows ofz(t) is performed. It is known that the pre-whiteningy jeopardize the separation
performance due to the estimation error of the datvariance matrix, which exactlydiagonalized

at the expense of the other matrices (Cardoso,; M&édor, 2000; Pham, 2001a). Hence, a better
procedure is obtained by using robust whiteningof@hal., 2002) or obtaining the AJD of a set of
covariance matrices directly @(t), which amount to avoiding the pre-whitening siéipgether

(Ziehe and Miiller, 1998), or by diagonalizing palrdutocorrelation matrices (Dégerine and Malki,
2000). As compared to the two-matrix diagonalizative AJD approach is known to be more robust
and efficient (Belouchrani et al., 1997; BeloucletAmin, 1998; Choi et al., 2002). One problem
encountered by researchers with SOBI is how to eham appropriate set of lags (Tang et al., 2004,
2005). For colored Gaussian auto-regressive (ABggsses the asymptotically optimal set of lags
includes as many lags as necessary to descrilmeakienal order of the process (see for example
Doron and Yeredor, 2004). The AR order/number g$ ldepending on several factors (e.g., sampling
rate, number of peaks in the source power specttar)y one should estimate it on data at hand. A
simpler solution to this problem is treated in apgie (B). It arises after shifting the AJD problem

into the time-frequency domain, framework that wevrdelineate.

Time-frequency expansions
Source separation methods can be applied in diffeepresentation spaces. In fact, applying

to (1.0) any invertible and linearity-preservingrisforms leads to

7 [v(t)] = Ar [s(t)],
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which preserves the mixing model. Then, solvingsewseparation in the transformed space still
provides estimation of the matror of its inverseB, which can be used directly in Eq. (1.1) for
recovering the sourc#t) in the initial space. For example, the transfarmmay be a discrete Fourier
transform, a time-frequency transform such as tlignér-Ville transform or a wavelet transform.
AJD-based SOS methods such as SOBI can be eadilyoaveniently transposed in the frequency
domain, thence in the time-frequency domain, whetleperform the frequency expansion for
several time segments. Such approach is currettthcang much interest in the BSS community,
especially for audio and speech applications (B#oani and Amin, 1998; Choi et al., 2002;
Bousbia-Salah et al., 2003; Deville, 2003; Zhangj Amin, 2006; Aissa-El-Bay et al., 2007). There
exist several time-frequency expansions. For itg8city in this study we consider ttshort Fourier

transform from which Fourier cospectral matrica readily estimat@dwWe will compute Fourier
cospectral matrice C( fi) ORM™ for arangd : 1...F of discrete frequencies and for a raige..| of

temporal windows. Temporal windows should be sbndugh to capture the energy variations over

time and wide enough to allow satisfactory estioraiof cospectral matrices for each of them

separately. For each temporal windithef" cospectral matri C, ., holds the portion of the sensor

(fi)
covariance matrix corresponding to ffidrequency. Its diagonal elements hold the powetota
spectra) of each measurement channel while itdiaffonal elements hold the terms describing the
in-phase SO#"ependencyor that time window and frequency. As we havengbese off-diagonal
terms are canceled by AJD in order to recover uetated source components. Clearly, cospectral
matrices are affine to the delayed covariance pegriised by SOBI, since they are a linear
transformation of each other (e.g., Bloomfield, @00. 12; Pham, 2001 a). Nonetheless, working in
the frequency domain is advantageous for seveaabres: first, covariance statistical estimations in
the time domain are distorted for temporally catedl processes like EEG (Beran, 1994). Second,

estimating cospectral matrices in the frequencyalons computationally more efficient than

estimating delayed covariance matrices in the tioveairi. Finally, the AJD of cospectra has been

2 See appendix (A) for details on Fourier co-spéctatrices.
We have analyzed the computational complexitystifeating the former and latter matrices. Fourier
cospectra estimations may take advantage of affisiglit-radix fast Fourier transform (FFT) algbnts such
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connected to th&aussiarmutual informatiorcriterion (Pham 2001 a, 2002). This places theiegs
method at the hearth of the BSS theory and steefartl the Cramér-Rao bound (Pham, 2001 a;
Pham and Cardoso, 2001). We are aware of onlytoig somparing the AJD of delayed covariance
matrices (SOBI) to the AJD of cospectral matrid@srpn and Yeredor, 2004) and it clearly showed

the better performance of the latter.

Approximate joint diagonalization of cospectra (AJDC): an extended time-frequency approach
Without loss of generality, the AJDC solution te tBSS problem (1.1) can be written
compactly such as
B =AJD(C), (1.6)
whereC': {Cy, C,,...} is thediagonalization seti.e., a set of estimated Fourier cospectral wedrto
be simultaneously diagonalized. The rational be®aBC is expressed schematically in Fig 1. Each
cube of the parallelepiped in the figure represahttractly a cospectral matrix. The grid of cubes
represents the sampling of some source propertiding along two continuous dimensions (time
and frequency) and one discrete dimension (expet@heonditions). The different pattern of shading
in each cube represents the differemgpectral structuref each sampled region of the defined space.
If only one source component was involved the sigadould be directly interpreted as color coded
energy, but since in general many source compomeatsonsidered we shall think at the shading as a
coding for the dependency structure. The variatairtee cospectral structure in the defined space
along the dimensions are callgignhatures We say that a source component helsaacteristic
signatureif no other source component has the same signaBuiccessful separation of a source
component is obtained if the diagonalization setdbes a characteristic signature of it. In other
words, the diagonalization set should include astiéwo matrices differing in the dependency
structure of this source component (with respethiéoothers) and those changes must not be the same
for any other source components. For examplegistiurce component is narrowband and its

frequency range differs from the others (charastiercoloration), the cospectral structure of this

as FFTW3 (Frigo and Johnson, 2005); in typicalagibns we may expect the computation complexity of
Fourier cospectral matrices be 20 to 100 timeslemas compared to lagged covariance matrices.

18



BSS of Human EEG by SOS AJD- Congedo et al. 2008

source component along the frequency dimensioncivilhge uniquely and this change will enable
the identification of that component. AlgorithmkdiSOBI seek those changes to recover source
components having non proportional power spectitm. advantage of the time-frequency approach
is precisely thagither colorationor non stationarity characteristic signature candmwred in the
time-frequency plane and that either one suffioemchieve separation. Thus, the multidimensional
approach is robust with respect to possible viofatiof each assumption taken separately. An
important aspect of data expansion is that it ecésithe characterization of source signaturesgwhil
the noise power tends to spread uniformly in thetfrequency plane the source power will
concentrate in characteristic regions, thus thénatkis more robust with respect to noise as well
(Belouchrani et Amin, 1998). The same argumentsbeasirengthened profiting of further source
diversities simultaneously, such as those of plhygiocal and experimental origin. For instance, to
separate the posterior Alpha rhythms from the Rbtaklu rhythms one may use the fact that
posterior Alpha rhythms, but not Mu rhythms, areckked by eyes opening (Niedermeyer, 2005 a).
Two time intervals separated by eyes opening shibeld be considered. To exploit possible source
energy diversity in several experimental conditidirsaiffices to average cospectral matrices
separately within each condition, as indicated s@tially in Fig. 1. This allows much flexibility,

for an arbitrary number of cospectra computed amtghme intervals can be averaged for each
condition. To visualize the comprehensive naturthefmethod one may imagine the parallelepiped

in Fig 1 in any number of dimensions susceptiblddscribe variations in some source statistical

property.

Putting all this in mathematical formalism turng simple and elegant. Without loss of

generality we shall always proceed by (1.6) aftdinihg
c:{c,}. (1.7)

wherev is just a container for an arbitrary number ofexels and where each index indicates the

sampling along a dimension. For example, the dialijpation set of Fig. 1 is obtained by defining

v = fik , where the cospectra Bifrequenciesf(: 1...F ) are estimated fdrtime intervalsi(: 1...1)
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andK experimental conditionk ¢ 1...K). With such a diagonalization set one would exyla

diversity of source enerdyetween conditions addition to generic coloration and time-varying
energy; notice that in this case source comporeamde identified if their energy differs in atdea

two experimental conditionsegardlesghe uniqueness of their spectral and stationarifgatures

(that is, even if the basic assumptions of the 88S method do not hold), but also if their
characteristic signature is across the frequendyra dimension but not across experimental
conditions. Along the same line, we can exploitrémctivity of EEG oscillations as aforementioned
discussed, the presence/absence of a steady-atatm s stimulation, the presence/absence of
electrical or magnetic stimulation, etc.; one mdgt as many indexes as desired and always proceed

by (1.6).

We have seen that adding dimensions for exparitliandata increases the chance to uncover
the characteristic signatures of source comporardsncrease the robustness with respect to noise.
However the number of matrices in the diagonalirasiet cannot be increased indefinitely. The
essence of AJD algorithms consists in approximétied'average eigen-structure” of the input
matrices. In general, any set (1.7) can be exgitifly diagonalized if the instantaneous lineardab
holds exactly (Hyvérinen et al., 2001, p. 344)winich case all matrices in the set share common
eigenvectors and the two subspaces spanned bydlyese/ectors and the columns of mixing matrix
A are identical (Belouchrani and Amin, 1998). Thigpractice will not quiet happen because of
sampling estimation errors and noise, and whilddtier is reduced the former is increased by data
expansion, making more difficult finding the avesaggen-structure. Another drawback of multiple
dimension data expansion is that the instantan@oees model (1.0) may not hold for all dimensions.
Finally, an open question is how the time-frequepleyne should be sampled (on the other hand
sampling of experimental conditions is given byidiébn). We see that the proper definition of the
diagonalization set is the very challenge of AJBdmhalgorithms. A useful tool to identify regions

where the characteristic signatures reside is iestim appendix (B).
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Discussion

Blind source separation (BSS) is a widespread ndetised in a number of scientific and
technical fields (Hyvarinen et al., 2001; Cichoakd Amari, 2002). Its use in EEG literature is
currently growing at a fast pace. When applied E&Elata BSS decomposes scalp signals in a
number of components. These components may cormdgpdhe activity of cortical dipole layers
generating the observed EEG. Precisely, BSS intigliestimates their orientation and explicitly
estimates their waveform (out of a sign and enargytrariness) and mixing coefficients. From the
latter the spatial location can be estimated uaimiverse solution method (Lopes da Silva, 2004;
Greenblatt et al., 2005; see for example Van derétal., 2007). Environmental and physiological
artifacts may be extracted as well, while effectisduction of background noise may require
additional noise suppression procedures (e.g.,Bawand Cichocki, 2002). Typically, BSS
estimations feature higher SNR and strong supmessithe interference generated by other dipoles
as compared to raw EEG. When the assumptions B8If,provides optimal estimations, in that they
do not depend on physical modeling of the head.VWhe assumptions do not hold, BSS provides
another representation of the sensor measuremace, sphich may still be useful (e.g., artifact
reduction by BSS filtering as per Eq. 1.4), but thay encourage misleading interpretations of
source waveform and associated topographies. Qnedshe careful in claiming that the extracted
components and associated topographies corresp@utual EEG physiological sources. Since
checking the assumptions of the chosen BSS modeiaithod is virtually impossible, the most

credible arguments are those founded upon neurapbgical knowledge.

The linear BSS instantaneous model (1.0) makesrdeuof restrictive assumptions that are
rarely checked or investigated. One assumptidmasthe number of sources is not greater than the
number of sensors. When this is not the case (endated case) it is not possible to solve the BSS
problem unless other constrains on the sourceistaoeluced (e.g., sparsity: Gribonval and Lesage,
2006). One may also wonder if during the analyi®e interval the number of active dipoles is
stable (Li et al., 2006). In practice, brain el®etr “source components” are macroscopic electric

dipole with relatively high SNR formed by the synmhous activity of pyramidal cells over large
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cortical areas (Nunez and Srinivasan, 2006). Fificently small time intervals one may assume that
such high-SNR layers are limited in number. Otlerotirrently active cortical columns may be
ignored if their current is comparatively negligitdnd it does not matter if the dipoles are active
throughout the time interval or intermittently (aally such non stationarity signature can be
explicitly exploited). Henceforth, assuming at ke&s many sensors as relevant sources does not
appear problematic if we consider a sufficientlyafirtime interval. Still, no definitive solution sts

to the problem of estimating the number of soummamonents in the overdetermined case (more
sensor than source components). Whereas correenhdiamality reduction (appendix E) allows exact
determination, over-reduction must be avoided sinc¢his case identifiability is lost and several
generators are extracted mixed in one componesaféstrategy is to identify a few meaningful

components and keep reducing the dimension uileltomponents are not distorted.

Another assumption is that the mixing matiin (1.0) is full-column rank. The columns of
A are scalp spatial pattern vectors of the sourogpooents and the more the electrodes are close to
each other, the more those vectors will be collin€ansequently, it is always better to space the
electrodes as much as possible on the $cagveral restrictive assumptions are made by mdda)
also on the nature of brain electric fields. Ong msk whether it is reasonable to assume thatekpol
keep fixed orientation and location in the analydet interval. Each row vector of the matBxcan
be conceived asspatial filter extracting the electric field of a dipole with een fixed spatial
extension, location and orientation. For a fixedtsp sensor configuration with respect to therorai
which is the case of a single EEG recording ses#ii@norientation and location of electric dipades
fixed by the anatomy and physiology of the greyterdbrming the dipole. However, the dipole
approximation becomes untenable for sources dig&tbover large areas (Malmivuo and Plonsey,
1995; Nunez and Srinivasan 2006). Also, there ivvicreing evidence of traveling waves phenomena
in the brain; long wavelength waves originatingiregion and propagating via cortico-cortical

connections to other regions (Lopes da Silva aad Rotterdam, 2005; Srinivasan et al., 2006;

* This suggests that placing many electrodes clagmged above the brain region of interest, assibinetimes
done, is not a convenient strategy if multivaristitistical methods are to be employed.
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Thorpe et al., 2007). These phenomena cannot belawdy an instantaneous model and become
more equivocal with larger time intervals. Alsog tbnger the time interval under analysis the less
tenable is the stationarity assumption, which &bt SOS estimations (Hyvérinen et al., 2001, p.
49). At the same time one must care to retain eémoatg points for analysis in order to avoid
overfitting (Muller et al., 2004). Sarela and Vigario (2008)arted that using small time intervals the
output may contain artefacts that are not presetiitd data. For HOS method such as FastICA
artifacts takes the form of artificial spikes andrips, whereas for SOS methods such as SOBI they
take the form of artificial sinusoid waves. Meineaht al. (2002) and Mdiller et al. (2004) addressed
the problem of obtaining robust and reliable sowstimates. They proposed a resampling-based
methods consisting in running the algorithms ofedént time intervals and retain only the source
processes that can be found consistently. In ceimiualthough statistical estimations improve with
the number of samples we advocate the use of rauttipe intervals as short as possible (enough to
avoid overfitting while justifying the BSS methogsamptions), modeling appropriately the
stationarity within intervals while exploiting exgitly the non stationarity between intervals. st
sense an efficient time-frequency approach apeprscious option. Although we have contended
that SOS-AJD methods such as AJDC fit well EEG daggeneral, a safe strategy is to compare the
output to at least one HOS methods with any re& BE&ta problem at hand. We also notice that in
the EEG field the instantaneous model has beelyrenallenged (Anemdller et al., 2003; Dyrholm et
al., 2005). It is unfortunate that throughout congmms of linear instantaneous, time-varying and
convolutive model are lacking since the latter fanmilies of BSS models may admit moving dipoles

and traveling waves.

In this study we have described a simple time-feeqy approach based on the approximate
joint diagonalization of Fourier cospectral mats¢dJDC). AJDC is an extension of popular AJD-
based algorithms such as SOBI, which are derivedsdscted instances (exploiting source coloration
or source non stationarity only), yet it is effitiestatistically and computationally. Computatidyal
the AJDC equivalent of SOBI is several tens of srfaster than SOBI. In turn, SOBI is known to be

faster than, in the order, JADE, FastICA and Infalvthe latter being the slowest (Kachenoura et al.,
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2008). Although those authors do not quantify melyi the complexity of each algorithm, we can
safely say that AJDC is tens of times faster th@BISand hundreds to thousands times faster than
FastICA and InfoMax. Moreover AJDC (as all AJD-béségorithms) does not require parameter
tuning for convergence. However, it requires arrapipate definition of the diagonalization set to
correctly identifying the potential diversitiestime data set. Instead of understanding this as a
nuisance, we have contended that it amounts tecttyridentifying the relevant aspects of the data
variance at hand. Such an “informed” approach msedww in between the completely blind setting,
in which no a-priori knowledge on the source isuassd and the semi-blind approach, where
temporal, spatial, spectral or other constraintsr@roduced in the cost function (Roberts, 1998; |
Berg and Scherg 2002; James and Gibson, 2003, dardddesse, 2005; Lu and Rajapakse, 2005;
Hesse and James, 2006; Barbati et al., 2006; Washdames, 2007; Barbati et al, 2008; Zhang,
2008). The basic time-frequency approach explbesgémporal dependency and energy variation
over time of EEG. The diagonalization scheme caddfimed so as to maximize the chance of
separating dipole layers responsible for brain fione studied by experimental manipulation.
Assessing the difference in two or more experimetaditions is customary in cognitive and
clinical studies using either continuous recordingvoked potentials paradigms. In this sense, AJDC
may be an ideal companion for a very wide rangeE® experimental research. In the appendix we
have collected several useful details about theceffe use of AJDC for EEG data, which cannot be
found elsewhere. Those details may be valuablegodader interested in implementing AJDC or
other time-frequency BSS algorithms. Code for Alg@athms is commonly publicly available. An
executable application performing BSS by AJDC cambtained upon request to the corresponding

author.
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Figure 1. Schematic representation of the extetidesifrequency blind source separation approachdas

approximate joint diagonalization. See text forailst
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Appendix

A. Fourier cospectral matrices

For real data, it is the length of the time window a&the sampling rate expressed in Hz,
there ard==L/2+1 Fourier frequencies with resolutionS/L equally spacing the range from OHz
(DC-level) to the folding frequency (OHz; Hz, 2r Hz,...,L/2rHz). Typically, we take botBandL
as a power of two and cospectral estimates maydraged within arbitrary time intervals by sliding
overlapping windows. The latter strategy allowstaaby time intervals length. The Fouriepspectra
andquadrature spectrare defined as the real and imaginary part ofFth&iercross-spectra
(Bloomfield, 2000) They are estimations of, respectively, the in-ph@s with a half cycle phase
shift, i.e., opposite sign) and out-of-phase (argmacycle in either direction) covariance struetat
frequencyf. The discrete Fourier transform of sampled timéese, over an epoch of lengthis

given by

Let d; (f) andd'( f) be the real and imaginary partdf ( f), respectivel§: Those coefficients

are readily and efficiently estimated by fast Feufiransform (FFT: Cooley and Tukey, 1965; Frigo
and Johnson, 2005). Here below is the formula donmuting thecospectral matrivat frequency for
time-series<, andy:

c =(df(f)olf(f)ﬂtlf(f)OE(f) d (1) d( )+ d(9df f)}_
Told (d()+d () d(f) &N+ d)d()

y X
The formula readily extends to aNydimensional input time-series to obtainhtglimensional
cospectral matrix. Notice that the cospectral masrsymmetric and that the diagonal elements are
the auto-spectra, better knows as power spectrariarbitrary long EEG segment we typically
obtain an estimate of the cospectral matrix aveg@j, over overlapping epochs of lendtt{Welch,

1967). Such estimates may then be summed acrasseatifrequencies to obtain estimates within

band-pass regions of interest. Summing all of tiesids the covariance matrix as per Parseval’s

For the first (OHz) and lastf2xHz) Fourier frequency the coefficients are real.
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theorem. Pham (2001 a) shows that its Gaussianainnformation approximate joint diagonalization
(AJD) criterion is the same using (complex) crgssesral matrices or their real part (cospectral
matrices). More in general, estimation of the safixag matrixB can be obtained by AJD of
cospectral matrix, quadrature spectra matricesassespectral matrices if the mixing matrix is real
(Theis, 2004), which we always assume as per (Li@)to the absence of capacitive effects in the

brain (see introduction).

B. Defining diagonalization sets

Some AJD algorithms allow weighting the diagoretion effort across the input matrices
(e.g., Pham, 2001 b). Here we seek an adaptivé@oko the weighting problem. Let us consider a
setw of non-negative weights to be associated to eathxrof the diagonalization set. For
consistency, we take so that the average of its elements equals 1.@. general strategy, we may
encourage the mask to be sparse (many zero ensie) enable data expansion in multiple
dimensions while keeping the diagonalization setakonable size. Because of volume conduction
dipole fields result in covariance structures witny non-null off-diagonal terms (see for example
simulated forward solutions in Congedo, 2006). Bndther hand, higher frequency cospectra tend to
be near diagonal because EEG energy decreaseegtiency while spatially uncorrelated noise
features a diagonal covariance structure. Whithiaah ¢2007) even suggest that scalp EEG recording
above 20Hz contains mainly electromyographic (EM&)vity. EMG exhibits near-diagonal
covariance structures because it is spatially fandldoes not propagate easily (through skull) to
other leads. Consequently, matrices close to deldorm should be down-weighted. In general,
down-weighting low signal-to-noise ratio matricesaunts to effective noise suppression for the

estimation of the separating matrix (Pham, 200T lgrefore, let us define for any cospe€a

1 Z C(Zu)rc

oCy)) = B.1
) , :
N-1C . &1
=c
whereC, . is the entry of matrixC ,, at rowr and columre andN is the size of the matrix

(number of channels). For a positive definite matmeasure (B.1) is bounded inferiorly by zero, for
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a diagonal matrix, and superiorly by 1.0, for afomn matrix Equation (B.1) provides a suitabien-
diagonalityweighting functionthe higher the non-diagonality the higher the Wei§parsification
(noise-suppression) may be promoted by zeroingvtights above a cut-off frequency. According to
our experience, such a weighting function genewdliyws satisfactory source estimation with
continuously recorded EEG. We have observed tleandim-diagonality function (B.1) is highly
correlated with overall energy (trace of the cogadenatrices), but is not as much influenced gy th
dominant occipital rhythms (8-13Hz). In this faghiasing a non-diagonality weighting function is in
line with previous works in time-frequency BSS wdérne diagonalization effort has been

concentrated on high-energy time-frequency reg{Besouchrani and Amin, 1998).

C. Removing the DC-level (assuming zero-mean psesgs

Typically, BSS models assume zero-mean proceskes, for DC EEG amplifiers, the DC-
level needs to be removed. Simply, the first cospet (0Hz) is not considered in the diagonalization
set. Notice that FFT estimates at positive freqigsnare not affected by the DC level (Bloomfield,
2000, p. 90), hence there is no need to removedan, detrend or band-pass the signal before

computing the FFT (the same is not true for laggmaariance matrices).

D. Evaluating the explained variance of source congmts
In the introduction we have suggested that tleegynof the output source can be evaluated in

spite of their sign arbitrariness. For simplicitye illustrate the method for diagonalization sétthe
kind C :{C(f)} , that is, when only source coloration is exploifEde method readily extends to any
number of indices. First, let us scale the rowsstimated separating mat B so that they all have
unit L2 norm. Because of the energy arbitrarinb@sdperation does not alter the output of the BSS.
Letb,,' andan, be, respectively, the normalizet!' row of B (separating vector) and thé" column

of A=B* (spatial pattern) associated with th& component. LeV OR™  pe the covariance

matrix of the raw EEG data. Its diagonal elemahtshold the variance (energy) of th8 EEG
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channel. Using (1.1) and (1.0) and ignoring thesadérm in the latter, thetal explained variancef

the source components is given by
VAR, = tr ABVBTAT) < tr(V)

with strict equality ifM=N, since thet AB=1. Similarly, theexplained variancef them"

component alone is such as

VAR, = tr(a,blvb,a")
and we havi Z:VARn = VAR,;. Notice that the explained variance or its reaportion

VAR/VAR+or can be evaluated for any discrete frequency usasgectral matriy instead ol in
computing both VARt and VAR, above. In the same way, one may evaluate theiegpl&ariance
for any frequency band pass region using insteaduim of cospectra within the region. This turns
useful when we need to evaluate the energy of aegemponents describing brain oscillations in a
specific frequency band; for example, the sevdrghms usually observed in the Alpha (8-12 Hz)

range.

E. Subspace reduction and pre-whitening

When using many EEG sensors it may be usefidttmate fewer source components than
sensorsNI<N). Reducing the dimension of the input matrices esakem better conditioned, which
enhance the performance of the separation (PharGamtbso, 200%) Thesubspace reductiomay
follow different strategies. For instance, one maag model-driven beamforming to attenuate the
signal originating outside the region of interd®bdriguez-Rivera et al., 2006; Congedo, 2006). Here

we show how to perform subspace reduction to egtiteM most energetic source components,

which is an extension of the common pre-whitenilegsLetC,,; = ZC(U) be the sum of
4

cospectral matrices forming the original (unred)aidgonalization set. As in Eq. (1.?7)is a holder

® When the analyzed time interval is short the cospematrices may be non positive definite, a iequent of
Pham’s AJD algorithm. In this case the subspaceatéh is necessary to obtain convergence. Theittigo of
Ziehe et al. (2004) does not impose this restmctiot does not allow explicit weighting.
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for a number of indeces. Now find a maiH :[F G]T ORMNY | with the square brackets
indicating matrix partition, such thHC,,,H" =1 ; F OR"™ holds the firsM rows ofH

(signal subspace) aiG ORY™M™ the remaining rows (noise subspace). Note thahfbcase
vz f, C,y is the sum of cospectral matrices at several &ages and, if all Fourier frequencies
are included in the diagonalization set, then madris the well-known whitening matrix. For

v 2ijk... our definition 0l C,; is the natural extension to obtain a “global” whing matrix. Let

us now factorize the separating matrix suc B=EF , with E OR™™ . Weobtain a new

diagonalization sef by applying the reduction to all cospectral ntasi such as

D :{ D(U)} ,Dy,) =FC,)F . The AJD problem (1.6) is now

E = AJD(D)
and we obtain the solution to the BSS problem as
B =EF OR"™,
Note that it is not necessary to constrain the AHrix E to be orthogonal, effectively circumventing

the aforementioned drawback of pre-whitening the.dainally, note that working with AJDC we do

not need to compute the covariance matrix of the dtall.
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