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FAST ROTATING BOSE-EINSTEIN CONDENSATES IN AN
ASYMMETRIC TRAP

AMANDINE AFTALION, XAVIER BLANC, AND NICOLAS LERNER

Abstract. We investigate the effect of the anisotropy of a harmonic trap on
the behaviour of a fast rotating Bose-Einstein condensate. This is done in the
framework of the 2D Gross-Pitaevskii equation and requires a symplectic reduction
of the quadratic form defining the energy. This reduction allows us to simplify
the energy on a Bargmann space and study the asymptotics of large rotational
velocity. We characterize two regimes of velocity and anisotropy; in the first one
where the behaviour is similar to the isotropic case, we construct an upper bound:
a hexagonal Abrikosov lattice of vortices, with an inverted parabola profile. The
second regime deals with very large velocities, a case in which we prove that the
ground state does not display vortices in the bulk, with a 1D limiting problem. In
that case, we show that the coarse grained atomic density behaves like an inverted
parabola with large radius in the deconfined direction but keeps a fixed profile
given by a Gaussian in the other direction. The features of this second regime
appear as new phenomena.
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1. Introduction

Bose-Einstein condensates (BEC) are a new phase of matter where various as-
pects of macroscopic quantum physics can be studied. Many experimental and
theoretical works have emerged in the past ten years. We refer to the monographs
by C.J.Pethick-H.Smith [17], L.Pitaevskii-S.Stringari [18] for more details on the
physics and to A.Aftalion [2] for the mathematical aspects. Our work is motivated
by experiments in the group of J.Dalibard [14] on rotating condensates: when a
condensate is rotated at a sufficiently large velocity, a superfluid behaviour is de-
tected with the observation of quantized vortices. These vortices arrange themselves
on a lattice, similar to Abrikosov lattices in superconductors [1]. This fast rotation
regime is of interest for its analogy with Quantum Hall physics [5, 9, 21].

In a previous work, A.Aftalion, X.Blanc and F.Nier [3] have addressed the math-
ematical aspects of fast rotating condensates in harmonic isotropic traps and gave
a mathematical description of the observed vortex lattice. This was done through
the minimization of the Gross-Pitaevskii energy and the introduction of Bargmann
spaces to describe the lowest Landau level sets of states. Nevertheless, the ex-
perimental device leading to the realization of a rotating condensate requires an
anisotropy of the trap holding the atoms, which was not taken into account in [3].
Several physics papers have addressed the behaviour of anisotropic condensates un-
der rotation and its similarity or differences with isotropic traps. We refer the reader
to the paper by A.Fetter [8], and to the related works [16, 19, 20]. The aim of the
present article is to analyze the effect of anisotropy on the energy minimization and
the vortex pattern, and in particular to derive a mathematical study of some of
Fetter’s computations and conjectures. Two different situations emerge according
to the values of the parameters: in one case, the behaviour is similar to the isotropic
case with a triangular vortex lattice; in the other case, for very large velocities,
we have found a new regime where there are no vortices, and a full mathematical
analysis can be performed, reducing the minimization to a 1D problem. The exis-
tence of this new regime was apparently not predicted in the physics literature. This
feature relies on the analysis of the bottom of the spectrum of a specific operator
whose positive lower bound prevents the condensate from shrinking in one direction,
contradicting some heuristic explanations present in [8]. Our analysis is based on
the symplectic reduction of the quadratic form defining the Hamiltonian (inspired
by the computations of Fetter [8]), the characterization of a lowest Landau level
adapted to the anisotropy and finally the study of the reduced energy in this space.

1.1. The physics problem and its mathematical formulation. Our problem
comes from the study of the 3D Gross-Pitaevskii energy functional for a fast rotating
Bose-Einstein condensate with N particles of mass m given by

(1.1) EGP (φ) = 〈Hφ, φ〉L2(R3) +
g3dN

2
‖φ‖4

L4(R3),

where the operator H is

(1.2) H =
1

2m
(h2D2

x +h2D2
y +h2D2

z)+
m

2

(
ω2

xx
2 +ω2

yy
2 +ω2

zz
2
)
−Ω(xhDy −yhDx),

where h is the Planck constant, Dx = (2iπ)−1∂x, ωj is the frequency along the j-axis,
Ω is the rotational velocity, and the coupling constant g3d is a positive parameter.
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In the particular case where ωx = ωy, the fast rotation regime corresponds to
the case where Ω tends to ωx and the condensate expands in the transverse di-
rection. It has been proved [4] that the minimizer can be described at leading
order by a 2D function ψ(x, y), multiplied by the ground state of the harmonic
oscillator in the z-direction (the operator h2/(2m)D2

z + mω2
zz

2/2), which is equal

to (2mωzh
−1)1/4e−πmωzh−1z2

. This property is still true in the anisotropic case if
ωy ≪ ωz. The reduced 2D energy to study is thus

(1.3) E(ψ) = 〈H0ψ, ψ〉L2(R2) +
g2dN

2
‖ψ‖4

L4(R2),

where the operator H0 is

(1.4) H0 =
1

2m
(h2D2

x + h2D2
y) +

m

2

(
ω2

xx
2 + ω2

yy
2
)
− Ω(xhDy − yhDx),

and the coupling constant g2d takes into account the integral of the ground state in
the z-direction:

(1.5) g2dN =
gh2

m
, where g is dimensionless (and > 0).

Since h has the dimension energy × time, it is consistent to assume that the wave
function ψ has the dimension 1/length, with the normalization ‖ψ‖L2(R2) = 1. We
define the mean square oscillator frequency ω⊥ by

ω2
⊥ =

1

2
(ω2

x + ω2
y)

and the function u by

(1.6) ψ(x, y) = h−1/2m1/2ω
1/2
⊥ u(h−1/2m1/2ω

1/2
⊥ x, h−1/2m1/2ω

1/2
⊥ y),

so that

‖u‖L2(R2) = ‖ψ‖L2(R2) = 1, g2dN‖ψ‖4
L4(R2) = ghω⊥‖u‖4

L4(R2).

We also note that the dimension of h−1/2m1/2ω
1/2
⊥ is 1/length, so that

x1 = h−1/2m1/2ω
1/2
⊥ x, x2 = h−1/2m1/2ω

1/2
⊥ y, u(x1, x2) are dimensionless.

Assuming ω2
x ≤ ω2

y, we use the dimensionless parameter ν to write

ω2
x = (1 − ν2)ω2

⊥, ω2
y = (1 + ν2)ω2

⊥,

and we get immediately

1

hω⊥
E(ψ) =

1

2
‖D1u‖2

L2(R2)+
1

2
‖D2u‖2

L2(R2)+
1

2
(1−ν2)‖x1u‖2

L2(R2)+
1

2
(1+ν2)‖x2u‖2

L2(R2)

− Ω

ω⊥
〈(x1D2 − x2D1)u, u〉L2(R2) +

g

2
‖u‖4

L4(R2).

Finally, we have

1

hω⊥

E(ψ) := EGP (u) = 〈Hu, u〉+
g

2
‖u‖4

L4(R2),(1.7)

2H = D2
1 +D2

2 + (1 − ν2)x2
1 + (1 + ν2)x2

2 − 2ω(x1D2 − x2D1), ω =
Ω

ω⊥

,(1.8)
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where ω, ν, u, g are all dimensionless and ‖u‖L2(R2) = 1. The minimization of this
functional is the mathematical problem that we address in this paper. The Euler-
Lagrange equation for the minimization of EGP (u), under the constraint ‖u‖L2(R2) =
1, is

(1.9) Hu+ g|u|2u = λu,

where λ is the Lagrange multiplier. We shall always assume that Ω2 ≤ ω2
x, i.e.

ω2 + ν2 ≤ 1 and define the dimensionless parameter ε by

(1.10) ω2 + ν2 + ε2 = 1.

The fast rotation regime occurs when the ratio Ω2/ω2
x tends to 1−, i.e. ε tends to 0.

Summarizing and reformulating our reduction, we have

(1.11) EGP (u) =
1

2
〈qw

ω,ν,εu, u〉L2(R2) +
g

2

∫

R2

|u|4dx,

where qω,ν,ε is the quadratic form

(1.12) qω,ν,ε(x1, x2, ξ1, ξ2) = ξ2
1 + ξ2

2 + (1 − ν2)x2
1 + (1 + ν2)x2

2 − 2ω(x1ξ2 − x2ξ1),

which depends on the real parameters ω, ν, ε such that1 (1.10) holds. Here qw
ω,ν,ε is

the operator with Weyl symbol qω,ν,ε, that is:

(1.13) qw
ω,ν,ε = D2

1 +D2
2 + (1 − ν2)x2

1 + (1 + ν2)x2
2 − 2ω(x1D2 − x2D1),

where Dj = ∂j/(2iπ). We would like to minimize the energy EGP (u) under the
constraint ‖u‖L2 = 1 and understand what is happening when ε→ 0.

1.2. The isotropic Lowest Landau Level. When the harmonic trap is isotropic,
i.e. when ν = 0, it turns out that, since ω2 + ε2 = 1,

(1.14) q = qω,0,ε = (ξ1 + ωx2)
2 + (ξ2 − ωx1)

2 + ε2(x2
1 + x2

2)

so that

EGP (u) =
1

2
‖(D1 + ωx2)ψ + i(D2 − ωx1)u‖2 +

ω

2π
‖u‖2 +

ε2

2
‖|x|u‖2 +

g

2

∫
|u|4dx.

We note that, with z = x1 + ix2,

D1 + ωx2 + i(D2 − ωx1) =
1

iπ
∂̄ − iωz =

1

iπ
(∂̄ + πωz),

hence the first term of the energy is minimized (and equal to 0) if u ∈ LLLω−1 ,
where

(1.15) LLLω−1 = {u ∈ L2(R2), u(x) = f(z)e−πω|z|2} = ker(∂̄ + πωz) ∩ L2(R2),

with f holomorphic. We expect the condensate to have a large expansion, hence the
term

∫
|u|4 to be small. Thus, it is natural to minimize the energy EGP in LLLω−1 .

It has been proved in [4] that the restriction to LLLω−1 is a good approximation

1Of course there is no loss of generality assuming that ǫ, ν are nonnegative parameters; we may
also assume that ω ≥ 0, since the change of function u(x1, x2) 7→ u(−x1, x2) preserves the L4-norm,
is unitary in L2, corresponding to the symplectic transformation (x1, x2, ξ1, ξ2) 7→ (−x1, x2,−ξ1, ξ2)
and leads to the same problem where ω is replaced by −ω.
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of the original problem, i.e. the minimization of EGP in L2(R2). We get for u ∈
LLLω−1 , ‖u‖L2 = 1,

EGP (u) =
1

2
‖ (D1 + ωx2)u+ i(D2 − ωx1)u︸ ︷︷ ︸

(iπ)−1(∂̄+πωz)u=0

‖2 +
ω

2π
+
ε2

2
‖|x|u‖2 +

g

2

∫
|u|4dx,

and with u(x) = υ
(
(ωε)1/2x

)
(ωε)1/2 (unitary change in L2(R2)),

EGP (u) =
ω

2π
+

ε

2ω

(∫
|y|2|υ(y)|2dy + ω2g

∫
|υ(y)|4dy

)
.

The minimization problem of EGP (u) in the space LLLω−1 is thus reduced to study

(1.16) ELLL(υ) = ‖|x|υ‖2
L2 + ω2g‖υ‖4

L4, υ ∈ LLLε,

i.e. with z = x1 + ix2, v(x1, x2) = f(z)e−πε−1|z|2, f entire (and v ∈ L2(R2)). This
program has been carried out in the paper [3] by A. Aftalion, X. Blanc, F. Nier.
In the isotropic case, a key point is the fact that the symplectic diagonalisation of
the quadratic Hamiltonian is rather simple: in fact revisiting the formula (1.14), we
obtain easily

(1.17) q =

η2
1︷ ︸︸ ︷

(
1 − ω

2
)(ξ1 − x2)

2 +

µ2
1y2

1︷ ︸︸ ︷
(
1 − ω

2
)(ξ2 + x1)

2

+ (
1 + ω

2
)(ξ1 + x2)

2

︸ ︷︷ ︸
η2
2

+ (
1 + ω

2
)(ξ2 − x1)

2

︸ ︷︷ ︸
µ2

2y2
2

,

with

(1.18)





η1 = 2−1/2(1 − ω)1/2(ξ1 − x2), µ1 = 1 − ω, y1 = 2−1/2(1 − ω)−1/2(ξ2 + x1),

η2 = 2−1/2(1 + ω)1/2(ξ1 + x2), µ2 = 1 + ω, y2 = 2−1/2(1 + ω)−1/2(x1 − ξ2),

so that the linear forms (y1, y2, η1, η2) are symplectic coordinates in R4, i.e.

{η1, y1} = {η2, y2} = 1, {η1, η2} = {η1, y2} = {η2, y1} = {y1, y2} = 0.

In [3], an upper bound for the energy is constructed with a test function which
is also an “almost” solution to the Euler-Lagrange equation corresponding to the
minimization of (1.16) in LLLε. This almost solution displays a triangular vortex
lattice in a central region of the condensate and is constructed using a Jacobi Theta
function, which is modulated by an inverted parabola profile and projected onto
LLLε.

1.3. Sketch of some preliminary reductions in the anisotropic case. The
analysis of the reduced energy in the anisotropic case yields two different situations:
one is similar to the isotropic case and the other one is quite different, without
vortices. To tackle the non-isotropic case where ν > 0 in (1.13), one would like to
determine a space playing the role of the LLL and taking into account the anisotropy.
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Step 1. Symplectic reduction of the quadratic form qω,ν,ǫ. Given the quadratic form
qω,ν,ε (1.12), identified with a 4 × 4 symmetric matrix, we define its fundamental
matrix by the identity F = −σ−1qω,ν,ε = σqω,ν,ε where

σ =

(
0 I2

−I2 0

)
is the symplectic matrix given in 2 × 2 blocks.

The properties of the eigenvalues and eigenvectors of F allow to find a symplectic
reduction for qω,ν,ε.

Step 2. Determination of the anisotropic LLL. The anisotropic equivalent of the
LLL can be determined explicitely, thanks to the results of the first step. We find
that it is the subspace of functions u of L2(R2) such that

f
(
x1 + iβ2x2

)
exp

(
− γπ

4β2

[
x2

1(1 − ν2

2α
) + (β2x2)

2(1 +
ν2

2α
)
])

exp (−iπν
2γ

4α
x1x2),

where f is entire. The positive parameters α, γ, β2 are defined in the text and
are explicitely known in terms of ω, ν. We also determine an operator M , which
can be used to give an explicit expression for the isomorphism between L2(R) and
the anisotropic LLL as well as to express the Gross-Pitaevskii energy in the new
symplectic coordinates.

Step 3. Rescaling. Introducing a new set of parameters (ω, ν, ǫ are positive satisfying
(1.10), g > 0 given by (1.5)),

(1.19) κ2
1 = (2ν2 + ǫ2)

(
1 +

2ν2

α− ν2 + ω2

)
, α =

√
ν4 + 4ω2, g1 = g

α+ 2ω2 + ν2

2α
,

(1.20) κ =
κ1

β2
, g0 =

g1γ
2

4β2
, γ =

2α

ω
, β2 =

2ωµ2

α + 2ω2 + ν2
, µ2 = 1 + ω2 + α,

we show that, after some rescaling, the minimization of the full energy EGP (u) of
(1.11) can be reduced to the minimization of

(1.21) E(u) =

∫

R2

1

2
(ε2x2

1 + κ2x2
2)|u|2 +

g0

2
|u|4.

on the space

(1.22) Λ0 = {u ∈ L2(R2), u(x1, x2) = f(z)e−π|z|2/2, f holomorphic, z = x1 + ix2}.
The point is that, after some scaling, we are able to come back to an isotropic space.
The orthogonal projection Π0 of L2(R2) onto Λ0 is explicit and simple:

(1.23) (Π0u)(x) =

∫

R2

e−
π
2
|x−y|2+iπ(x2y1−y2x1)u(y)dy.

We are thus reduced to the following problem: with E(u) given by (1.21), study

(1.24) I(ε, κ) = inf
{
E(u), u ∈ Λ0, ‖u‖L2(R2) = 1

}
.

The minimization of E without the holomorphy constraint yields

(1.25) |u|2 =
2

πR1R2
(1 − x2

1

R2
1

− x2
2

R2
2

), where R1 =

(
4g0κ

πε3

)1/4

, R2 =

(
4g0ε

πκ3

)1/4

.

As ε tends to 0, R1 always tends to infinity (in fact R1 & ε−1/2), but the behaviour
of R2 depends on the respective values of ε and κ, that is of ε and ν.
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Step 4. Sorting out the various regimes. Recalling that the positive parameter ν
stands for the anisotropy, we find two regimes:

• ν ≪ ε1/3 (weak anisotropy): R2 → ∞ (in fact, R
4/3
2 ≈ min(ε−2/3, ε1/3ν−1)).

Numerical simulations (Figure 1) show a triangular vortex lattice. The behaviour
is similar to the isotropic case except that the inverted parabola profile (1.25) takes
into account the anisotropy. We will construct an approximate minimizer.

Figure 1. Plot of the zeroes of the minimizer (left) and the density (right)
for ε2 = 0.002, ν = 0.03. Triangular vortex lattice in an anisotropic trap.

• ν ≫ ε1/3 (strong anisotropy): R2 → 0 (in fact R
4/3
2 ≈ ε1/3ν−1). Numerical

simulations (Figure 2) show that there are no vortices in the bulk, the behaviour
is an inverted parabola in the x1 direction and a fixed Gaussian in the x2 direction.
Thus, the size of the condensate does not shrink in the x2 direction and (1.25) is not
a good approximation of the minimizer. The shrinking of the condensate in the x2

direction is not allowed in Λ0 (see (1.22)) because the operator x2
2 is bounded from

below in that space by a positive constant and the first eigenfunction is a Gaussian
in the x2 direction. We find an asymptotic 1D problem (upper and lower bounds
match) which yields a separation of variables.
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Figure 2. Plot of the zeroes of the minimizer (left) and the density (right)
for ε2 = 0.002, ν = 0.73. No vortex in the visible region.

1.4. Main results.

1.4.1. Weakly anisotropic case. In a first step2, we assume that, with κ given by
(1.20),

(1.26) ε ≤ κ≪ ε1/3.

The isotropic case is recovered by assuming κ = ε. This case is similar to the isotropic
case and we derive similar results to the paper [3], namely an upper bound given by
the Theta function but we lack a good lower bound.

We recall that the Jacobi Theta function Θ(z, τ) associated to a lattice Z⊕Zτ is
a holomorphic function which vanishes exactly once in any lattice cell and is defined
by

(1.27) Θ(z, τ) =
1

i

+∞∑

n=−∞

(−1)neiπτ(n+1/2)2e(2n+1)πiz , z ∈ C .

This function allows us to construct a periodic function on the same lattice: uτ is
defined by

(1.28) uτ (x1, x2) = e
π
2 (z2−|z|2)Θ (

√
τIz, τ) , z = x1 + ix2, τ = τR + iτI ,

|uτ | is periodic over the lattice Z ⊕ τZ, and uτ satisfies

(1.29) Π0

(
|uτ |2uτ

)
= λτuτ ,

with

(1.30) λτ =
−
∫
|uτ |4

−
∫
|uτ |2

=
γ(τ)√

2τI
,

2We shall see that κ ≈ ν + ε in the sense that the ratio κ/(ν + ε) is bounded above and below
by some fixed positive constants, so that the weakly anisotropic case is indeed ν ≪ ε1/3.
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and

(1.31) γ(τ) :=
−
∫
|uτ |4(

−
∫
|uτ |2

)2 .

The minimization of γ(τ) on all possible τ corresponds to the Abrikosov problem.
It turns out that the properties of the Theta function allow to derive that

γ(τ) =
∑

(j,k)∈Z2

e
− π

τI
|jτ−k|2

and prove (see [3]) that τ 7→ γ(τ) is minimized for τ = j = e2iπ/3, which corresponds
to the hexagonal lattice. The minimum is

(1.32) b = γ(j) ≈ 1.1596.

The function uτ allows us to construct the vortex lattice and we multiply it by the
proper inverted parabola to get a good upper bound:

Theorem 1.1. We have for I(ε, κ) defined in (1.24), b given in (1.32), κ in (1.20),

(1.33)
2

3

√
2g0εκ

π
< I(ε, κ) ≤ 2

3

√
2g0bεκ

π
+O

(
√
εκ

(
κ3

ε

)1/8
)
,

when (ǫ, κǫ−1/3) → (0, 0). Moreover, the following function provides the upper bound:

(1.34) v = Π0 (uτρ) ,

where uτ is defined by (1.28) with τ = e
2iπ
3 and

ρ(x)2 =
2

π
√
bR1R2

(
1 − x2

1√
bR2

1

− x2
2√
bR2

2

)

+

, R1 =

(
4g0κ

πε3

)1/4

, R2 =

(
4g0ε

πκ3

)1/4

.

We expect v to be a good approximation of the minimizer and the energy asymp-
totics to match the right-hand side of (1.33). Thus, the lower bound is not optimal
( it does not include b). In addition, the test function (1.34) (with a general τ 6= j
a priori) gives the upper bound of (1.33) with γ(τ) instead of b. The proof is a
refinement of that in [3].

1.4.2. Strong anisotropy. In the case where the rotation is fast enough in the sense
that

(1.35) κ≫ ε1/3

we have found a regime unknown by physicists where vortices disappear and the
problem can be reduced in fact to a 1D energy.

Theorem 1.2. For I(ε, κ) defined in (1.24), b given in (1.32), κ in (1.20), we have

(1.36) lim
(ǫ,ǫ1/3κ−1)→(0,0)

(
I(ε, κ) − κ2

8π

ε2/3

)
= J,
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where
(1.37)

J = inf
{∫ 1

2
t2p(t)2 +

g0

2

∫
p(t)4, p real-valued ∈ L2(R) ∩ L4(R), ‖p‖L2(R) = 1

}
.

In addition, if u is a minimizer of I(ε, κ), then

(1.38)
1

ε1/3

∣∣∣u
( x1

ε2/3
, x2

)∣∣∣ −→ 21/4e−πx2
2p(x1),

in L2(R2) ∩ L4(R2), where p is the minimizer of J.

Note that the minimizer p of (1.37) is explicit:

p(t)2 =
3

4R

(
1 − t2

R2

)

+

, R =

(
3g0

2

)1/3

.

A few words about the proof of Theorem 1.2. The first point is that the operator
Π0x

2
2Π0 (see (1.22), (1.23)) is bounded from below by a positive constant:

∀u ∈ Λ0,

∫

R2

x2
2|u|2 ≥

1

4π

∫

R2

|u|2.

This is proven in Lemma 4.4 below. Actually, the spectrum of this operator is purely
continuous, and any Weyl sequence associated with the value 1/(4π) converges (up
to renormalization) to the function

(1.39) u0(x1, x2) = exp
(
−πx2

2 + iπx1x2

)
,

which satisfies the equation Π0(u0) = 1
4π
u0. This gives the lower bound

I(ε, κ) ≥ κ2

8π
,

and indicates that in order to be close to this lower bound, a test function should
be close to (1.39). Thus, the second point is to construct a test function having the
same behaviour as (1.39) in x2, and a large extension in x1. This is done by using
the function

u1(x1, x2) =
1

21/4
e−

π
2
x2
2

∫

R

e−
π
2 ((x1−y1)2−2iy1x2)ρ(y1)dy1,

which is equal to Π0(ρ(x1)δ0(x2)), where δ0 is the Dirac delta function and ρ any
real-valued function of one variable. This test function is then proved to be close
to 21/4e−πx2

2ρ(x1), which allows to compute its energy, and gives the upper bound,
provided that ρ(t) = ε1/3p(ε2/3t), where p is the minimizer of (1.37). Finally, in
order to prove the lower bound, we first extract bounds on the minimizer from the
energy, which allow to pass to the limit in the equation (after rescaling as in (1.38)),
hence prove that the limit is the right-hand side of (1.38). This uses the fact that
the energy appearing in (1.37) is strictly convex, hence that any critical point is the
unique minimizer.

The paper is organized as follows: in section 2, we review some standard facts on
positive definite quadratic forms in a symplectic space. This allows us, in section 3, to
construct a symplectic mapping χ, which yields a simplification of the quadratic form
q. In section 4, quantizing that symplectic mapping in a metaplectic transformation,
we find the expression of the LLL and manage to reach the reduced form of the
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energy (Proposition 4.5). Section 5 is devoted to the proof of Theorem 1.1 and
section 6 to Theorem 1.2.

Open questions. We have no information on the the intermediate regime where, for

instance, ε1/3/κ converges to some constant R
4/3
0 (in that case, R1 ≈ ε−2/3, R2 ≈ R0).

We expect that the extension in the x2 direction depends on R0 and wonder whether
the condensate has a finite number of vortex lines. We have not determined the
limiting problem.

Acknowledgements. We would like to thank A.L.Fetter and J.Dalibard for very
useful comments on the physics of the problem. We also acknowledge support from
the French ministry grant ANR-BLAN-0238, VoLQuan and express our gratitude
to our colleagues participating to this ANR-project, in particular T.Jolicœur and
S.Ouvry.

2. Quadratic Hamiltonians

We first review some standard facts on positive definite quadratic forms in a
symplectic space.

2.1. On positive definite quadratic forms on symplectic spaces. We consider
the phase space R

n
x × R

n
ξ , equipped with its canonical symplectic structure: the

symplectic form σ is a bilinear alternate form on R2n given by

σ
(
(x, ξ); (y, η)

)
= ξ · y − η · x = 〈σX, Y 〉,(2.1)

with X =

(
x
ξ

)
, Y =

(
y
η

)
, σ =

(
0 In

−In 0

)
,(2.2)

where the form σ is identified with the 2n× 2n matrix above given in n× n blocks.
The symplectic group Sp(n) (a subgroup of Sl(2n,R)), is defined by the equation
on the 2n× 2n matrix χ,

(2.3) χ∗σχ = σ, i.e. ∀X, Y ∈ R
2n, 〈σχX, χY 〉 = 〈σX, Y 〉.

The following lemma is classical (see e.g. the chapter XXI in [10], or [15]).

Lemma 2.1. Let B ∈ GL(n,R) and let A,C be n × n real symmetric matrices.
Then the matrix Ξ, given by n× n blocks

(2.4) ΞA,B,C =

(
B−1 −B−1C
AB−1 B∗ − AB−1C

)
=

(
I 0
A I

)(
B−1 0
0 B∗

)(
I −C
0 I

)

belongs to Sp(n). Any element of Sp(n) can be written as a product

ΞA1,B1,C1ΞA2,B2,C2 .

N.B. The first statement is easy to verify directly and we shall not use the last statement,

which is nevertheless an interesting piece of information. For a symplectic mapping Ξ, to

be of the form above is equivalent to the assumption that the mapping x 7→ pr1Ξ(x⊕ 0)

is invertible from R
n to R

n.

Given a quadratic form Q on R
2n, identified with a symmetric 2n × 2n matrix,

we define its fundamental matrix F by the identity

F = −σ−1Q = σQ, so that for X, Y ∈ R
2n 〈σY, FX〉 = 〈QY,X〉.

The following proposition is classical (see e.g. the theorem 21.5.3 in [10]).
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Proposition 2.2. Let Q be a positive definite quadratic form on the symplectic
Rn

x × Rn
ξ . One can find χ ∈ Sp(n) such that with

R
2n ∋ X = χY, Y = (y1, . . . , yn, η1, . . . , ηn),

〈QX,X〉 = 〈QχY, χY 〉 =
∑

1≤j≤n

(η2
j + µ2

jy
2
j ), µj > 0.

The {±iµj}1≤j≤n are the 2n eigenvalues of the fundamental matrix, related to the
2n eigenvectors {ej ± iεj}1≤j≤n. The {ej , εj}1≤j≤n make a symplectic basis of R2n:

σ(εj, ek) = δj,k, σ(εj, εk) = σ(ej , ek) = 0,

and the symplectic planes Πj = Rej ⊕ Rεj are orthogonal for Q.

N.B. A one-line-proof of these classical facts: on C
2n equipped with the dot-product given

by Q, diagonalize the sesquilinear Hermitian form iσ.

2.2. Generating functions. We define on Rn × Rn the generating function S of
the symplectic mapping of the form ΞA,B,C given in the lemma 2.1 by the identity

(2.5) S(x, η) =
1

2

(
〈Ax, x〉 + 2〈Bx, η〉 + 〈Cη, η〉

)
.

We have

(2.6) ΞA,B,C

(∂S
∂η
, η
)

︸ ︷︷ ︸
∈Rn×Rn

=
(
x,
∂S

∂x

)

︸ ︷︷ ︸
∈Rn×Rn

.

In fact, we see directly
(
I 0
A I

)(
B−1 0
0 B∗

)(
I −C
0 I

)(
Bx+ Cη

η

)
=

(
I 0
A I

)(
x
B∗η

)
=

(
x

Ax+B∗η

)
.

Given a positive definite quadratic form Q on R2n, identified with a symmetric
2n× 2n matrix, we know from the proposition 2.2 that there exists χ ∈ Sp(n) such
that

χ∗Qχ =

(
µ2 0
0 In

)
, µ2 = diag(µ2

1, . . . , µ
2
n)

Looking for χ = ΞA,B,C given by a generating function S as above, we end-up (using
the notation q(X) = 〈QX,X〉 with X ∈ R2n) with the equation

q(x, ∂xS︸ ︷︷ ︸
Rn×Rn

) = ‖µ∂ηS‖2 + ‖η‖2, µ∂ηS = (µj∂ηj
S)1≤j≤n ∈ R

n,

where ‖ · ‖ stands for the standard Euclidean norm on Rn. This means

(2.7) q(x,Ax+B∗η) = ‖µ(Bx+ Cη)‖2 + ‖η‖2.

We want now to go back to the study of our quadratic form (1.12).
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2.3. Effective diagonalization.

Lemma 2.3. Let q be the quadratic form on R4 given by (1.12), where ω, ν, ε are
nonnegative parameters such that ω2 + ν2 + ε2 = 1. The eigenvalues of the funda-
mental matrix are ±iµ1,±iµ2 with

0 ≤ µ2
1 = 1 + ω2 − α ≤ µ2

2 = 1 + ω2 + α, α =
√
ν4 + 4ω2,(2.8)

µ2
1 =

2ν2ε2 + ε4

µ2
2

.(2.9)

In the isotropic case ν = 0, we recover µ1 = 1−ω, µ2 = 1+ω. When ε > 0, we have
0 < µ2

1 ≤ µ2
2 and q is positive-definite. When ε = 0, we have µ1 = 0 < µ2, and q is

positive semi-definite with rank 2 if ν = 0 and with rank 3 if ν > 0.

Proof. The matrix Q of q is thus

(2.10) Q =




1 − ν2 0 0 −ω
0 1 + ν2 ω 0
0 ω 1 0
−ω 0 0 1


, and F = σQ =




0 ω 1 0
−ω 0 0 1
ν2 − 1 0 0 ω

0 −ν2 − 1 −ω 0


 .

The characteristic polynomial p of F is easily seen to be even and we calculate

p(λ) = det(F −λI4) = λ4 +2(1+ω2)λ2 +(1−ω2)2−ν4 = (λ2 +1+ω2)2− (ν4 +4ω2).

The four eigenvalues of F are thus ±i
√

1 + ω2 ±
√
ν4 + 4ω2, proving the first state-

ment of the lemma. Since (1 + ω2)2 − α2 = (1 − ω2)2 − ν4 = ε2(2ν2 + ε2), we get
µ2

1 = ε2(2ν2 + ε2)/µ2
2. The statements on the cases ν = 0, ε > 0 are now obvious.

When ε = 0 = ν, we have ω = 1, and rank q = 2 as it is obvious on (1.17). When
ε = 0, ν > 0, we consider the following minor determinant in F , cofactor of f31∣∣∣∣∣∣

ω 1 0
0 0 1

−ν2 − 1 −ω 0

∣∣∣∣∣∣
= (−1)(−ω2 + ν2 + 1) = −2ν2 6= 0,

so that rankQ = rankF = 3 in that case. �

N.B. We may note here that the condition ω2 + ν2 ≤ 1 is an iff condition on the real pa-
rameters ν, ω for the quadratic form (1.12) to be positive semi-definite. This is obvious on
the expression (1.17) in the isotropic case ν = 0, and more generally, the (non-symplectic)
decomposition in independent linear forms

q = (ξ1 + ωx2)
2 + (ξ2 − ωx1)

2 + x2
1(1 − ν2 − ω2) + x2

2(1 + ν2 − ω2),

shows that q has exactly one negative eigenvalue when ω2 + ν2 > 1 ≥ ω2 − ν2, and exactly

two negative eigenvalues when ω2 − ν2 > 1. As a result, when ω2 + ν2 > 1, the operator

qw is unbounded from below.

Using now the equations (2.7), (1.12) and assuming that we may find a linear
symplectic transformation given by a generating function (2.5), we have to find
A,B,C like in the lemma 2.1 with n = 2, so that for all (x, η) ∈ R2 × R2,

‖Ax+B∗η‖2 + ‖x‖2 + ν2(x2
2 − x2

1)− 2ω
(
x∧ (Ax+B∗η)

)
= ‖µ(Bx+Cη)‖2 + ‖η‖2,

with x∧ξ = x1ξ2−x2ξ1, µ = diag(µ1, µ2). At this point, we see that the previous iden-
tity forces some relationships between the matrices A,B,C. However, the algebra
is somewhat complicated and assuming that B is diagonal, A,C are (symmetrical)
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with zeroes on the diagonal lead to some simplifications and to the following results.
We introduce first some parameters:

β1 =
2ωµ1

α− 2ω2 + ν2
=
α− 2ω2 − ν2

2ωµ1
since (α − 2ω2)2 − ν4 = 4ω2 + 4ω4 − 4ω2α = 4ω2µ2

1 ,(2.11)

β2 =
2ωµ2

α+ 2ω2 + ν2
=
α+ 2ω2 − ν2

2ωµ2
since (α + 2ω2)2 − ν4 = 4ω2 + 4ω4 + 4ω2α = 4ω2µ2

2 ,(2.12)

γ =
2α

ω
,(2.13)

λ2
1 =

µ1

µ1 + β1β2µ2
=

1

1 + β1β2µ2

µ1

=
1

1 + α+2ω2−ν2

α−2ω2+ν2

=
α− 2ω2 + ν2

2α
,(2.14)

λ2
2 =

µ2

µ2 + β1β2µ1
=

1

1 + β1β2µ1

µ2

=
1

1 + α−2ω2−ν2

α+2ω2+ν2

=
α+ 2ω2 + ν2

2α
,(2.15)

and we have

λ2
1 + λ2

2 = 1 +
ν2

α
, λ2

1λ
2
2 =

(α + ν2)2 − 4ω4

4α2
.(2.16)

We define also

d =
γλ1λ2

2
, c =

λ2
1 + λ2

2

2λ1λ2
which gives cd =

2α(1 + ν2/α)

4ω
=
α + ν2

2ω
.(2.17)

Lemma 2.4. We define the 2 × 2 matrices

B =

(
λ−1

1 0
0 λ−1

2

)
, C =

(
0 d−1

d−1 0

)
, A =

(
0 d

λ1λ2
− cd

d
λ1λ2

− cd 0

)
.

The 4 × 4 matrix given with 2 × 2 blocks by

χ = ΞA,B,C =

(
I2 0
A I2

)(
B−1 0
0 B∗

)(
I2 −C
0 I2

)

belongs to Sp(2) and

(2.18) χ =




λ1 0 0 −λ1

d

0 λ2 −λ2

d
0

0 d
λ1

− λ2cd cλ2 0
d
λ2

− λ1cd 0 0 cλ1


 ,

(2.19) χ−1 =




cλ2 0 0 λ2

d

0 cλ1
λ1

d
0

0 − d
λ2

+ λ1cd λ1 0

− d
λ1

+ λ2cd 0 0 λ2


 .

Proof. The lemma 2.1 gives that χ ∈ Sp(2) and we have also

χ−1 =

(
I2 C
0 I2

)(
B 0
0 B∗−1

)(
I2 0
−A I2

)
.

The remaining part of the proof depends on the formula giving ΞA,B,C in the lemma
2.1 and a direct computation whose verification is left to the reader. �
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Lemma 2.5. Let χ be the symplectic matrix given by (2.18) and Q be the matrix
given in (2.10). Then, with µj given by (2.8), we have

(2.20) χ∗Qχ = diag(µ2
1, µ

2
2, 1, 1).

The (tedious) proof of that lemma is given in the appendix 7.3.1.
Using the expression of χ−1 in (2.18), defining

(2.21)




y1

y2

η1

η2


 =




cλ2 0 0 λ2

d

0 cλ1
λ1

d
0

0 − d
λ2

+ λ1cd λ1 0

− d
λ1

+ λ2cd 0 0 λ2







x1

x2

ξ1
ξ2


 ,

we get from the lemma 2.5 the following result.

Lemma 2.6. For (x1, x2, ξ1, ξ2) ∈ R4, (y1, y2, η1, η2) ∈ R4 given by (2.21), we have
the following identity,

µ2
1y

2
1 + µ2

2y
2
2 + η2

1 + η2
2 = µ2

1

(
cλ1x2 + λ2d

−1ξ2
)2

+ µ2
2

(
cλ2x1 + λ1d

−1ξ1
)2

+
(
(−dλ−1

2 + λ1cd)x2 + λ1ξ1
)2

+
(
(−dλ−1

1 + λ2cd)x1 + λ2ξ2
)2

= ξ21 + ξ22 + (1 − ν2)x2
1 + (1 + ν2)x2

2 − 2ω(x1ξ2 − x2ξ1),

where the parameters c, λ2, d, λ1 are defined above (note that all these parameters are
well-defined when (ω, ν) are both positive with ω2 + ν2 < 1).

We have achieved an explicit diagonalization of the quadratic form (1.12) and,
most importantly, that diagonalization is performed via a symplectic mapping. That
feature will be of particular importance in our next section. Expressing the param-
eters in terms of α, ω, ν, ε (cf. section 7.2), we obtain

q =
(
2−1/2α−1/2(α− 2ω2 + ν2)1/2ξ1 − 2−3/2ω−1α−1/2(α− 2ω2 + ν2)1/2(α− ν2)x2

)2

+
(
2−1/2α−1/2

(α+ 2ω2 − ν2

2ν2 + ε2
)1/2 (2ν2ε2 + ε4)1/2

µ2
ξ2

+
(2ν2ε2 + ε4)1/2

µ2
(α1/2 + ν2α−1/2)2−3/2ω−1

(α+ 2ω2 − ν2

2ν2 + ε2
)1/2

x1

)2

+
(
(1 + ω2 + α)1/221/2α−1/2ω(α+ 2ω2 + ν2)−1/2ξ1

+ (1 + ω2 + α)1/2(1 + α−1ν2)2−1/2α1/2(α+ 2ω2 + ν2)−1/2x2

)2

+
(
2−1/2α−1/2(α+ 2ω2 + ν2)1/2ξ2 − 2−3/2ω−1α−1/2(α− ν2)(α+ 2ω2 + ν2)1/2x1

)2
,

so that

q =

η2
1︷ ︸︸ ︷(α− 2ω2 + ν2

2α

)[
ξ1 −

(α− ν2

2ω

)
x2

]2
+

µ2
1y2

1︷ ︸︸ ︷(α + 2ω2 − ν2

2αµ2
2

)
ε2
[
ξ2 +

(α+ ν2

2ω

)
x1

]2

+ 2ω2
( 1 + ω2 + α

α(α+ 2ω2 + ν2)

)[
ξ1 +

(α + ν2

2ω

)
x2

]2

︸ ︷︷ ︸
µ2

2y2
2

+
(α + 2ω2 + ν2

2α

)[
ξ2 −

(α− ν2

2ω

)
x1

]2

︸ ︷︷ ︸
η2
2

.

(2.22)
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The equation (2.22) encapsulates most of our previous work on the diagonalization
of q. In the appendix 7.3.2, we provide another way of checking the symplectic
relationships between the linear forms, yj, ηl.

We have seen in Lemma 2.3 that when ε = 0, ν > 0, the rank of q is 3, whereas
its symplectic rank is 2. Indeed, ε = 0 and ν > 0, we have

q =

η2
1︷ ︸︸ ︷(α− 2ω2 + ν2

2α

)[
ξ1 −

(α− ν2

2ω

)
x2

]2
+

+ 2ω2
( 1 + ω2 + α

α(α+ 2ω2 + ν2)

)[
ξ1 +

(α + ν2

2ω

)
x2

]2

︸ ︷︷ ︸
µ2

2y2
2

+
(α + 2ω2 + ν2

2α

)[
ξ2 −

(α− ν2

2ω

)
x1

]2

︸ ︷︷ ︸
η2
2

.

(2.23)

3. Quantization

3.1. The Irving E. Segal formula. Let a be defined on Rn
x ×Rn

ξ (say a tempered

distribution on R2n). Its Weyl quantization is the operator, acting for instance on
u ∈ S (Rn),

(3.1) (awu)(x) =

∫∫
e2iπ(x−x′)ξa(

x+ x′

2
, ξ)u(x′)dx′dξ.

In fact, the weak formula 〈awu, v〉 =
∫

R2n a(x, ξ)H(u, v)(x, ξ)dxdξ makes sense for
a ∈ S ′(R2n), u, v ∈ S (Rn) since the Wigner function H(u, v) defined by

H(u, v)(x, ξ) =

∫
e−2iπx′ξu(x+

x′

2
)v̄(x− x′

2
)dx′

belongs to S (R2n) for u, v ∈ S (Rn) . Note also our definition of the Fourier
transform û(ξ) =

∫
e−2iπx·ξu(x)dx (so that u(x) =

∫
e2iπx·ξû(ξ)dξ) and

ξw
j u =

1

2iπ

∂u

∂xj
= Dju, xw

j u = xju, (xjξj)
w =

1

2

(
xjDj +Djxj

)
.

Let χ be a linear symplectic transformation χ(y, η) = (x, ξ). The Segal formula (see
e.g. the theorem 18.5.9 in [10]) asserts that there exists a unitary transformation M
of L2(Rn), uniquely determined apart from a constant factor of modulus one, which
is also an automorphism of S (Rn) and S ′(Rn) such that, for all a ∈ S ′(R2n),

(3.2) (a ◦ χ)w = M∗awM,

providing the following commutative diagrams

S (Rn
x)

aw

−−−→ S ′(Rn
x)

M

x
yM∗

S (Rn
y) −−−−→

(a◦χ)w
S ′(Rn

y )

and if aw ∈ L(L2(Rn))

L2(Rn
x)

aw

−−−→ L2(Rn
x)

M

x
yM∗

L2(Rn
y) −−−−→

(a◦χ)w
L2(Rn

y )
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3.2. The metaplectic group and the generating functions. For a given χ, how
can we determine M ? We shall not need here the rich algebraic structure of the
two-fold covering Mp(n) (the metaplectic group in which live the transformations
M) of the symplectic group Sp(n). The following lemma is classical (and also easy
to prove directly using the factorization of the lemma 2.1) and provides a simple
expression for M when the transformation χ has a generating function.

Lemma 3.1. Let χ = ΞA,B,C be the symplectic mapping given by (2.4). Then the
Segal formula (3.2) holds with

(3.3) (Mv)(x) =

∫
e2iπS(x,η)v̂(η)dη| detB|1/2,

where S is given by (2.5).

3.3. Explicit expression for M .

Lemma 3.2. Let χ be the symplectic transformation of R4 given by (2.18). Then
the Segal formula (3.2) holds with M given by

(3.4) (Mv)(x1, x2) = (λ1λ2)
−1/2e2iπd((λ1λ2)−1−c)x1x2

×
∫∫

e2iπd−1η1η2 v̂(η1, η2)e
2iπ(λ−1

1 x1η1+λ−1
2 x2η2)dη1dη2,

(3.5) (Mv)(x1, x2) = (λ1λ2)
−1/2e2iπd((λ1λ2)−1−c)x1x2(e2iπd−1D1D2v)(λ−1

1 x1, λ
−1
2 x2).

Proof. We apply the lemmas 3.1 and 2.4, along with the fact that the mapping
Mp(n) ∋ M 7→ χ ∈ Sp(n) is an homomorphism or more elementarily that (3.2)
implies for χj ∈ Sp(n),

(a ◦ χ2 ◦ χ1)
w = M∗

1 (a ◦ χ2)
wM1 = M∗

1M
∗
2a

wM2M1.

The factorization of the lemma 2.4 implies that

(Mv)(x) = eiπ〈Ax,x〉

∫

R2

e2iπ〈Bx,η〉eiπ〈Cη,η〉v̂(η)dη,

which gives readily the formulas above. �

Summing-up, we have proven the following result.

Theorem 3.3. Let q be the quadratic form on R4 given by (1.12). We define the
symplectic mapping χ by (2.18) and the metaplectic mapping M by (3.5). We have

(q ◦ χ)(y, η) = µ2
1y

2
1 + µ2

2y
2
2 + η2

1 + η2
2, (the µ2

j are given by (2.8)),(3.6)

(q ◦ χ)w = M∗qwM.(3.7)

We can also explicitly quantize the formulas of the lemma 2.6, to obtain3

(3.8) qw =

(η2
1)w

︷ ︸︸ ︷(
(λ1cd− dλ−1

2 )x2 + λ1Dx1

)2

+

µ2
1(y2

1)w

︷ ︸︸ ︷
µ2

1

(
λ2d

−1Dx2 + cλ2x1

)2

+
(
(λ2cd− dλ−1

1 )x1 + λ2Dx2

)2

︸ ︷︷ ︸
(η2

2)w

+µ2
2

(
λ1d

−1Dx1 + cλ1x2

)2

︸ ︷︷ ︸
µ2

2(y2
2)w

.

3Note that for a linear form L on R2n, LwLw = (L2)w.
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4. The Fock-Bargmann space and the anisotropic LLL

4.1. Nonnegative quantization and entire functions.

Definition 4.1. For X, Y ∈ R2n we set

(4.1) Π(X, Y ) = e−
π
2
|X−Y |2e−iπ[X,Y ],

where [X, Y ] = 〈σX, Y 〉 is the symplectic form (2.1). For v ∈ L2(Rn), we define

(4.2) (Wv)(y, η) = 〈v, ϕy,η〉L2(Rn), with ϕy,η(x) = 2n/4e−π(x−y)2e2iπ(x− y
2
)η.

We define also

(4.3) Λ0 ={u ∈ L2(R2n
y,η) such that u = f(z)e−

π
2
|z|2, z = η + iy , f entire.}

Proposition 4.2. The operator Π0 with kernel Π(X, Y )is the orthogonal projec-
tion in L2(R2n) on Λ0, which is a proper closed subspace of L2(R2n), canonically
isomorphic to L2(Rn). We have

Λ0 = ranW = L2(R2n) ∩ ker(∂̄ +
π

2
z),(4.4)

W ∗W = IdL2(Rn) (reconstruction formula u(x) =

∫

R2n

(Wu)(Y )ϕY (x)dY ),(4.5)

WW ∗ = Π0, (W is an isomorphism from L2(Rn) onto Λ0).(4.6)

Proof. These statements are classical (see e.g. [12]) ; however, since we shall need
some extension of that proposition, it is useful to examine the proof. We note that
e−iπyη(Wv)(y, η) is the partial Fourier transform w.r.t. x of

R
n × R

n ∋ (x, y) 7→ v(x)2n/4e−π(x−y)2 ,

whose L2(R2n)-norm is ‖v‖L2(Rn) so that W is isometric from L2(Rn) into L2(R2n),
thus with a closed range. As a result, we have W ∗W = IdL2(Rn), WW ∗ is selfadjoint
and such that WW ∗WW ∗ = WW ∗: WW ∗ is indeed the orthogonal projection on
ranW (ranWW ∗ ⊂ ranW andWu = WW ∗Wu). The straightforward computation
of the kernel of WW ∗ is left to the reader. Let us prove that Λ0 = ranW is indeed
defined by (4.3). For v ∈ L2(Rn), we have

(4.7) (Wv)(y, η) =

∫

Rn

v(x)2n/4e−π(x−y)2e−2iπ(x− y
2
)ηdx

=

∫

Rn

v(x)2n/4e−π(x−y+iη)2dxe−
π
2
(y2+η2)e−

π
2
(η+iy)2
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and we see thatWv ∈ L2(R2n)∩ker(∂̄+ π
2
z). Conversely, if Φ ∈ L2(R2n)∩ker(∂̄+ π

2
z),

we have Φ(x, ξ) = e−
π
2
(x2+ξ2)f(ξ + ix) with Φ ∈ L2(R2n) and f entire. This gives

(WW ∗Φ)(x, ξ) =

∫∫
e−

π
2

(
(ξ−η)2+(x−y)2+2iξy−2iηx

)
Φ(y, η)dydη

= e−
π
2
(ξ2+x2)

∫∫
e−

π
2
(η2−2ξη+y2−2xy+2iξy−2iηx)Φ(y, η)dydη

= e−
π
2
(ξ2+x2)

∫∫
e−

π
2

(
η2+y2+2iy(ξ+ix)−2η(ξ+ix)

)
Φ(y, η)dydη

= e−
π
2
(ξ2+x2)

∫∫
e−π(y2+η2)eπ(η−iy)(ξ+ix)f(η + iy)dydη

= e−
π
2
|z|2
∫∫

e−π|ζ|2eπζ̄zf(ζ)dydη (ζ = η + iy, z = ξ + ix)

= e−
π
2
|z|2
∫∫

f(ζ)
∏

1≤j≤n

1

π(zj − ζj)

∂

∂ζ̄j

(
e−π|ζ|2eπζ̄z

)
dydη

= e−
π
2
|z|2〈f(ζ)

∏

1≤j≤n

∂

∂ζ̄j

( 1

π(ζj − zj)

)
, e−π|ζ|2eπζ̄z〉S ′(R2n),S (R2n)

= e−
π
2
|z|2f(z),

since f is entire. This implies WW ∗Φ = Φ and Φ ∈ ranW . The proof of the
proposition is complete. �

Proposition 4.3. Defining

(4.8) K = ker(∂̄ +
π

2
z) ∩ S

′(R2n),

the operator W given by (4.2) can be extended as a continuous mapping from S ′(Rn)
onto K (the L2(Rn) dot-product is replaced by a bracket of (anti)duality). The

operator Π̃ defined by its kernel Π given by (4.1) defines a continuous mapping from
S (R2n) into itself and can be extended as a continuous mapping from S

′(R2n) onto
K . It verifies

(4.9) Π̃2 = Π̃, Π̃|K = IdK .

Proof. As above we use that e−iπyη(Wv)(y, η) is the partial Fourier transform w.r.t.
x of the tempered distribution on R2n

x,y

v(x)2n/4e−π(x−y)2 .

Since e±iπyη are in the space OM(R2n) of multipliers of S (R2n), that transformation
is continuous and injective from S ′(Rn) into S ′(R2n). Replacing in (4.7) the inte-
grals by brackets of duality, we see that W (S ′(Rn)) ⊂ K . Conversely, if Φ ∈ K ,
the same calculations as above give (4.9) and (4.8). �
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For a Hamiltonian a defined on R2n, for instance a bounded function on R2n, we
define aWick = W ∗aW :

L2(R2n)
a−−−−−−−−−−−−→

(multiplication by a)
L2(R2n)

W

x
yW ∗

L2(Rn) −−−→
aWick

L2(Rn)

we note that a(x, ξ) ≥ 0 =⇒ aWick = W ∗aW ≥ 0, as an operator. There are many
useful applications of the Wick quantization due to that non-negativity property, but
for our purpose here, it will be more important to relate explicitely that quantization
to the usual Weyl quantization (as given by (3.1)) for quadratic forms.

Lemma 4.4. Let q(X) = 〈QX,X〉 be a quadratic form on R2n (Q is a 2n × 2n
symmetric matrix). Then we have

(4.10) qWick = qw +
1

4π
traceQ.

Let L(y, η) = τ · y− t · η be a real linear form on R2n; then, for all Φ ∈ Λ0, we have

(4.11)

∫∫
L(y, η)2|Φ(y, η)|2dydη ≥ |τ |2 + |t|2

4π
‖Φ‖2

L2(R2n).

Proof. A straightforward computation shows that

(4.12) qWick = (q ∗ Γ)w, where Γ(X) = 2ne−2π|X|2 (X ∈ R
2n).

By Taylor’s formula, we have (q ∗Γ)(X) = q(X) +
∫

R2n 2ne−2π|Y |2〈QY, Y 〉dY, we can

use the formula
∫

R
21/2t2e−2πt2dt = 1

4π
to get the first result. For Φ ∈ Λ0, we have

Φ = Wu with u ∈ L2(Rn) and thus

‖LΦ‖2
L2(R2n) = 〈L2Wu,Wu〉L2(R2n) = 〈W ∗L2Wu, u〉L2(Rn)

= 〈(L2)
Wick

u, u〉L2(Rn) = 〈(L2)wu, u〉L2(Rn) +
trace(L2)

4π
‖u‖2

L2(Rn),

and since LwLw = (L2)w for a linear form, we get since L is real-valued,

‖LΦ‖2
L2(R2n) = ‖Lwu‖2

L2(Rn) +
|τ |2 + |t|2

4π
‖Φ‖2

L2(R2n),

which implies (4.11). �

N.B. The inequality (4.11) looks like an uncertainty principle related to the localization
in R

2n for the functions of Λ0. Moreover the equality (4.10) provides a simple way to
saturate approximately the inequality (4.11); for instance if L(y, η) = y1, we consider the

sequence Φε = Wuε with uε(x) = ϕ(x1/ε)ε
−1/2ψ(x′), ‖ϕ‖L2(R) = ‖ψ‖L2(Rn−1) = 1, and

we get, provided xϕ(x) ∈ L2(R),
∫∫

y2
1|Φε(y, η)|2dydη =

∫

R

x2
1|ϕ(x1/ε)|2ε−1dx1 +

1

4π
= O(ε2) +

1

4π
.
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4.2. The anisotropic LLL. Going back to the Gross-Pitaevskii energy (1.11), with
q given by (1.13), we see, using the theorem 3.3 and (3.8) that, with u = Mv,

2EGP (u) = 〈qwu, u〉L2(R2) + g

∫
|u|4dx

= 〈M∗qwMv, v〉L2(R2) + g

∫
|(Mv)(x)|4dx

= 〈(D2
y1

+ µ2
1y

2
1 +D2

y2
+ µ2

2y
2
2)v, v〉L2(R2) + g

∫
|(Mv)(x)|4dx

=
〈(

(λ1cd− dλ−1
2 )x2 + λ1Dx1

)2
u+ µ2

1

(
λ2d

−1Dx2 + cλ2x1

)2
u, u
〉

+
〈(

(λ2cd− dλ−1
1 )x1 + λ2Dx2

)2
u, u
〉

+
〈
µ2

2

(
λ1d

−1Dx1 + cλ1x2

)2
u, u
〉

+ g

∫
|u|4dx.

The question at hand is the determination of inf‖u‖L2=1EGP (u), which is equal to
inf‖v‖L2=1EGP (Mv). Since µ1 = 0 at ε = 0 (see (2.9)) and µ2 ∈ [1, 4] (see (7.1)),
it is natural to modify our minimization problem, and in the (y, η) coordinates, to
restrict our attention to the Lowest Landau Level, i.e. the groundspace of D2

y2
+µ2

2y
2
2,

that is the subspace of L2(R2)

(4.13) LLLy = {v1(y1) ⊗ 21/4µ
1/4
2 e−πµ2y2

2}v1∈L2(R) = ker(Dy2 − iµ2y2) ∩ L2(R2).

If we want to stay in the physical coordinates (x, ξ) we reach the following definition,
obtained by using Segal’s formula (3.2) with M,χ given in the lemma 3.1 so that

LLLx = M(LLLy).

Proposition 4.5. Let q be the quadratic form on R4 given by (1.13). We define the
LLL as

LLL = (kerL) ∩ L2(R2), with(4.14)

L = (λ2cd− dλ−1
1 )x1 + λ2Dx2 − iµ2λ1d

−1Dx1 − iµ2cλ1x2 = ηw
2 − iµ2y

w
2 .(4.15)

The LLL is the subspace of L2(R2) of functions of type

(4.16) F
(
x1 + iβ2x2

)
exp

(
− γπ

4β2

[
x2

1(1 − ν2

2α
) + (β2x2)

2(1 +
ν2

2α
)
])

exp (−iπν
2γ

4α
x1x2),

where F is entire on C, and the parameters γ, β2, ν, α are given in the section 7.2.
The real part of the phase of the Gaussian function multiplying F

(
x1 + iβ2x2

)
is a

negative definite quadratic form when (ω, ν) 6= (0, 0).

Proof. We have

iL =

µ2y2︷ ︸︸ ︷(
µ2λ1d

−1Dx1 + µ2cλ1x2

)
+i

η2︷ ︸︸ ︷(
λ2Dx2 − (dλ−1

1 − λ2cd)x1

)

=
1

2iπ

(
µ2λ1d

−1∂1 + iλ2∂2 + 2iπµ2cλ1x2 + 2π(dλ−1
1 − λ2cd)x1

)

=
1

iπ

(1

2
µ2λ1d

−1∂1 + i
1

2
λ2∂2 + iπµ2cλ1x2 + π(dλ−1

1 − λ2cd)x1

)
.

We set

(4.17) t1 = µ−1
2 λ−1

1 dx1, t2 = λ−1
2 x2,
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and we get for z = t1 + it2,

∂

∂z̄
+ iπµ2cλ1λ2t2 + π(dλ−1

1 − λ2cd)µ2λ1d
−1t1

=
∂

∂z̄
+ iπµ2cλ1λ2

z − z̄

2i
+ π(dλ−1

1 − λ2cd)µ2λ1d
−1 z + z̄

2

=
∂

∂z̄
+ zπ

µ2

2
+ z̄π

µ2

2
(1 − 2λ1λ2c) =

∂

∂z̄
+ zπ

µ2

2
− z̄π

µ2

2
ν2α−1

= e−π
µ2
2

zz̄eπ
ν2µ2
4α

(z̄)2 ∂

∂z̄
eπ

µ2
2

zz̄e−π
ν2µ2
4α

(z̄)2 .

As a consequence, the LLL is the subspace of L2(C) of functions

f(z)e−π
µ2
2

zz̄eπ
ν2µ2
4α

(z̄)2 , with f holomorphic.

We note that the real part of the exponent is

−πµ2

2
(t21 + t22 −

ν2

2α
(t21 − t22)) = −πµ2

2

[
t21(

2α− ν2

2α
) + t22(

2α + ν2

2α
)
]

and that

2α− ν2 > 0 ⇐⇒ (ω, ν) 6= (0, 0).

Leaving the t-coordinates for the original x-coordinates, we get with f entire,

f(µ−1
2 λ−1

1 dx1 + iλ−1
2 x2) exp

(
−πµ2

2

[
t21(

2α − ν2

2α
) + t22(

2α + ν2

2α
)
])

exp (−iπµ2ν
2

2α
t1t2),

i.e.

f(µ−1
2 λ−1

1 dx1+iλ
−1
2 x2) exp

(
−πµ2

2

[
x2

1d
2(

2α− ν2

2αλ2
1µ

2
2

) + x2
2(

2α+ ν2

2αλ2
2

)
])

exp (−i πµ2ν
2d

2αλ1λ2µ2
x1x2),

and since

µ2λ1d
−1λ−1

2 = µ2λ12γ
−1λ−1

1 λ−1
2 λ−1

2 = µ22γ
−1λ−2

2 = µ22γ
−1γβ2(2µ2)

−1 = β2,

2−1µ2d
2λ−2

1 µ−2
2 = 2−1µ2γ

24−1λ2
2µ

−2
2 = 2−1µ2γ

24−12µ2γ
−1β−1

2 µ−2
2 =

γ

4β2

,

2−1µ2λ
−2
2 = 2−1µ2

γβ2

2µ2
=
γβ2

4
,

πµ2ν
2d

2αλ1λ2µ2

=
πν2d

2αλ1λ2

=
πν2γ

2α2
,

we obtain

f
(
µ−1

2 λ−1
1 d[x1 + i µ2λ1d

−1λ−1
2︸ ︷︷ ︸

=β2

x2]
)

× exp

(
−πµ2

2

[
x2

1d
2(

2α− ν2

2αλ2
1µ

2
2

) + x2
2(

2α+ ν2

2αλ2
2

)
])

exp (−i πµ2ν
2d

2αλ1λ2µ2
x1x2),

that is, with F entire on C,

(4.18) F
(
x1 + iβ2x2

)
exp

(
− γπ

4β2

[
x2

1(1 − ν2

2α
) + (β2x2)

2(1 +
ν2

2α
)
])

exp (−iπν
2γ

4α
x1x2).

The proof of the proposition is complete. �
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Remark 4.6. We note that in the isotropic case ν = 0, we have β2 = 1, γ =
4, recovering (1.15) (f(x1 + ix2)e

−π(x2
1+x2

2)) for ω = 1. On the other hand, the
reader may have noticed that it seems difficult to guess the above definition without
going through the explicit computations on the diagonalization of q of the previous
sections.

4.3. The energy in the anisotropic LLL.

Lemma 4.7. The LLL is defined by the proposition 4.5 and the Gross-Pitaevskii
energy by (1.11). For u ∈ LLL, we have

(4.19) EGP (u) =
1

2

∫

R2

(
2α

α + 2ω2 + ν2
ε2x2

1 +
2α(2ν2 + ε2)

α− ν2 + 2ω2
x2

2

)
|u(x1, x2)|2dx1dx2

+
g

2

∫

R2

|u(x1, x2)|4dx1dx2 +
µ2

4π
− µ1

8π

(
β1β2 +

1

β1β2

)
.

Proof. In the LLL, one can simplify the energy. We define

A2 = M(η2 − iµ2y2)
wM∗ = µ2

(
λ1d

−1Dx1 + cλ1x2

)
+ i
(
λ2Dx2 − (dλ−1

1 − λ2cd)x1

)
,

A1 = M(η1 − iµ1y1)
wM∗ = µ1

(
λ2d

−1Dx2 + cλ2x1

)
+ i
(
(λ1cd− dλ−1

2 )x2 + λ1Dx1

)
,

which satisfy the canonical commutation relations:
[
Aj, A

∗
j

]
= µj/π, while all other

commutators vanish. We have proven that

qw = A∗
1A1 + A∗

2A2 +
µ1 + µ2

2π
= (ReA1)

2 + (ImA1)
2 + (ReA2)

2 + (ImA2)
2

and the LLL is defined by the equation A2u = 0. On the other hand, we have

dµ−1
1 ReA1 − ImA2 = dλ−1

1 x1, dµ2
−1 ReA2 − ImA1 = dλ−1

2 x2,

and thus for u ∈ LLL, since A2u = 0 , using the commutation relations of the Aj ’s,
one gets

d2λ−2
1 x2

1 = d2µ−2
1 (ReA1)

2 + ((A2 − A∗
2)/2i)

2 + 2dµ−1
1 (ReA1)(A2 − A∗

2)/2i

= d2µ−2
1 (ReA1)

2 +
µ2

4π
,

and similarly,

d2λ−2
2 x2

2 = d2µ−2
2 ((A2 + A∗

2)/2)2 + (ImA1)
2

= (ImA1)
2 +

d2

4πµ2
.

As a result, we get on the LLL,

µ2
1λ

−2
1 x2

1 + d2λ−2
2 x2

2 = (ReA1)
2 + (ImA1)

2 +
d2

4πµ2

+
µ2µ

2
1

4πd2
,

and qw = µ2
1λ

−2
1 x2

1 + d2λ−2
2 x2

2 − d2

4πµ2
− µ2µ2

1

4πd2 + µ2

2π
, so that

2EGP (u) =
γ

2

∫

R2

(
µ1β1x

2
1 +

µ1

β1
x2

2

)
|u(x1, x2)|2dx1dx2

+g

∫

R2

|u(x1, x2)|4dx1dx2

+
µ2

2π
− µ1

4π

(
β1β2 +

1

β1β2

)
,
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for any u ∈ LLL, that is, satisfying (4.16). We note that

γµ1β1

2
=

2α

α + 2ω2 + ν2
ε2, (coefficient of x2

1)
γµ1

2β1

=
2α(2ν2 + ε2)

α− ν2 + 2ω2
, (coefficient of x2

2) .

Definition 4.8. For u ∈ LLL (see the proposition 4.5), we define

(4.20) ELLL(u) =
1

2

∫

R2

(ε2x2
1 + κ2

1x
2
2)|u(x1, x2)|2dx1dx2 +

g1

2

∫

R2

|u(x1, x2)|4dx1dx2,

with

(4.21) κ2
1 =

(α + 2ω2 + ν2)(2ν2 + ε2)

α− ν2 + 2ω2
, g1 = g

α+ 2ω2 + ν2

2α
, α =

√
ν4 + 4ω2.

We note that, from (4.19),

(4.22) EGP (u) =
2α

α + 2ω2 + ν2
ELLL(u) +

µ2

4π
− µ1

8π

(
β1β2 +

1

β1β2

)
.

Remark 4.9. Since α2 = ν4 + 4ω2, we see that

(4.23) (2ν2 + ε2)
(
1 +

2ν2

α− ν2 + 2ω2

)
= κ2 =

(α+ 2ω2 + ν2)(2ν2 + ε2)

α− ν2 + 2ω2
≥ 2ν2 + ε2,

and κ2 = ε2 ⇐⇒ ν = 0.

Remark 4.10. We stay away from the case where ω = 0 and shall always assume
ω > 0. In the case ω = 0, the quadratic part of the energy is diagonal and the LLL
is,

v1(x1) ⊗ 21/4(2 − ε2)1/8e−π(2−ε2)1/2x2
2,

and we get a 1D problem on the function v1.

4.4. The (final) reduction to a simpler lowest Landau level. Given the fact

that in (4.16), we can write F (x1 + iβ2x2) as a holomorphic function times e−δz2
,

with δ = γπν2/(8β2α), and that the energy ELLL depends only on the modulus of u
and not on its phase, it is equivalent to minimize ELLL on the LLL or on the space

f
(
x1 + iβ2x2

)
exp

(
− γπ

4β2

[
x2

1 + (β2x2)
2
])
, with f entire.

A rescaling in x1 and x2 yields the space of the introduction with

(4.24) u(x1, x2) =

√
γ

2
v(y1, y2), y1 = x1

√
γ

2β2

, y2 = x2

√
γβ2

2
,

and, with Λ0 given by (4.3), the mapping LLL ∋ u 7→ v ∈ Λ0 is bijective and
isometric. With κ1, g1 given in the definition 4.8, β2 in (2.12), γ in (2.13), we
introduce

(4.25) κ =
κ1

β2
, g0 =

g1γ
2

4β2
,

and

(4.26) E(v) =
1

2

∫

R2

(ǫ2y2
1 + κ2y2

2)|v(y1, y2)|2dy1dy2 +
g0

2
‖v‖4

L4(R2).

Using the transformation (4.24), we have

(4.27) ELLL(u) =
2β2

γ
E(v),
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so that, via the definition 4.8, we are indeed reduced to the minimization of (1.21)
in the space Λ0 (given in (1.22)) under the constraint ‖u‖L2(R2) = 1. We note also
that the quantities

2α

α + 2ω2 + ν2
,
2β2

γ
, (factors of ELLL(u) in (4.22) and E(v) in (4.27)),(4.28)

and β2,
γ2

β2

,
α + 2ω2 + ν2

2α
(factors of κ in (4.25), of g1 in (4.25)), of g in (4.21) ,(4.29)

are bounded and away from zero as long as ω stays away from zero, a condition that
we shall always assume, say 0 < ω0 ≤ ω ≤ 1.

5. Weak anisotropy

This section is devoted to the proof of Theorem 1.1. We assume ε ≤ κ ≪ ε1/3.
The isotropic case is recovered by assuming κ = ε. We first give some approximation
results in subsection 5.1, and prove the theorem in subsection 5.2.

We recall that the space Λ0, the operator Π0, the energy E and the minimization
problem I(ε, κ) are defined by (1.22), (1.23), (1.21) and (1.24), respectively. An
important test function will be (1.28), namely

(5.1) uτ (x1, x2) = e
π
2 (z2−|z|2)Θ (

√
τIz, τ) , z = x1 + ix2, .

for τ = τR + iτI = e
2iπ
3 .

5.1. Approximation results.

Lemma 5.1. Let u(x) = f(x1 + ix2)e
−π

2
|x|2 ∈ L∞(R2), with f holomorphic. Assume

0 ≤ β ≤ 1 and let p ∈ C0,β(R2) be such that supp(p) ⊂ BS the Euclidean ball of
radius S > 0 and of center 0. Define

(5.2) ρ(x) =
1√
R1R2

p

(
x1

R1
,
x2

R2

)
.

Then, for any r ≥ 1, there exists a constant CS,r > 0 depending only on S and r
such that, setting R = min(R1, R2), we have,

(5.3) ‖Π0 (ρu) − ρu‖Lr(R2) ≤ CS,r‖u‖L∞(R2)‖p‖C0,β(R2)

(R1R2)
1
r
− 1

2

Rβ
.

Proof. We first prove the lemma in the case β = 0. For this purpose, we write

|Π0(ρu)| ≤
∫

R2

e−
π
2
|x−y|2|u(y)||ρ(y)|dy.

Young’s inequality implies, for any r ≥ 1 and any p, q ≥ 1 such that 1/p + 1/q =
1 + 1/r,

‖Π0(ρu)‖Lr ≤
∥∥∥e−

π
2
|x|2
∥∥∥

Lp
‖uρ‖Lq ≤ ‖u‖L∞

∥∥∥e−
π
2
|x|2
∥∥∥

Lp
‖ρ‖Lq .

Fixing q = r, hence p = 1, we find

(5.4) ‖Π0(ρu)‖Lr ≤ 2‖u‖L∞ ‖ρ‖Lr = 2‖u‖L∞ (R1R2)
1
r
− 1

2 ‖p‖Lr .

This proves (5.3) for β = 0.
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Next, we assume β = 1. We use a Taylor expansion of ρ(y) = ρ(x+ y−x) around
x:

ρ(y) = ρ(x)

+
1√
R1R2

∫ 1

0

∇p
(
x1

R1
+ t

y1 − x1

R1
,
x2

R2
+ t

y2 − x2

R2

)
·
(
y1 − x1

R1
,
y2 − x2

R2

)
dt.

We then notice that, although u /∈ Λ0 a priori, it belongs to K (see the proposition
4.3) and we have Π0(u) = u since u ∈ L∞ and u(x) = f(x1 + ix2) exp(−π|x|2/2)
with f holomorphic. Hence, we have

Π0(ρu) − ρu =

∫

B
R1,R2
S+1

e−
π
2
|x−y|2+iπ(x2y1−y2x1)u(y1, y2)

× 1√
R1R2

∫ 1

0

∇p
(
x1

R1

+ t
y1 − x1

R1

,
x2

R2

+ t
y2 − x2

R2

)
·
(
y1 − x1

R1

,
y2 − x2

R2

)
dtdy,

− ρ(x)

∫

(B
R1,R2
S+1 )

c
u(y)e−

π
2
|x−y|2+iπ(x2y1−y2x1)dy

where the set BR1,R2

S+1 is

(5.5) BR1,R2

S+1 = {(y1, y2) = (R1t1, R2t2), t ∈ BS+1} .
We thus have, with R = min(R1, R2),

(5.6) |Π0(ρu) − ρu| ≤ ‖∇p‖L∞

∫

B
R1,R2
S+1

e−
π
2
|x−y|2|u(y)| 1√

R1R2

|y − x|
R

dy

+ |ρ(x)|
∫

(B
R1,R2
S+1 )

c
|u(y)|e−π

2
|x−y|2dy.

We bound the first term of the right-hand side of (5.6) using Young’s inequality,

while for the second term, we have, ∀x ∈ supp(ρ) ⊂ BR1,R2

S ,
∫

(B
R1,R2
S+1 )

c
|u(y)|e−π

2
|x−y|2dy ≤ ‖u‖L∞e−

π
4
R2

∫

R2

e−
π
4
|x−y|2dy

= 4‖u‖L∞e−
π
4
R2 ≤ ‖u‖L∞

C

R
,

where C is a universal constant. Hence, we have

‖Π0(ρu) − ρu‖Lr ≤ 1

R
‖∇p‖L∞

∥∥∥|y|e−π
2
|y|2
∥∥∥

L1
‖u‖L∞

1√
R1R2

|BR1,R2

S+1 |1/r

+
C

R
‖u‖L∞ ‖ρ‖Lr

=
1

R
‖∇p‖L∞

√
2‖u‖L∞(R1R2)

1
r
− 1

2 |BS+1|1/r

+
C

R
‖u‖L∞‖p‖L∞(R1R2)

1
r
− 1

2 |BS|1/r.

This gives (5.3) for β = 1. We then conclude by a real interpolation argument
between C0 and C0,1. �



ANISOTROPIC BOSE-EINSTEIN CONDENSATES 27

A comment is in order here: we have chosen to state Lemma 5.1 with a general
function p. However, since our aim is to apply the above result with the special case

p(x) = (1 − |x|2)1/2
+ , it is also possible to use explicitly this value of p in order to

give a simpler proof of the above result. The method would then be to prove the
estimate for r = +∞ first, then for r = 1, and then use an interpolation argument
between L1 and L∞. For instance, the proof of the r = +∞ case would go as follows:

|Π0(ρu)(x) − ρ(x)u(x)| =

∣∣∣∣
∫

R2

e−
π
2
|x−y|2+iπ(x2y1−y2x1) (ρ(y)u(y)− ρ(x)u(y))dy

∣∣∣∣

≤ ‖u‖L∞

∫

R2

e−
π
2
|x−y|2 |ρ(y) − ρ(x)| dy

≤ ‖u‖L∞

∫

R2

e−
π
2
|x−y|2

√
|x− y|
R

dy

=
‖u‖L∞√

R

∫

R2

e−
π
2
|y|2
√

|y|dy.

The proof of the case r = 1 is slightly more involved, but is based on the same idea.
We now prove

Lemma 5.2. With the same hypotheses as in Lemma 5.1, we have, for any s ≥ 1,

(5.7)

(∫

R2

x2s
1 |Π0(ρu) − ρu|2

)1/2

≤ CS,s‖u‖L∞(R2)‖p‖C0,β(R2)

1 +Rs
1S

s

Rβ
,

and

(5.8)

(∫

R2

x2s
2 |Π0(ρu) − ρu|2

)1/2

≤ CS,s‖u‖L∞(R2)‖p‖C0,β(R2)

(1 +Rs
2S

s)

Rβ
,

where CS,s depends only on S and s.

Proof. Here again, we first deal with the case β = 0. For this purpose, we write:

(5.9) |x1|s |Π0(ρu)| ≤ 2s−1

∫

R2

|x1 − y1|se−
π
2
|x−y|2|u(y)|ρ(y)dy

+ 2s−1

∫

R2

|y1|se−
π
2
|x−y|2|u(y)|ρ(y)dy,

where we have used the inequality (a+b)s ≤ 2s−1(as+bs), valid for any a, b ≥ 0, s ≥ 1.
The first line of (5.9) is dealt with exactly as in the proof of Lemma 5.1, leading to
(5.4) with r = 2, which reads here

(5.10)

∥∥∥∥
∫

R2

|x1 − y1|se−
π
2
|x−y|2|u(y)|ρ(y)dy

∥∥∥∥
L2

≤ ‖u‖L∞

∥∥∥|x|se−π
2
|x|2
∥∥∥

L1
‖ρ‖L2

≤ Cs‖u‖L∞‖p‖L2,

where Cs depends only on s. The second line of (5.9) is treated in the same way,
but ρ(y) is replaced by |y1|sρ(y), that is, p(y) is replaced by Rs

1|y1|sp(y). Hence, we
have

(5.11)

∥∥∥∥
∫

R2

|y1|se−
π
2
|x−y|2|u(y)|ρ(y)dy

∥∥∥∥
L2

≤ 2Rs
1‖u‖L∞ ‖|y1|sp‖L2 .
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Collecting (5.9), (5.10) and (5.11), we find

‖|x1|sΠ0(ρu)‖L2 ≤ Cs(1 +Rs
1S

s)‖u‖L∞‖p‖C0 |BS|1/2.

This proves (5.7) for β = 0.
Next, we consider the case β = 1. Here again, we use a Taylor expansion to obtain

(5.6). This implies

|x1|s |Π0(ρu) − ρu| ≤ 2s−1‖∇p‖L∞

R

∫

B
R1,R2
S+1

e−
π
2
|x−y|2|u(y)| 1√

R1R2

|y − x||y1 − x1|sdy

+2s−1‖∇p‖L∞

R

∫

B
R1,R2
S+1

e−
π
2
|x−y|2|u(y)| 1√

R1R2

|y − x||y1|sdy

+|x1|s|ρ(x)|
∫

(B
R1,R2
S+1 )

c
|u(y)|e−π

2
|x−y|2dy,

where BR1,R2

S+1 is defined by (5.5). We use Young’s inequality again, finding

‖|x1|s |Π0(ρu) − ρu|‖L2 ≤ 2s−1‖∇p‖L∞

R

∥∥∥|y|s+1e−
π
2
|y|2
∥∥∥

L1

(
|BR1,R2

S+1 |
R1R2

)1/2

‖u‖L∞

+2s−1‖∇p‖L∞

R

∥∥∥|y|e−π
2
|y|2
∥∥∥

L1

(∫

B
R1,R2
S+1

|y1|2s

R1R2
dy

)1/2

‖u‖L∞

+
C

R
‖u‖L∞ ‖|x1|sρ‖L2 ,

where C is a universal constant. Hence,

‖|x1|s |Π0(ρu) − ρu|‖L2 ≤ CS,s
‖p‖C1

R
(1 +Rs

1S
s) ‖u‖L∞.

This gives (5.7) in the case β = 1. Here again, we conclude with a real interpolation
argument. The proof of (5.8) follows the same lines. �

5.2. Energy bounds.

Proposition 5.3. Let τ ∈ C \ R, let p ∈ C0,1/2(R2) be such that supp(p) ⊂ K for
some compact set K, and

∫
|p|2 = 1. Consider uτ as defined by (1.28), and define

(5.12) v = ‖Π0(ρuτ )‖−1
L2(R2) Π0(ρuτ ),

where ρ is given by

(5.13) ρ(x) =
1√
R1R2

p

(
x1

R1
,
x2

R2

)
, R1 =

(
4g0κ

πε3

)1/4

, R2 =

(
4g0ε

πκ3

)1/4

.

Then we have, with E(u) defined by (1.21)

(5.14) E(u) =

√
2gεκ

π

(∫

R2

1

2
|x|2|p(x)|2 +

πγ(τ)

4
|p(x)|4

)
+O

(
√
εκ

(
κ3

ε

)1/8
)
,

for (ε, κε−1/3) → (0, 0), where γ(τ) is given by (1.31).

N.B. The L∞ function ρuτ does not belong to Λ0 since it is compactly supported
and not identically 0; as a result, ‖Π0(ρuτ)‖L2 6= 0 and v makes sense.
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Proof. First note that R = min(R1, R2) = R2, and that Lemma 5.1 with r = 2
implies

(5.15) |‖Π0(ρuτ )‖L2 − ‖ρuτ‖L2| ≤ CR−1/2 = C

(
κ3

ε

)1/8

.

We then apply Lemma 5.2 for s = 1, β = 1/2, finding
∣∣∣∣
∫

R2

x2
1 |Π0(ρuτ )|2 −

∫

R2

x2
1|ρ|2|uτ |2

∣∣∣∣ ≤ C
(
‖x1Π0(ρuτ )‖L2 + ‖x1ρuτ‖L2

)1 +R1

R1/2

≤ C

(
2‖x1ρuτ‖L2 + C

1 +R1

R1/2

)
1 +R1

R1/2
.

We also compute
∫

R2

x2
1|ρ(x)|2|uτ(x)|2dx ≤ R2

1‖uτ‖2
L∞

∫

R2

x2
1|p(x)|2dx ≤ CR2

1.

Hence, we get

(5.16)
ε2

2

∣∣∣∣
∫

R2

x2
1 |Π0(ρuτ )|2 −

∫

R2

x2
1|ρ|2|uτ |2

∣∣∣∣ ≤ Cε21 +R2
1

R1/2
≤ C

√
εκ

(
κ3

ε

)1/8

.

A similar argument allows to show that

(5.17)
κ2

2

∣∣∣∣
∫

R2

x2
2 |Π0(ρuτ )|2 −

∫

R2

x2
2|ρ|2|uτ |2

∣∣∣∣ ≤ Cκ21 +R2
2

R1/2
≤ C

√
εκ

(
κ3

ε

)1/8

.

Turning to the last term of the energy, we apply Lemma 5.1 again, with r = 4, β =
1/2, finding
∣∣∣∣
∫

R2

|Π0(ρuτ )|4 −
∫

R2

|ρuτ |4
∣∣∣∣ ≤ 2

(
‖Π0(ρuτ )‖3

L4 + ‖ρuτ‖3
L4

)
‖Π0(ρuτ ) − ρuτ‖L4

≤ C ‖ρuτ‖3
L4 (R1R2)

−1/4R−1/2.

In addition, we have
∫

R2

|ρuτ |4 ≤ ‖uτ‖4
L∞

∫

R2

|ρ|4 = ‖uτ‖4
L∞ (R1R2)

−1

∫

R

p4.

Hence, we obtain

(5.18)

∣∣∣∣
∫

R2

|Π0(ρuτ )|4 −
∫

R2

|ρuτ |4
∣∣∣∣ ≤ C (R1R2)

−1R−1/2 ≤ C
√
εκ

(
κ3

ε

)1/8

.

Combining (5.16), (5.17) and (5.18), we have

E (Π0(ρuτ)) = E(ρuτ )

[
1 +O

((
κ3

ε

)1/8
)]

.

Hence, with the help of (5.15), we get

E(v) = E

(
ρuτ

‖ρuτ‖L2

)[
1 +O

((
κ3

ε

)1/8
)]

.
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Finally, we estimate the terms of E(ρuτ/‖ρuτ‖L2): using real interpolation between
C0 and C0,1, we obtain

(5.19) ‖ρuτ‖2
L2 =

∫

R2

|p(x)|2|uτ(R1x1, R2x2)|2dx

= −
∫

|uτ |2 +O

(
1

R1/2

)
= −
∫

|uτ |2 +O

((
κ3

ε

)1/8
)
.

Moreover, we have

ε2

2

∫

R2

x2
1|ρ|2|uτ |2 =

ε2

2
R2

1

[
−
∫

|uτ |2 +O

((
κ3

ε

)1/8
)]∫

R2

x2
1|p(x)|2dx,(5.20)

κ2

2

∫

R2

x2
2|ρ|2|uτ |2 =

κ2

2
R2

2

[
−
∫

|uτ |2 +O

((
κ3

ε

)1/8
)]∫

R2

x2
2|p(x)|2dx,(5.21)

g

2

∫

R2

|ρ|4|uτ |4 =
g

2R1R2

[
−
∫

|uτ |4 +O

((
κ3

ε

)1/8
)]∫

R2

|p|4.(5.22)

Thus, collecting (5.19), (5.20), (5.21) and (5.22),

E(u) =

[
ε2

2
R2

1

∫

R2

x2
1|p(x)|2dx+

κ2

2
R2

2

∫

R2

x2
2|p(x)|2dx

+
−
∫
|uτ |4(

−
∫
|uτ |2

)2
g0

2R1R2

∫

R2

|p|4
][

1 +O

((
κ3

ε

)1/8
)]

=

√
2g0εκ

π

(∫

R2

1

2

(
x2

1 + x2
2

)
|p(x)|2 +

πγ(τ)

4
|p|4
)

[
1 +O

((
κ3

ε

)1/8
)]

.

=

√
2g0εκ

π

(∫

R2

1

2

(
x2

1 + x2
2

)
|p(x)|2 +

πγ(τ)

4
|p|4
)

+O

(
√
εκ

(
κ3

ε

)1/8
)
.

�

Proof of Theorem 1.1: We first prove the lower bound in (1.33): this is done by
noticing that

J(ε, κ) ≤ I(ε, κ),

where

J(ε, κ) = inf

{
E(u), u ∈ L2

(
R

2, (1 + |x|2)dx
)
∩ L4(R2),

∫

R2

|u|2 = 1

}
.

In addition, the minimizer of J(ε, κ) may be explicitly computed (up to the multi-
plication by a complex function of modulus one):

(5.23) u(x) =

√
2

πR1R2

(
1 − x2

1

R2
1

− x2
2

R2
2

)1/2

+

,
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with R1, R2 defined by (5.13). Inserting (5.23) in the energy, one finds the lower
bound of (1.33). In addition, the inverted parabola (5.23) is compactly supported,
so it cannot be in Λ0. Hence, the inequality is strict.

In order to prove the upper bound, we apply Proposition 5.3, with

p(x) =

√
2

π
√
γ(τ)

(
1 − |x|2√

γ(τ)

)1/2

+

,

and τ = j. This corresponds to minimizing the leading order term of (5.14) with
respect to τ and p, with the constraint

∫
|p|2 = 1. �

6. Strong anisotropy

We give in this Section the proof of Theorem 1.2. We deal here with the strongly
asymmetric case that is, (1.35), which we recall here:

(6.1) κ≫ ε1/3

We first prove an upper bound for the energy in Subsection 6.1, then a lower bound
in Subsection 6.2, and conlude the proof in Subsection 6.3

6.1. Upper bound for the energy.

Lemma 6.1. Assume that ρ ∈ L2(R). Then the function

(6.2) u(x1, x2) =
1

21/4
e−

π
2
x2
2

∫

R

e−
π
2 ((x1−y1)2−2iy1x2)ρ(y1)dy1,

satisfies u ∈ Λ0.

Proof. We first write

u(x1, x2)e
π
2 (x2

1+x2
2) =

1

21/4

∫

R

e−
π
2 (y2

1−2(x1+ix2)y1)ρ(y1)dy1,

which is a holomorphic function of x1 + ix2. In addition, we have

|u(x1, x2)| ≤
1

21/4
e−

π
2
x2
2

∣∣∣ρ ∗ e−π
2
y2
1

∣∣∣ (x1),

Hence, using Young’s inequality, we get

‖u‖L2(R2) ≤
1

21/4
‖ρ‖L2(R)

∥∥∥e−
π
2
y2
1

∥∥∥
L1(R)

= 21/4‖ρ‖L2(R),

hence u ∈ L2(R2). �

Lemma 6.2. Let p ∈ C2(R) have compact support with supp(p) ⊂ (−T, T ), and
consider the function

(6.3) ρ(t) =
1√
R
p

(
t

R

)
.

Then, for any r ≥ 1, there exists a constant Cr depending only on r such that the
function u defined by (6.2) satisfies, for R ≥ 1,

(6.4)
∥∥∥u(x1, x2) − 21/4ρ(x1)e

−πx2
2+iπx1x2 − i21/4x2ρ

′(x1)e
−πx2

2+iπx1x2

∥∥∥
Lr(R2)

≤ CrT
1/r ‖p′′‖L∞(R)

R5/2−1/r
.
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Proof. We use a Taylor expansion of p
(

y1

R

)
around x1

R
, that is,

(6.5) p
(y1

R

)
= p

(x1

R

)
+

1

R
p′
(x1

R

)
(y1 − x1)

+
1

R2
(x1 − y1)

2

∫ 1

0

(1 − t)p′′
(
x1

R
+
t(y1 − x1)

R

)
dt.

In addition we have

1

21/4
e−

π
2
x2
2

∫

R

e−
π
2 ((x1−y1)2−2iy1x2) 1√

R
p
(x1

R

)
dy1 =

1√
R
p
(x1

R

)
21/4e−πx2

2+iπx1x2,

and

1

21/4
e−

π
2
x2
2

∫

R

e−
π
2 ((x1−y1)2−2iy1x2) 1

R3/2
p′
(x1

R

)
(y1 − x1)dy1

=
1

R3/2
i21/4x2p

′
(x1

R

)
e−πx2

2+iπx1x2.

Setting

(6.6) v(x1, x2) = u(x1, x2) − 21/4ρ(x1)e
−πx2

2+iπx1x2 − i21/4x2ρ
′(x1)e

−πx2
2+iπx1x2 ,

we infer

|v(x1, x2)| ≤ 1

21/4R5/2
e−

π
2
x2
2

∫

R

∫ 1

0

y2
1e

−π
2
y2
1(1 − t)

∣∣∣p′′
(x1

R
+ t

y1

R

)∣∣∣ dtdy1

≤ ‖p′′‖L∞

21/4R5/2
e−

π
2
x2
2

∫

R

∫ 1

0

y2
1e

−π
2
y2
1(1 − t)1(−TR,TR)(x1 + ty1)dtdy1.

Hence, using Jensen’s inequality, we see that there is a constant Cr depending only
on r such that

|v(x1, x2)|r ≤ Cr
‖p′′‖r

L∞

R5r/2
e−r π

2
x2
2

∫

R

∫ 1

0

y2
1e

−π
2
y2
1(1 − t)1(−TR,TR)(x1 + ty1)dtdy1,

whence

‖v‖r
Lr ≤ Cr

‖p′′‖r
L∞

R5r/2

∫

R

∫

R

∫ 1

0

e−r π
2
x2
2y2

1e
−π

2
y2
1(1 − t)

∫

R

1(−TR,TR)(x1 + ty1)dx1dtdx2dy1

= Cr
‖p′′‖r

L∞

R5r/2
(2TR)

∫

R

∫

R

∫ 1

0

e−r π
2
x2
2y2

1e
−π

2
y2
1(1 − t)dtdx2dy1

= C ′
r

‖p′′‖r
L∞

R5r/2
TR,

which implies (6.4). �

Lemma 6.3. Under the same assumptions as Lemma 6.2, let u be defined by (6.2).
Then, there exists a constant CT > 0 depending only on T such that u satisfies

(6.7)

∫

R2

x2
1

∣∣∣u(x1, x2) − 21/4ρ(x1)e
−πx2

2+iπx1x2 − i21/4x2ρ
′(x1)e

−πx2
2+iπx1x2

∣∣∣
2

dx

≤ CT

‖p′′‖2
L∞(R)

R2
,
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and

(6.8)

∫

R2

x2
2

∣∣∣u(x1, x2) − 21/4ρ(x1)e
−πx2

2+iπx1x2 − i21/4x2ρ
′(x1)e

−πx2
2+iπx1x2

∣∣∣
2

dx

≤ CT

‖p′′‖2
L∞(R)

R4
.

Proof. Here again, we use the Taylor expansion (6.5). Hence, v being defined by
(6.6), we have

|x1||v(x1, x2)| ≤ ‖p′′‖L∞

21/4R5/2
|x1|e−

π
2
x2
2

∫

R

∫ 1

0

y2
1e

−π
2
y2
1(1 − t)1(−TR,TR)(x1 + ty1)dtdy1

≤ ‖p′′‖L∞

21/4R5/2
e−

π
2
x2
2

∫

R

∫ 1

0

y2
1e

−π
2
y2
1(1 − t)|x1 + ty1|1(−TR,TR)(x1 + ty1)dtdy1

+
‖p′′‖L∞

21/4R5/2
e−

π
2
x2
2

∫

R

∫ 1

0

|y1|3e−
π
2
y2
1t(1 − t)1(−TR,TR)(x1 + ty1)dtdy1.

Hence, using Jensen’s inequality and arguing as in the proof of Lemma 6.2, we have

‖x1v‖L2(R2) ≤ C
‖p′′‖L∞

R5/2

(
(RT )3/2 +

√
RT
)
,

where C is a universal constant. This implies (6.7). A similar computation gives

‖x2v‖L2(R2) ≤ C
‖p′′‖L∞

R5/2

√
RT,

which proves (6.8). �

6.2. Lower bound for the energy. We first recall an important result by Carlen
[7] about wave functions in Λ0 (defined by (1.22)):

Lemma 6.4 (E. A. Carlen, [7]). For any u ∈ Λ0, ∇u ∈ L2, and we have

(6.9)

∫

R2

|∇|u||2 = π

∫

R2

|u|2.

Remark 6.5. The result of Carlen is actually much more general than the one we
cite here, but the special case (6.9) is the only thing we need.

Lemma 6.4 implies the following decomposition of the energy in Λ0:

Lemma 6.6. Let u ∈ Λ0 be such that ‖u‖L2 = 1. Then, we have

E(u) = −κ2

8π
+
κ2

2

(
1

4π2

∫

R2

|∂2|u||2 +

∫

R2

x2
2|u|2

)

+
κ2

8π2

∫

R2

|∂1|u||2 +
ε2

2

∫

R2

x2
1|u|2 +

g0

2

∫

R2

|u|4.(6.10)

Proof. We write

(6.11) E(u) = −κ2

8π
+
κ2

8π
+
κ2

2

∫

R2

x2
2|u|2 +

ε2

2

∫

R2

x2
1|u|2 +

g0

2

∫

R2

|u|4.

Hence, applying (6.9), we find (6.10). �
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Note that the first line is easily seen to be bounded from below by the first
eigenvalue of the corresponding harmonic oscillator, namely κ2/(4π). Hence, (6.10)
readily implies

(6.12) E(u) ≥ κ2

8π
.

This explains why we chose the constant κ2

8π
in the decomposition (6.11): it is the

constant which gives the highest lower bound in (6.12).

6.3. Proof of Theorem 1.2.

Step 1: upper bound for the energy. We pick a real-valued function p such that

p ∈ C2(R), supp(p) ⊂ (−T, T ),

∫

R

p2 = 1,

and define u by (6.2), where ρ is defined by (6.3), with

(6.13) R = ε−2/3.

Hence, setting v = 1
‖u‖L2

u, we know by Lemma 6.1 that v is a test function for

I(ε, κ). Hence,

(6.14) I(ε, κ) ≤ E(v).

Next, we set

v1 = 21/4ρ(x1)e
−πx2

2+iπx1x2 + i21/4x2ρ
′(x1)e

−πx2
2+iπx1x2 ,

and point out that, applying Lemma 6.2 with r = 2,

‖u‖2
L2 = ‖v1‖2

L2 +O
(
ε4/3
)

= 1 + 21/2

∫

R

|ρ′(x1)|2
∫

R

x2
2e

−2πx2
2dx2 +O

(
ε4/3
)

= 1 + Cε4/3

∫

R

p′2 +O
(
ε4/3
)
,

where we have used that the two terms defining v1 are orthogonal to each other.
Hence,

‖u‖L2 = 1 +O
(
ε4/3
)
,

where the term O
(
ε4/3
)

depends only on ‖p′‖L2, ‖p′′‖L∞ and T. According to (6.14)
and the definition of v, we thus have

(6.15) I(ε, κ) ≤ E(u)
[
1 +O

(
ε4/3
)]
,

where the term O
(
ε4/3
)

is independent of κ. We now compute the energy of u:
applying Lemma 6.3, we have
∣∣∣∣
∫

R2

x2
1|u|2 −

∫

R2

x2
1|v1|2

∣∣∣∣ ≤ Cε2/3 (‖x1u‖L2 + ‖x1v1‖L2) ≤ Cε2/3
(
2‖x1v1‖L2 + Cε2/3

)
.

Moreover, we have, since ρ is real-valued,
∫

R2

x2
1|v1|2dx =

∫

R

x2
1ρ(x1)

2dx1 +
1

4π

∫

R

x2
1ρ

′(x1)
2dx1 = ε−4/3

∫

R

t2p(t)2dt+O (1) .

Hence, we have

(6.16)

∫

R2

x2
1|u|2 = ε−4/3

∫

R

t2p(t)2dt+O (1) .
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The same kind of argument allows us to prove that

(6.17)

∫

R2

x2
2|u|2 =

∫

R2

x2
2v

2
1 +O

(
ε4/3
)

=
1

4π
+O

(
ε4/3
)
.

Next, we apply Lemma 6.2 with r = 4:
∣∣∣∣
∫

R2

|u|4 −
∫

R2

|v1|4
∣∣∣∣ ≤ 2‖u− v1‖L4

(
‖u‖3

L4 + ‖v1‖3
L4

)
≤ Cε3/2

(
‖u‖3

L4 + ‖v1‖3
L4

)
.

Moreover, we have ‖u‖L4 ≤ ‖v1‖L4 + Cε2/3, hence
∣∣∣∣
∫

R2

|u|4 −
∫

R2

|v1|4
∣∣∣∣ ≤ Cε3/2‖v1‖3

L4.

We also have
∫

R2

|v1|4 =

∫

R2

2ρ(x1)
4e−4πx2

2 + 4ρ(x1)
2ρ′(x1)

2x2
2e

−4πx2
2 + 2x4

2ρ
′(x1)

4e−4πx2
2

= ε2/3

∫

R

p4 + ε2 1

4π

∫

R

p(t)2p′(t)2dt+ ε10/3 3

64π2

∫

R

p′4.

Hence, we obtain

(6.18)

∫

R2

|u|4 = ε2/3

∫

R

p(t)4dt+O
(
ε2
)
.

Collecting (6.16), (6.17) and (6.18), we thus have

E(u) =
κ2

8π
+O

(
κ2ε4/3

)
+ ε2/3

(∫

R

1

2
t2p(t)2dt+

g0

2

∫

R

p(t)4dt

)
+O

(
ε2
)
.

Recalling (6.15), this implies

I(ε, κ) − κ2

8π

ε2/3
≤ 1

2

∫

R

t2p(t)2dt+
g0

2

∫

R

p(t)4dt+O
(
κ2ε2/3

)
+O

(
ε4/3
)
.

As a conclusion, we have

lim sup
ε→0, ε1/3

κ
→0

I(ε, κ) − κ2

8π

ε2/3
≤ 1

2

∫

R

t2p(t)2dt+
g0

2

∫

R

p(t)4dt,

for any real-valued p ∈ C2(R) having compact support, and such that ‖p‖L2 = 1. A
density argument allows to prove that

lim sup
ε→0, ε1/3

κ
→0

I(ε, κ) − κ2

8π

ε2/3
≤ J,

where J is defined by (1.37). Thus, we get

I(ε, κ) − κ2

8π

ε2/3
= J + c

(
ε,
ε1/3

κ

)
,

with lim
(t,s)→(0,0)

t,s>0

c(t, s) = 0.
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Step 2: convergence of minimizers. Let u be a minimizer of I(ε, κ). Then, according
to the first step, we have

E(u) ≤ κ2

8π
+ Jε2/3 + ε2/3c

(
ε,
ε1/3

κ

)
,

with lim
(t,s)→(0,0)

t,s>0

c(t, s) = 0. Hence, applying Lemma 6.6, we obtain

(6.19)
κ2

2

(
1

4π2

∫

R2

|∂2|u||2 +

∫

R2

x2
2|u|2

)

+
κ2

8π2

∫

R2

|∂1|u||2 +
ε2

2

∫

R2

x2
1|u|2 +

g0

2

∫

R2

|u|4 ≤ κ2

4π
+ Jε2/3 + ε2/3c

(
ε,
ε1/3

κ

)
.

We set

(6.20) v(x1, x2) =
1

ε1/3

∣∣∣u
( x1

ε2/3
, x2

)∣∣∣ ,

so that ‖v‖L2 = ‖u‖L2 = 1, v ≥ 0, and (6.19) becomes

(6.21)
κ2

2

(
1

4π2

∫

R2

|∂2v|2 +

∫

R2

x2
2v

2

)

+
κ2ε4/3

8π2

∫

R2

|∂1v|2 +
ε2/3

2

(∫

R2

x2
1v

2 + g0

∫

R2

v4

)
≤ κ2

4π
+ Jε2/3 + ε2/3c

(
ε,
ε1/3

κ

)
.

This implies that

(6.22)

∫

R2

|∂2v|2 +

∫

R2

x2
2v

2 ≤ C,

where C does not depend on (ε, κ). Moreover, since the first eigenvalue of the

operator − 1
4π2

d2

dx2
2

+ x2
2 is equal to 1/(2π), (6.21) implies that

(6.23)

∫

R2

x2
1v

2 + g0

∫

R2

v4 ≤ C,

where C does not depend on (ε, κ). Hence, up to extracting a subsequence, v
converges weakly in L4 and weakly in L2 to some limit v0 ≥ 0. Using (6.22) and
(6.23), we see that ∫

R2

|x|2v2 ≤ C,

hence v converges strongly in L2. Since in addition ∂2v converges weakly in L2, we
have:

(6.24)





v −→
(ε,ε1/3κ−1)→(0,0)

v0 strongly in L2(R2),

x1v −→
(ε,ε1/3κ−1)→(0,0)

x1v0 weakly in L2(R2),

v −→
(ε,ε1/3κ−1)→(0,0)

v0 weakly in L4(R2),

∂2v −→
(ε,ε1/3κ−1)→(0,0)

∂2v0 weakly in L2(R2).
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Hence, we may pass to the liminf in the two first terms of (6.21), getting
(6.25)

1

4π2

∫

R2

|∂2v0|2 +

∫

R2

x2
2v

2
0 ≤ lim inf

(ε,ε1/3κ−1)→(0,0)

(
1

4π2

∫

R2

|∂2v|2 +

∫

R2

x2
2v

2

)
≤ 1

2π
.

We use that the first eigenvalue of the operator − 1
4π2

d2

dx2
2

+ x2
2 on L2(R) is equal to

1/(2π), is simple, with an eigenvector equal to 21/4 exp(−πx2
2). Thus,

(6.26) v0(x1, x2) = ξ(x1)2
1/4e−πx2

2,

with ξ ≥ 0. Next, (6.21) and (6.24) also imply

(6.27)
1

2

∫

R2

x2
1v

2
0 +

g0

2

∫

R2

v4
0 ≤ lim inf

ε→0, ε1/3

κ
→0

(
1

2

∫

R2

x2
1v

2 +
g0

2

∫

R2

v4

)
≤ J.

Using (6.26), we infer

1

2

∫

R

x2
1ξ

2 +
g0

2

∫

R

ξ4 ≤ J.

Hence, recalling that, in view of (6.24) and (6.26), we have
∫
ξ2 = 1, the definition of

J implies that ξ is the unique non-negative minimizer of (1.37). This proves (1.38),
with strong convergence in L2 and weak convergence in L4. Moreover, using (6.27)
again and the fact that ξ is a minimizer of (1.37), we have

lim
(ε,ε1/3κ−1)→(0,0)

(∫

R2

x2
1(v

2
0 − v2) + g0

∫

R2

(
v4
0 − v4

))
= 0.

Next, using the explicit formula giving v0, a simple computation gives
∫

R2

x2
1(v

2 − v2
0) + g0(v

4 − v4
0) ≥ g

∫

R2

(
v2 − v2

0

)2
,

hence v2 converges to v2
0 strongly in L2(R2). Thus,

∫

R2

v4 −→
∫

R2

v4
0.

The space L4(R2) being uniformly convex, this implies strong convergence in L4,
hence (1.38).
Step 3: lower bound for the energy. Using Lemma 6.6, we have

E(u) ≥ κ2

4π
+
ε2/3

2

(∫

R2

x2
1v

2 + g0

∫

R2

v4

)
.

In addition, we already proved (1.38), which implies

1

2

∫

R2

x2
1v

2 +
g0

2

∫

R2

v4 −→ 1

2

∫

R2

x2
1v

2
0 +

g0

2

∫

R2

v4
0 = J,

which implies the lower bound for the energy. �

7. Appendix

7.1. Glossary.
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7.1.1. The harmonic oscillator. The operator

(7.1)
∑

1≤j≤n

π(ξ2
j + λ2

jx
2
j )

w =
∑

1≤j≤n

π(D2
xj

+ λ2
jx

2
j ), λj > 0, Dxj

=
1

2iπ
∂xj

,

has a discrete spectrum

(7.2)
1

2

∑

1≤j≤n

λj +
{ ∑

1≤j≤n

αjλj

}

(α1,...,αn)∈Nn
,

and its ground state is one-dimensional generated by the Gaussian function

(7.3) ϕλ(x) = 2n/4
∏

1≤j≤n

λ
1/4
j e−πλjx2

j .

7.1.2. Degenerate harmonic oscillator. Let r ∈ {1, . . . , n}. Using the identity

(7.4) 〈Hru, u〉 =
∑

1≤j≤r

〈(D2
xj

+ λ2
jx

2
j )u, u〉 =

∑

1≤j≤r

‖(Dxj
− iλjxj)u‖2

L2 +
λj

2π
‖u‖2

L2,

we can define the ground state Er of the operator Hr as

(7.5) Er = L2(Rn) ∩1≤j≤r ker(Dxj
− iλjxj)

= {ϕ(λ1,...,λr)(x1, . . . , xr) ⊗ v(xr+1, . . . , xn)}v∈L2(Rn−r).

The bottom of the spectrum of πHr is 1
2

∑
1≤j≤r λj.

7.2. Notations for the calculations of section 2.3.

ν2 + ω2 ≤ 1, ν2 + ω2 + ε2 = 1,(7.6)

α =
√
ν4 + 4ω2 =

√
4ω2 + (1 − ω2 − ε2)2 (if ν = 0, α = 2ω).(7.7)

µ2
1 = 1 + ω2 − α =

(1 + ω2)2 − α2

1 + ω2 + α
=

(1 − ω2)2 − ν4

µ2
2

=
2ν2ε2 + ε4

µ2
2

(7.8)

µ2
2 = 1 + ω2 + α (if ν = 0, µ2 = 1 + ω).(7.9)

Remark 7.1. If ν = 0, µ1 = O(ε2) and if ν 6= 0, µ1 = O(ε). Moreover, for ν2 + ω2 ≤ 1,
µ2

2 ∈ [1, 4] and for ν2 + ω2 = 1, µ2
2 ∈ [2, 4]: we have indeed

(7.10) 1 ≤ 1 + ω2 + (ν4 + 4ω2)1/2 ≤ 4

since ν4 +10ω2 ≤ (1−ω2)2 +10ω2 = 8ω2 +1+ω4 ≤ 9+ω4, implying (3−ω2)2 ≥ ν4 +4ω2

and (7.10). If ν2+ω2 = 1, we have (1−ω2)2 = ν4 ≤ ν4+4ω2 =⇒ 2 ≤ 1+ω2+(ν4+4ω2)1/2.
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We define the following set of parameters,

β1 =
2ωµ1

α− 2ω2 + ν2
=
α− 2ω2 − ν2

2ωµ1
since (α − 2ω2)2 − ν4 = 4ω2 + 4ω4 − 4ω2α = 4ω2µ2

1 ,(7.11)

β2 =
2ωµ2

α+ 2ω2 + ν2
=
α+ 2ω2 − ν2

2ωµ2
since (α + 2ω2)2 − ν4 = 4ω2 + 4ω4 + 4ω2α = 4ω2µ2

2 ,(7.12)

γ =
2α

ω
,(7.13)

λ2
1 =

µ1

µ1 + β1β2µ2
=

1

1 + β1β2µ2

µ1

=
1

1 + α+2ω2−ν2

α−2ω2+ν2

=
α− 2ω2 + ν2

2α
,(7.14)

λ2
2 =

µ2

µ2 + β1β2µ1
=

1

1 + β1β2µ1

µ2

=
1

1 + α−2ω2−ν2

α+2ω2+ν2

=
α+ 2ω2 + ν2

2α
,(7.15)

and we have λ2
1 + λ2

2 = 1 +
ν2

α
, λ2

1λ
2
2 =

(α+ ν2)2 − 4ω4

4α2
,(7.16)

d =
γλ1λ2

2
, c =

λ2
1 + λ2

2

2λ1λ2
so that cd= 2α(1+ν2/α)

4ω
= α+ν2

2ω
.(7.17)

We have also

2µ1

γβ1
=
α− 2ω2 + ν2

ωγ
=
α− 2ω2 + ν2

2α
= λ2

1,

2µ2

γβ2
=
α+ 2ω2 + ν2

ωγ
=
α+ 2ω2 + ν2

2α
= λ2

2,

and

cλ2 =
λ2

1 + λ2
2

2λ1
= (1 + ν2α−1)2−1 21/2α1/2

√
α− 2ω2 + ν2

= (1 + ν2α−1)2−1 21/2α1/2
√
α+ 2ω2 − ν2

√
α− 2ω2 + ν2

√
α+ 2ω2 − ν2

= (1 + ν2α−1)2−121/2α1/2

√
α+ 2ω2 − ν2

√
α2 − (2ω2 − ν2)2

= (1 + ν2α−1)2−1/2α1/2
√
α+ 2ω2 − ν2(2ω)−1(2ν2 + ε2)−1/2.

Moreover, we have

(7.18) cλ2 = 2−3/2(α1/2 + ν2α−1/2)ω−1

√
α+ 2ω2 − ν2

2ν2 + ε2
(if ν = 0, cλ2 = 2−1/2(1 − ω)−1/2),

λ2d
−1 =

cλ2

cd
= 2−3/2(α1/2 + ν2α−1/2)ω−1

√
α+ 2ω2 − ν2

2ν2 + ε2
2ω

α+ ν2
,

λ2d
−1 = 2−1/2(α1/2 + ν2α−1/2)

√
α+ 2ω2 − ν2

2ν2 + ε2
(α+ ν2)−1,

(7.19) λ2d
−1 = (2α)−1/2

√
α+ 2ω2 − ν2

2ν2 + ε2
(if ν = 0, λ2d−1 = 2−1/2(1 − ω)−1/2),

(7.20) cλ1 =
λ2

1
+ λ2

2

2λ2

= (1+α−1ν2)2−1/2α1/2(α+2ω2+ν2)−1/2
(if ν = 0, cλ1 = 2−1/2(1 + ω)−1/2),

λ1d
−1 = λ1c(cd)

−1 = (1 + α−1ν2)2−1/2α1/2(α+ 2ω2 + ν2)−1/22ω(α+ ν2)−1,
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(7.21) λ1d
−1 = 21/2α−1/2ω(α+ 2ω2 + ν2)−1/2 (if ν = 0, λ1d

−1 = 2−1/2(1 + ω)−1/2),

λ1cd = (α+ ν2)2−1ω−1(α− 2ω2 + ν2)1/22−1/2α−1/2,

λ1cd = 2−3/2(α+ ν2)ω−1α−1/2(α− 2ω2 + ν2)1/2 (if ν = 0, λ1cd = 2−1/2(1 − ω)1/2),

d

λ2
=
γλ1

2
= αω−1(α− 2ω2 + ν2)1/22−1/2α−1/2 = 2−1/2α1/2ω−1(α− 2ω2 + ν2)1/2,

λ1cd−
d

λ2
= (α− 2ω2 + ν2)1/2

(
2−3/2(α+ ν2)ω−1α−1/2 − 2−1/2α1/2ω−1

)
,

λ1cd−
d

λ2
= 2−3/2ω−1α−1/2(α− 2ω2 + ν2)1/2(α+ ν2 − 2α),

(7.22) λ1cd−
d

λ2
= −2−3/2ω−1α−1/2(α− 2ω2 + ν2)1/2(α− ν2),

(if ν = 0, λ1cd− d
λ2

= −2−1/2(1 − ω)−1/2),

(7.23) λ1 = 2−1/2α−1/2(α− 2ω2 + ν2)1/2 (if ν = 0, λ1 = 2−1/2(1 − ω)1/2),

λ2cd−
d

λ1
= λ−1

1 λ2(λ1cd−
d

λ2
)

= −2−3/2ω−1α−1/2(α− 2ω2 + ν2)1/2(α− ν2)(α+ 2ω2 + ν2)1/2(α− 2ω2 + ν2)−1/2

= −2−3/2ω−1α−1/2(α− ν2)(α + 2ω2 + ν2)1/2,

(7.24) λ2cd−
d

λ1

= −2−3/2ω−1α−1/2(α−ν2)(α+2ω2+ν2)1/2
(if ν = 0, λ2cd −

d

λ1
= −2−1/2(1 + ω)1/2)

(7.25) λ2 = 2−1/2α−1/2(α+ 2ω2 + ν2)1/2 (if ν = 0, λ2 = 2−1/2(1 + ω)1/2),

(7.26)
γµ1β1

2
=

2α

α+ 2ω2 + ν2
ε2,

γµ1

2β1
=

4αω(2ν2 + ε2)

α− ν2 + 2ω2
.

7.3. Some calculations.
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7.3.1. Proof of the lemma 2.5. We have to calculate

Q̃ = χ∗Qχ = χ∗




1 − ν2 0 0 −ω
0 1 + ν2 ω 0
0 ω 1 0
−ω 0 0 1







λ1 0 0 −λ1

d

0 λ2 −λ2

d
0

0 d
λ1

− λ2cd cλ2 0
d
λ2

− λ1cd 0 0 cλ1




= χ∗




(1−ν2)λ1−
ωd
λ2

+λ1cdω 0 0 −
λ1(1−ν2)

d
−cλ1ω

0 (1+ν2)λ2+ ωd
λ1

−λ2cdω −
(1+ν2)λ2

d
+ωcλ2 0

0 ωλ2+ d
λ1

−λ2cd −
ωλ2

d
+cλ2 0

−ωλ1+ d
λ2

−λ1cd 0 0 ωλ1
d

+cλ1




=




λ1 0 0 d
λ2

− λ1cd

0 λ2
d

λ1
−λ2cd 0

0 −λ2

d
cλ2 0

−λ1

d
0 0 cλ1




×




(1−ν2)λ1−
ωd
λ2

+λ1cdω 0 0 −
λ1(1−ν2)

d
−cλ1ω

0 (1+ν2)λ2+ ωd
λ1

−λ2cdω −
(1+ν2)λ2

d
+ωcλ2 0

0 ωλ2+ d
λ1

−λ2cd −
ωλ2

d
+cλ2 0

−ωλ1+ d
λ2

−λ1cd 0 0 ωλ1
d

+cλ1


 .

We get easily q̃12 = q̃13 = 0 = q̃24 = q̃34. To prove that the symmetric matrix Q̃ is
diagonal, it is thus sufficient to prove that q̃14 = 0 = q̃23. We have

q̃14 = −λ
2
1

d
(1 − ν2) − ωcλ2

1 + ω
λ1

λ2
+
cdλ1

λ2
− λ2

1cω − c2λ2
1d

=
λ2

1

d

[
− 1 + ν2 − 2ωcd+

ωd

λ2λ1
+

cd2

λ2λ1
− c2d2

]

=
λ2

1

d

[
− 1 + ν2 − α− ν2 + α +

(α + ν2)

2ω

α

ω
− (α+ ν2)2

4ω2

]

=
λ2

1

dω2

[
− ω2 +

(α2 + ν2α)

2
− (α + ν2)2

4

]

=
λ2

1

dω2

[
− ω2 +

(ν4 + 4ω2 + ν2α)

2
− (α2 + ν4 + 2αν2)

4

]

=
λ2

1

dω2

[
− ω2 +

(ν4 + 4ω2 + ν2α)

2
− (ν4 + 4ω2 + ν4 + 2αν2)

4

]

=
λ2

1

dω2

[
− ω2 +

(2ν4 + 8ω2 + 2ν2α)

4
− (2ν4 + 4ω2 + 2αν2)

4

]
= 0, qed.

Moreover we have

q̃23 = −λ
2
2

d
(1 + ν2) + ωcλ2

2 −
ωλ2

λ1

+
cdλ2

λ1

+ λ2
2ωc− λ2

2c
2d

=
λ2

2

d

[
− 1 − ν2 + 2ωcd− ωd

λ2λ1

+
cd2

λ2λ1

− c2d2
]

=
λ2

2

d

[
− 1 − ν2 + α + ν2 − α +

(α+ ν2)

2ω

α

ω
− (α + ν2)2

4ω2

]

=
λ2

2

dω2

[
− ω2 +

(α2 + ν2α)

2
− (α + ν2)2

4

]
= 0, from the previous computation.
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We know now that Q̃ is indeed diagonal. We calculate

q̃44 =
λ2

1(1 − ν2)

d2
+

2cλ2
1ω

d
+c2λ2

1 =
λ2

1

d2

[
1−ν2+2ωcd+c2d2

]
=
λ2

1

d2

[
1−ν2+α+ν2+

(α + ν2)2

4ω2

]

q̃44 =
λ2

1

ω2d2

[
ω2 + αω2 +

(ν4 + 4ω2 + ν4 + 2αν2)

4

]
=

λ2
1

ω2d2

[
2ω2 + αω2 +

(ν4 + αν2)

2

]
.

Since
λ2
1

ω2d2 = 4
γ2λ2

2ω2 = 1
α2λ2

2
= 2α

α2(α+2ω2+ν2)
, we have

q̃44 =
1

α(α+ 2ω2 + ν2)

[
4ω2 + 2αω2 + ν4 + αν2

]
=
α2 + 2αω2 + αν2

α2 + 2αω2 + αν2
= 1.

Analogously, we have

q̃33 =
λ2

2(1 + ν2)

d2
−2cλ2

2ω

d
+c2λ2

2 =
λ2

2

d2

[
1+ν2−2ωcd+c2d2

]
=
λ2

2

d2

[
1+ν2−α−ν2+

(α+ ν2)2

4ω2

]

q̃33 =
λ2

2

ω2d2

[
ω2 − αω2 +

(ν4 + 4ω2 + ν4 + 2αν2)

4

]
=

λ2
2

ω2d2

[
2ω2 − αω2 +

(ν4 + αν2)

2

]
.

Since
λ2
2

ω2d2 = 4
γ2λ2

1ω2 = 1
α2λ2

1
= 2α

α2(α−2ω2+ν2)
, we have

q̃33 =
1

α(α− 2ω2 + ν2)

[
4ω2 − 2αω2 + ν4 + αν2

]
=
α2 − 2αω2 + αν2

α2 − 2αω2 + αν2
= 1.

We calculate

q̃11 = λ2
1(1 − ν2) − 2

ωdλ1

λ2
+ 2λ2

1cdω +
d2

λ2
2

− 2
cd2λ1

λ2
+ λ2

1c
2d2

q̃11 = λ2
1

[
(1 − ν2) − 2ωd

λ1λ2

+ 2cdω +
d2

λ2
1λ

2
2

− 2
cd2

λ1λ2

+ c2d2
]

q̃11 = λ2
1

[
(1 − ν2) − 2α+ α + ν2 +

α2

ω2
− 2

α+ ν2

2ω

α

ω
+

(α+ ν2)2

4ω2

]

q̃11 =
λ2

1

ω2

[
(1 − α)ω2 + α2 − α2 − αν2 +

(α+ ν2)2

4

]

q̃11 =
α− 2ω2 + ν2

2αω2

[
ω2 − αω2 − αν2 +

ν4 + 4ω2 + ν4 + 2αν2

4

]

q̃11 =
α− 2ω2 + ν2

2αω2

[
2ω2 − αω2 − 1

2
αν2 +

ν4

2

]
.

More calculations:

(α− 2ω2 + ν2)(2ω2 +
ν4

2
− α(ω2 +

ν2

2
))

= (ν2 −2ω2)(2ω2 +
ν4

2
)− (ν4 +4ω2)(ω2 +

ν2

2
)+α

(
2ω2 +

ν4

2
+ (ω2 +

ν2

2
)(2ω2 − ν2)

)

= −8ω4 − 2ω2ν4 + α(2ω4 + 2ω2)

which is equal to

2αω2(1 + ω2 − α) = α(2ω4 + 2ω2) − 2α2ω2 = α(2ω4 + 2ω2) − 2ω2(ν4 + 4ω2),

proving thus that q̃11 = 1 + ω2 −α. The previous calculations and (2.8) give ϕq̃22 =
1 + ω2 + α, completing the proof of the lemma.
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7.3.2. On the symplectic relationships in Lemma 2.6. The reader is invited to check
the following formulas4, with the notations of lemma 2.6:

{
ξ1 −

(α− ν2

2ω

)
x2, ξ2 +

(α+ ν2

2ω

)
x1

}
= αω−1,

{
ξ2 −

(α− ν2

2ω

)
x1, ξ1 +

(α+ ν2

2ω

)
x2

}
= αω−1,

{
ξ1 −

(α− ν2

2ω

)
x2, ξ1 +

(α+ ν2

2ω

)
x2

}
= 0,

{
ξ1 −

(α− ν2

2ω

)
x2, ξ2 −

(α− ν2

2ω

)
x1

}
= 0,

{
ξ2 +

(α+ ν2

2ω

)
x1, ξ1 +

(α+ ν2

2ω

)
x2

}
= 0,

{
ξ2 +

(α+ ν2

2ω

)
x1, ξ2 −

(α− ν2

2ω

)
x1

}
= 0,

as well as

(α− 2ω2 + ν2

2α

)1/2(α + 2ω2 − ν2

2αµ2
2

ε2
)1/2

αω−1 = 2−1εµ−1
2 ω−1

(
α2 − (2ω2 − ν2)2

)1/2

= 2−1εµ−1
2 ω−1

(
4ω2−4ω4+4ω2ν2

)1/2
= εµ−1

2 (1−ω2+ν2)1/2 = εµ−1
2 (2ν2+ε2)1/2 = µ1

and

(α + 2ω2 + ν2

2α

)1/2
21/2ω

( 1 + ω2 + α

α(α+ 2ω2 + ν2)

)1/2
αω−1 = (1 + ω2 + α)1/2 = µ2.
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[16] M. Ö. Oktel, Vortex lattice of a bose-einstein condensate in a rotating anisotropic trap, Phys.
Rev. A 69 (2004), no. 2, 023618.

[17] C.J. Pethick and H. Smith, Bose Einstein condensation in dilute gases, Cambridge University
Press, 2002.

[18] L. Pitaevskii and S. Stringari, Bose einstein condensation, International series of monographs
on physics, 116, Oxford Science Publications, 2003.

[19] P. Sanchez-Lotero and J. J. Palacios, Vortices in a rotating bose-einstein condensate under
extreme elongation, Physical Review A (Atomic, Molecular, and Optical Physics) 72 (2005),
no. 4, 043613.

[20] S. Sinha and G. V. Shlyapnikov, Two-dimensional bose-einstein condensate under extreme
rotation, Physical Review Letters 94 (2005), no. 15, 150401.

[21] G. Watanabe, G. Baym, and C.J. Pethick, Landau levels and the Thomas-Fermi structure of
rapidly rotating Bose-Einstein condensates, Phys.Rev. Lett. 93 (2004), 190401.

Amandine Aftalion, CMAP, Ecole Polytechnique, CNRS, 91128 Palaiseau cedex,
France

E-mail address : amandine.aftalion@polytechnique.edu
URL: http://www.cmap.polytechnique.fr/ aftalion/
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