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ABSTRACT

Properties and models of the Human Visual System (HVS) are the
fundaments for most of efficient objective image or video quality
metrics. Among HVS properties, visual masking is a sensitive issue.
Many models exist in literature. Simplest models can only predict
visibility threshold for very simple cue while for natural images one
should consider more complex approaches such as semi-local mask-
ing. Our previous work has shown the positive impact of incorpo-
rating semi-local masking in image quality metric according to one
subjective study. It is important to consolidate this work with dif-
ferent subjective experiments. In this paper, different visual mask-
ing models, including contrast masking and semi-local masking, are
evaluated according to three subjective studies. These subjective ex-
periments were conducted with different protocols, different types
of display devices, different contents and different populations.

Index Terms— Quality Assessment, Human Visual System,
Contrast Masking, Semi-local Masking, Entropy Masking

1. INTRODUCTION

The purpose of an objective image quality evaluation is to automati-
cally assess the quality of images or videos in agreement with human
quality judgments. Over the past few decades, image quality assess-
ment has been extensively studied and many different objective cri-
teria have been built. Quality metrics based on models of the HVS
are an important part of the different approaches in image quality
assessment. HVS models may be categorized into mono-channel or
multi-channel models, and this work focuses on the latter. In order
to simulate the multi-channel behavior of the HVS and to well qual-
ify the visual masking effects, this kind of quality metrics rests on a
perceptual subband decomposition. In a previous work [1], we have
studied the impact of semi-local masking in a wavelet based qual-
ity assessment (WQA) metric. This work has shown, among others
things, that contrast masking is positively completed by semi-local
masking. In image or video quality assessment, the results are sensi-
tive to the subjective data used. It is important to complete this work
with other subjective data. In this new study, experimental data are
collected from several subjective experimentations. These experi-
ments were conducted using two protocols of test (DSIS and ACR),
on two populations (French and Japanese), with two types of display
devices (LCD and CRT), and with two image databases.

In this paper, an image quality metric based on a multi-channel
model of the HVS using wavelet domain is described. The HVS
model of the low-level perception used in this metric includes sub-
band decomposition, spatial frequency sensitivity, contrast masking

and semi-local masking. The subband decomposition of this multi-
channel approach is based on a spatial frequency dependent wavelet
transform. The spatial frequency sensitivity of the HVS is simulated
by a wavelet contrast sensitivity function (CSF) derived from Daly’s
CSF [2]. Masking effects include both contrast masking and semi-
local masking. Semi-local masking allows to consider the modifica-
tion of the visibility threshold due to the semi-local complexity of
an image. This phenomenon is also called entropy masking [3], ac-
tivity masking, texture masking, or local texture masking [4]. Due
to the influence of the neighborhood characteristics, this masking
effect will be called semi-Local Masking (sLM) in the rest of the
paper. The focus of this work is to evaluate the impact of semi-local
masking on image quality assessment, and to consolidate the results
of a previous study [1] with three subjective studies.

In order to investigate its efficiency, the WQA metric is com-
pared with subjective ratings and the state-of-the-art measure of
structural similarity (SSIM) [5]. The WQA metric is tested with and
without semi-local masking, giving insight into the relevance of the
semi-local masking.

This paper is organized as follows. Section 2 is devoted to the
description of the WQA metric. Several versions of the WQA metric
using different masking functions are compared in section 3. Finally,
general conclusions are provided.

2. QUALITY METRIC DESCRIPTION:WQA

In this section the WQA metric is described. Its structure is illus-
trated in Figure 1. As mentioned before, the HVS model of the low
level perception used in this metric includes subband decomposition,
spatial frequency sensitivity, contrast masking and semi-local mask-
ing.

The versions of WQA used in this work are achromatic ver-
sions. The first step consists of adaptation. Adaptation describes the
changes that occur due to different illumination levels in the visual
sensibility of lightness.

2.1. Subband decomposition

A subband decomposition defined by wavelet filters is used and sup-
posed to describe the different channels in the human vision system.
The correspondence between the visual system and the wavelet do-
main is known to be only approximate [6][7]. However, it is still pos-
sible to build a quality metric based on wavelet filters which leads to
good performance as explained in [1]. This subband decomposition
is based on a spatial frequency dependent wavelet transform approx-
imating the Perceptual Subband Decomposition (PSD) characterized
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Fig. 1. Structure of the wavelet based quality assessment method (WQA)

in previous works [8], and defined by analytic filters. The Discrete
Wavelet Transform (DWT) used is the CDF 9/7 (Cohen-Daubechies-
Feauveau). The number of decomposition levels L is chosen so that
the low frequency (LF) DWT subband matches to the LF subband of
the PSD.

2.2. Contrast sensitivity function

The CSF describes the variations in visual sensitivity as a function
of spatial frequency and orientation. As complete frequency repre-
sentation of the images is not available, the CSF is applied over the
DWT subband. The wavelet coefficients cl,o(m, n) are normalized
by the CSF using one value by DWT subband:

c̃l,o(m, n) = cl,o(m, n) · NCSF
l,o , (1)

For each subband a CSF value NCSF
l,o is calculated from the 2D CSF

defined by Daly [2]. This value is the average of the 2D CSF values
over the covered frequency range for each subband.

2.3. Masking functions

Masking is a rather well known effect that refers to the changes of
visibility increase (pedestal effect) or decrease (masking effect) of a
signal due to the presence of background (masking signal). The vi-
sual masking effects concern here both contrast masking and semi-
local masking. The former is used to take into account the modifi-
cation of the visibility threshold due to the contrast value, whereas
the latter allows to consider the modification of the visibility thresh-
old due to the neighborhood characteristics. Four masking functions
were tested. The first two are adaptations of Daly’s masking model
[2] using or not the neighborhood characteristics. The last two are
adaptations of Nadenau’s masking [9] model using or not the neigh-
borhood characteristics.

2.3.1. Contrast masking by using Daly’s model (Daly)

As proposed by Daly[2], the visibility threshold elevation Tl,o(m, n)
at site (m,n) in the subband (l,o), where l is the level and o is the
orientation, is given by:

Tl,o(m, n) = (1 + (k1 · (k2 · |c̃l,o(m, n)|)s)b)
1
b , (2)

where c̃l,o(m, n) is the CSF-normalized wavelet coefficient at site
(m, n), k1 and k2 determine the pivot point of the curve, and the
parameter b determines how closely the curve follow the asymptote
in the transition region. In the initial work of Daly, a value for the
learning slope is chosen depending on the subband (cortex subband).
Ideally, this value should depend on the uncertainty of the signal
masking. One way to deal with the semi-local masking is to locally
adapt the slope s in function of the neighborhood activities.

2.3.2. Semi-Local masking by modifying Daly’s model (Daly sLM)

In [2] Daly has noted that the parameter s corresponds to the slope
of the high masking contrast asymptote, which ranges between 0.65
and 1.0. For a high uncertainty (low learning level), the slope is 1.0
and as the learning increases, the slope (and uncertainty) reduces to
0.65. The visibility threshold elevation Tl,o(m, n) at site (m, n) in
the subband (l,o), where l is the level and o is the orientation, is given
by:

Tl,o(m, n) = (1 + (k1 · (k2 · |c̃l,o(m, n)|)s(m,n))b)
1
b , (3)

where the parameters are the same as in the Equation (2), except for
parameter s(m, n) which depends on the neighborhood according
to:

s(m, n) = S + ∆s(m, n) ∈ [0.65; 1] , (4)

where ∆s(m, n) is the semi-local complexity parameter. The semi-
local activity values of a n-by-n neighborhood are computed on the
achromatic component for both the reference and the impaired im-
age. The semi-local activity value E(m, n) is evaluated through
the entropy on a n-by-n neighborhood. Then, the entropy values
E(m, n) are mapped to the values ∆s(m, n) through a sigmoid
function.

2.3.3. Nadenau : Intra-Channel Model (Nadenau)

In his work [9], Nadenau proposed a simple intra-channel (IaC) con-
trast model applied on the wavelet coefficients. The non-linearity of
the threshold elevation function is approximated by two piece-wise
linear functions:

Tl,o(m, n) = max(1, c̃l,o(m, n)ε) , (5)

where ε is the slope-parameter.

2.3.4. Nadenau : Intra-Channel Model with semi-Local Masking
(Nadenau sLM)

In his work [9], Nadenau also proposed an intra-channel contrast
model applied on the wavelet coefficients and using the semi-local
activity. This model is inspired from the so called extended masking
[10] in the framework of J2K. Basically, it considered the point-wise
contrast masking as captured by the IaC-model, but applies addi-
tionally an inhibitory term that takes the neighborhood activity into
account:

Tl,o(m, n) = max(1, c̃l,o(m, n)ε) · (1 + ωΓ) . (6)

where ωΓ is the correction term for the influence of an active or ho-
mogeneous neighborhood. ωΓ is the normalized sum of the neigh-
boring coefficients that were taken to the power of ϑ:

ωΓ =
1

(kL)ϑNΓ

∑
Γ

|c̃l,o|ϑ . (7)

The parameter kL determines the dynamic range of ωΓ, while NΓ

specifies the number of coefficient in the neighborhood Γ. Contrary
to Nadenau’s work, the neighborhood Γ is not chosen causal in this
study, but as in the section 2.3.2, a n-by-n neighborhood around site
(m,n) is used.



Subjective Format Distortions #Contents / Protocol Viewing Display Population
Experiments #Distorted images Conditions Devices (#)

IVC 512× 512
DCT Coding,

10 / 120 DSIS
ITU-R BT 500.10

CRT
French

DWT Coding, 6H (20)
Blur

OriginalToyama 768× 512
DCT Coding, 14 / 168 ACR ITU-R BT 500.10 CRT Japanese
DWT Coding 4H (16)

NewToyama 768× 512
DCT Coding, 14 / 168 ACR ITU-R BT 500.10 LCD French
DWT Coding 4H (27)

Table 1. Description of the three subjective studies

IVC (DSIS) NewToyama (ACR) OriginalToyama (ACR)
CC SROCC RMSE CC SROCC RMSE CC SROCC RMSE

MOS

WQA Daly 0.892 0.896 0.562 0.851 0.855 0.571 0.837 0.844 0.71
WQA Daly sLM 0.923 0.921 0.48 0.937 0.941 0.38 0.919 0.923 0.514
WQA Nadenau 0.877 0.876 0.597 0.819 0.818 0.623 0.805 0.806 0.768

WQA Nadenau sLM 0.918 0.914 0.492 0.876 0.873 0.523 0.861 0.857 0.66
PSNR 0.768 0.77 0.795 0.699 0.685 0.777 0.685 0.678 0.943
SSIM 0.832 0.844 0.691 0.823 0.826 0.618 0.814 0.82 0.754

DMOS

WQA Daly — — — 0.874 0.874 0.535 0.85 0.85 0.68
WQA Daly sLM — — — 0.943 0.942 0.367 0.932 0.93 0.468
WQA Nadenau — — — 0.84 0.84 0.596 0.81 0.81 0.756

WQA Nadenau sLM — — — 0.888 0.888 0.508 0.863 0.862 0.652
PSNR — — — 0.73 0.717 0.752 0.691 0.683 0.931
SSIM — — — 0.833 0.838 0.61 0.805 0.81 0.766

Table 2. Results on all datasets (MOS and DMOS)

2.4. Error pooling

Prior to this stage, for each subband (l, o), the masking normaliza-
tion is applied on the error between the CSF normalized wavelet co-
efficients of the reference image and the impaired image. The goal
of this stage is to provide both a distortion map expressed in term of
visibility, stemming from the wavelet subbands, and a quality score.
The inter subband pooling is divided in three steps (orientation pool-
ing, level pooling and spatial pooling). As the pooling stage is not the
focus of this work, the solution chosen is rather simple. It consists
in using different Minkowski summations for each pooling steps.

The sequence of the orientation pooling and the level pooling
provides a unique perceptual error map, then the spatial pooling is
computed resulting in the quality score Q.

3. RESULTS

3.1. Quantitative analysis : MOS/MOSp

The performances of the WQA metric using the four masking func-
tions presented in the previous section are evaluated according to
mean observer score (MOS) and quality difference score (DMOS).
MOS have been obtained by conducting three subjective quality as-
sessment experiments in normalized conditions (ITU-R BT 500.10).
The three subjective experiments are called IVC, OriginalToyama
and NewToyama, and are described in Table 1. All observers had
normal or corrected to normal vision. All were inexperienced ob-
servers (in video processing) and naive to the experiments. Two
image databases with various contents, called IVC database and
Toyama database, were used in these experiments. The Toyama
database comes from the university of Toyama in Japan [11]. The
images were displayed on two type of display devices (CRT and

LCD). In order to deal with the influence of subjective assessment
methodology, these experiments were conducted with two standard-
ized protocols of test, the Absolute Category Rating (ACR) and the
Double Stimulus Impairment Scale (DSIS). The main difference
between these protocols is that the reference is hidden in ACR and
clear in DSIS. Moreover, the impact of cultural factors is explored
thanks to the two populations (Japanese and French) tested in these
experiments.

Prior to evaluate the objective image quality measures, a psycho-
metric function f(Q) is used to transform the objective quality score
Q in predicted MOS (MOSp) or in predicted DMOS (DMOSp), as
recommended by the Video Quality Expert Group [12](VQEG). The
objective quality metrics are evaluated using three performance met-
rics recommended by VQEG. The three performance metrics are the
linear correlation coefficient (CC), the Spearman rank order correla-
tion coefficient (SROCC), and the root-mean-square-error (RMSE).

Results, presented in Table 2, are reported for the different meth-
ods and for the three experiments. For information and to allow
readers to make their own opinions on the image dataset, PSNR and
SSIM [5] are also evaluated for the three experiments.

The four multi-channel models outperform PNSR in terms of
CC, SROCC and RMSE. SSIM is outperformed by all multi-channel
models in terms of CC, SROCC and RMSE for almost all datasets.
The exception is WQA Nadenau without sLM concerning MOS on
the NewToyama and OriginalToyama datasets, where there are no
significant difference. ∆CC between the multi-channel models and
the SSIM goes from −0.009 to +0.127. It is not surprising since
SSIM do not simulated the multi-channel structure of the HVS.

The use of the semi-local masking in the two configurations
(WQA Daly vs WQA Daly sLM, and WQA Nadenau vs WQA
Nadenau sLM) consistently increases the performance of the model



in terms of CC, SROCC and RMSE. This observation is done with
MOS and with DMOS on the three datasets. On the IVC dataset
∆CC between with and without sLM are respectively +0.031 and
+0.041 with WQA Daly and WQA Nadenau. On the NewToyama
dataset ∆CC between with and without sLM concerning MOS are
respectively +0.086 and +0.057 with WQA Daly and WQA Nade-
nau, and ∆CC between with and without sLM concerning DMOS
are respectively +0.069 and +0.048 with WQA Daly and WQA
Nadenau. On the OriginalToyama dataset ∆CC between with and
without sLM concerning MOS are respectively +0.082 and +0.056
with WQA Daly and WQA Nadenau, and ∆CC between with
and without sLM concerning DMOS are respectively +0.082 and
+0.053 with WQA Daly and WQA Nadenau. The same trend is
observed in terms of SROCC and RMSE. These observations show
the positive impact of the semi-local masking, and prove that the
masking effect must not be limited to contrast masking.

3.2. Qualitative analysis (semi-Local Masking)

Figure 2(a,b) represents the original image Mandrill and a JPEG
compressed version of Mandrill respectively. The difference be-
tween the perceptual error map of the WQA Daly model (cf. Figure
2(c)), and the perceptual error map of WQA Daly sLM (cf. Figure
2(d)) is significant. The masking effect in the most active areas like
the beard areas, is underestimated with the WQA Daly model, but it
is closer to the reality with WQA Daly sLM model.

(a) (b)

(c) (d)

Fig. 2. (a) is Mandrill, (b) is Mandrill with JPEG compression, (c) and
(d) are WQA perceptual error maps with Daly masking and with Daly sLM
masking respectively

4. CONCLUSION

The positive impact of the semi-local masking on some images is
important and complementary to contrast masking. Integration of

this type of masking in quality metrics improves both the prediction
performance of the metrics, and the relevance of their perceptual er-
ror maps. The same observations have been done on three subjective
studies. Is is interesting to note that the results are independent of
the subjective assessment methodology, and cultural factors.

This results lead to the conclusion that semi-local masking must
be incorporate in image quality metrics. Another conclusion is that
doing a subband decomposition using DWT to simulate the multi-
channel structure of the HVS leads to good prediction performance.
A spatial transform such as DWT can be considered as a good alter-
native to reduce computation effort.

Future work includes further investigation to find more revealing
measures of the surround influences on masking effect. Moreover,
other masking models exist in literature, as [4], and have to be tested.
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