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FAST ROTATING BOSE-EINSTEIN CONDENSATES IN AN
ASYMMETRIC TRAP

AMANDINE AFTALION, XAVIER BLANC, AND NICOLAS LERNER

ABSTRACT. We investigate the effect of the anisotropy of a harmonic trap on
the behaviour of a fast rotating Bose-Einstein condensate. This is done in the
framework of the 2D Gross-Pitaevskii equation and requires a symplectic reduction
of the quadratic form defining the energy. This reduction allows us to simplify
the energy on a Bargmann space and study the asymptotics of large rotational
velocity. We characterize two regimes of velocity and anisotropy; in the first one
where the behaviour is similar to the isotropic case, we construct an upper bound:
a hexagonal Abrikosov lattice of vortices, with an inverted parabola profile. The
second regime deals with very large velocities, a case in which we prove that the
ground state does not display vortices in the bulk, with a 1D limiting problem. In
that case, we show that the coarse grained atomic density behaves like an inverted
parabola with large radius in the deconfined direction but keeps a fixed profile
given by a Gaussian in the other direction. The features of this second regime
appear as new phenomena.
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1. INTRODUCTION

Bose-Einstein condensates (BEC) are a new phase of matter where various as-
pects of macroscopic quantum physics can be studied. Many experimental and
theoretical works have emerged in the past ten years. We refer to the monographs
by C.J.Pethick-H.Smith [I7], L.Pitaevskii-S.Stringari [I8] for more details on the
physics and to A.Aftalion [2] for the mathematical aspects. Our work is motivated
by experiments in the group of J.Dalibard [I4] on rotating condensates: when a
condensate is rotated at a sufficiently large velocity, a superfluid behaviour is de-
tected with the observation of quantized vortices. These vortices arrange themselves
on a lattice, similar to Abrikosov lattices in superconductors [I]. This fast rotation
regime is of interest for its analogy with Quantum Hall physics [5 9], 21].

In a previous work, A.Aftalion, X.Blanc and F.Nier [3] have addressed the math-
ematical aspects of fast rotating condensates in harmonic isotropic traps and gave
a mathematical description of the observed vortex lattice. This was done through
the minimization of the Gross-Pitaevskii energy and the introduction of Bargmann
spaces to describe the lowest Landau level sets of states. Nevertheless, the ex-
perimental device leading to the realization of a rotating condensate requires an
anisotropy of the trap holding the atoms, which was not taken into account in [3].
Several physics papers have addressed the behaviour of anisotropic condensates un-
der rotation and its similarity or differences with isotropic traps. We refer the reader
to the paper by A.Fetter [§], and to the related works [I6, M9, 20]. The aim of the
present article is to analyze the effect of anisotropy on the energy minimization and
the vortex pattern, and in particular to derive a mathematical study of some of
Fetter’s computations and conjectures. Two different situations emerge according
to the values of the parameters: in one case, the behaviour is similar to the isotropic
case with a triangular vortex lattice; in the other case, for very large velocities,
we have found a new regime where there are no vortices, and a full mathematical
analysis can be performed, reducing the minimization to a 1D problem. The exis-
tence of this new regime was apparently not predicted in the physics literature. This
feature relies on the analysis of the bottom of the spectrum of a specific operator
whose positive lower bound prevents the condensate from shrinking in one direction,
contradicting some heuristic explanations present in [8]. Our analysis is based on
the symplectic reduction of the quadratic form defining the Hamiltonian (inspired
by the computations of Fetter [§]), the characterization of a lowest Landau level
adapted to the anisotropy and finally the study of the reduced energy in this space.

1.1. The physics problem and its mathematical formulation. Our problem
comes from the study of the 3D Gross-Pitaevskii energy functional for a fast rotating
Bose-Einstein condensate with N particles of mass m given by

gsalN
(1.1) Eap(9) = (Ho, ¢) r2ws) + THQ&H;(RS)’
where the operator H is
1
(1.2) H = %(thi +h*D2+h*D?) + % (wiz? +wly® +w?z”) = Q(zhD, —yhD,),

where £ is the Planck constant, D, = (2im)~'9,, w; is the frequency along the j-axis,
() is the rotational velocity, and the coupling constant g3, is a positive parameter.
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In the particular case where w, = w,, the fast rotation regime corresponds to
the case where () tends to w, and the condensate expands in the transverse di-
rection. It has been proved [ that the minimizer can be described at leading
order by a 2D function ¢ (x,y), multiplied by the ground state of the harmonic
oscillator in the z-direction (the operator h?/(2m)D? + mw?2?/2), which is equal
to (mezhfl)l/‘le*”m%hflz? This property is still true in the anisotropic case if

wy K w,. The reduced 2D energy to study is thus
N
(1.3) EW) = (Hot, V) 2m2) + gz%

where the operator Hj is
1
- 2m

and the coupling constant go4 takes into account the integral of the ground state in
the z-direction:

1911 s z2),

m
(1.4) Ho (h*D? + h2D§) + 5} (w2a® + waz) — Q(xhD, — yhD,),

h2
(1.5) g2aN = g—, where ¢ is dimensionless (and > 0).
m

Since h has the dimension energy x time, it is consistent to assume that the wave
function ¢ has the dimension 1/length, with the normalization ||¢|| 22y = 1. We
define the mean square oscillator frequency w,; by

1
wi = §(W§ +wy)
and the function u by
(1.6) W, y) = b Pm 2ol u(h Y 2m 2w e, ke Pm 2w Py),

so that
ull 2@y = [¥ll2@ey =1, gaaN 9 1aggey = ghwo|[ull7a g
We also note that the dimension of h~Y/2m!/2w!/* is 1/length, so that
T = hil/le/zwi/zx, Ty = h*1/2m1/2wi/2y, u(xy,zy) are dimensionless.

Assuming w? < w?, we use the dimensionless parameter v to write

wy = (1=, wy =1+l

and we get immediately

1 1 1 1 1
o EW) = S Dty 45 1 Dot gey +5 (1=1) [ erull Laee) +5 (142 |wsull 2 ey
Q 9 4
- Z<($1D2 — 29 D1)u, u) p2(rey + §HUHL4(R2)-
Finally, we have
1 g
(1.7) Eg(@/}) 1= Egp(u) = (Hu,u) + 5”“”%4(11&2)’

(1.8) 2H =D} + D3+ (1 — 1)t + (1 + 1)) — 2w(21 Dy — 13Dy), w=—,
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where w, v, u, g are all dimensionless and ||u|[ 22y = 1. The minimization of this
functional is the mathematical problem that we address in this paper. The Euler-
Lagrange equation for the minimization of Egp(u), under the constraint ||ul/z2g2) =
1, is

(1.9) Hu + glu*u = \u,

where A is the Lagrange multiplier. We shall always assume that Q? < w? i.e.
w? + 12 <1 and define the dimensionless parameter ¢ by

(1.10) W+ttt =1.

The fast rotation regime occurs when the ratio Q%/w? tends to 1_, i.e. € tends to 0.
Summarizing and reformulating our reduction, we have

1, ., g
(1.11) EGP(U) = §<qw7y’€u,u>L2(R2) + 5/ |u|4dl‘,
R2

where q, . 15 the quadratic form

(112)  Guue(m1,22,6,&) =& + & + (1 —v)ai + (14 v7)2) — 2w(@1& — 2261),

which depends on the real parameters w,v,e such that' ([CIO) holds. Here Qe 18
the operator with Weyl symbol q, .., that is:

(1.13) @2 ,.=Di+ Dj+ (1 —v*)af + (1 4+ v*)a3 — 2w(z1 Dy — 22D1),
where D; = 0;/(2im). We would like to minimize the energy Egp(u) under the

constraint ||u||zz = 1 and understand what is happening when ¢ — 0.

1.2. The isotropic Lowest Landau Level. When the harmonic trap is isotropic,
i.e. when v = 0, it turns out that, since w? +¢% =1,
(1.14) 4= Quoe = (& +wra)? + (& —wry)? + (aF + 73)
so that
1 » 2 W s € 2, 9 4
Egp(u) = S[I(Dy +wz2)yp +i(Day — war)ull” + —lull” + S lllzlull” + 5 [ Juldz.
2 21 2 2
We note that, with z = x1 + iz,
1 - 1 -
Dy 4+ wxy +i(Dy —wzy) = —0 —iwz = — (0 + mwz),
i i
hence the first term of the energy is minimized (and equal to 0) if w € LLL,-1,
where
(1.15)  LLLy- = {u € L*(R?),u(z) = f(2)e ™} = ker(8 + mwz) N L*(R?),

with f holomorphic. We expect the condensate to have a large expansion, hence the
term [ |u|* to be small. Thus, it is natural to minimize the energy Egp in LLL,-1.
It has been proved in ] that the restriction to LLL, -1 is a good approximation

1Of course there is no loss of generality assuming that €, v are nonnegative parameters; we may
also assume that w > 0, since the change of function u(zy, xs) + u(—21, x2) preserves the L*-norm,
is unitary in L?, corresponding to the symplectic transformation (z1, z2, 1, &2) — (=1, 2, —&1,&2)
and leads to the same problem where w is replaced by —w.
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of the original problem, i.e. the minimization of Egp in L?*(R?). We get for u €
LLL 1, ||ullz2 =1,

w
27

1 , g2
Bop(u) = 3l (D1 + wrau-+ 1Dy — wru |+ 22 + Slelul + § [ futa,

(im)—1 (5:7rwz)u:0

and with u(z) = v((we)"/2z)(we)'/? (unitary change in L*(R?)),

w €
E _w £ 2 2 2 400 )
ar() = 2+ o ([ WP Pay + 2 [ ol'ay
The minimization problem of Egp(u) in the space LLL,-1 is thus reduced to study

(1.16) Errr(v) = |llzfvl72 + w’gllvllzs, v € LLL,

—me~ 1 z|?

Le. with z = x1 + ixe, v(z1,22) = f(2)e , [ entire (and v € L*(R?)). This
program has been carried out in the paper [3] by A. Aftalion, X. Blanc, F. Nier.
In the isotropic case, a key point is the fact that the symplectic diagonalisation of
the quadratic Hamiltonian is rather simple: in fact revisiting the formula ([CI4l), we
obtain easily

m H1Y7
(117) g= (596 -2+ (56 + o)
FEEE)E + 22+ (D)6 — ),
b 303

with

m =221 -w)2(& —x9), m=1-w, y1=2"Y2(1-w)"V2(& +21),
(1.18)

e = 271/2(1 + W)1/2(§1 + 1’2), H2 = 1 + W, Y2 = 271/2(1 + w)il/Q(xl - 52)7

so that the linear forms (y1,y2,71,72) are symplectic coordinates in R%, i.e.

vt ={n2yet =1, {nmet = {m,y2} = {m,n} = {v1,v2} = 0.

In [3], an upper bound for the energy is constructed with a test function which
is also an “almost” solution to the Euler-Lagrange equation corresponding to the
minimization of (CI6) in LLL.. This almost solution displays a triangular vortex
lattice in a central region of the condensate and is constructed using a Jacobi Theta
function, which is modulated by an inverted parabola profile and projected onto
LLL..

1.3. Sketch of some preliminary reductions in the anisotropic case. The
analysis of the reduced energy in the anisotropic case yields two different situations:
one is similar to the isotropic case and the other one is quite different, without
vortices. To tackle the non-isotropic case where v > 0 in ([LIJ), one would like to
determine a space playing the role of the LL L and taking into account the anisotropy.
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Step 1. Symplectic reduction of the quadratic form q,,.. Given the quadratic form
Qwre (CIJ), identified with a 4 x 4 symmetric matrix, we define its fundamental
matrix by the identity F' = —67'q,,, . = 0q,,. where

o= ( OI 62) is the symplectic matrix given in 2 x 2 blocks.
— 12

The properties of the eigenvalues and eigenvectors of F' allow to find a symplectic

reduction for g, .

Step 2. Determination of the anisotropic LLL. The anisotropic equivalent of the
LLL can be determined explicitely, thanks to the results of the first step. We find
that it is the subspace of functions u of L*(R?) such that

2

2 2
f(z1 + iBoxs) exp <_Z—ﬁ: [;1:%(1 — V_) + (Bow2) (1 + 21/_04)}) exp (_iWZa7x1x2)’

2x

where f is entire. The positive parameters «,~, s are defined in the text and
are explicitely known in terms of w,rv. We also determine an operator M, which
can be used to give an explicit expression for the isomorphism between L?(R) and
the anisotropic LLL as well as to express the Gross-Pitaevskii energy in the new
symplectic coordinates.

Step 3. Rescaling. Introducing a new set of parameters (w, v, € are positive satisfying

(CId), g > 0 given by (CH)),

21 o+ 2w? + 12
2 (92 2 _ _
(L19) Wi = A4 (1t D) @ = VVIRRE, =g

L S 1 . S T
ﬁQ’gO 4/827 Y w) 2 a+2w2+1/2’

we show that, after some rescaling, the minimization of the full energy Egp(u) of
(CTI) can be reduced to the minimization of

1
(1.21) E(u) = / §<€2$% + K223 |ul? + %|u|4.
R2

(1.20) K po =1+w* +a,

on the space
(1.22) Ag = {u € L*(R?), u(x1,x5) = f(2)e ™**/2, f holomorphic, z = 1 + iz, }.

The point is that, after some scaling, we are able to come back to an isotropic space.
The orthogonal projection ITy of L?(IR?) onto Ag is explicit and simple:

(129 (o)) = [ e Tmvmmten sy

R2
We are thus reduced to the following problem: with E(u) given by ([LZI), study
(1.24) I(e,k) = inf{E(u), u € Ao, |Jul 22 =1}

The minimization of F without the holomorphy constraint yields
2 2 1/4 1/4
T T 4gok 4goe
kTR m) Vhee (w§> o (wm)

As ¢ tends to 0, R; always tends to infinity (in fact R; > e7/2), but the behaviour
of Ry depends on the respective values of € and &, that is of € and v.

(1.25) |uf* =
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Step 4. Sorting out the various regimes. Recalling that the positive parameter v
stands for the anisotropy, we find two regimes:

o v < £'/3 (weak anisotropy): Ry — oo (in fact, Ry/® ~ min(c=2/3,e/3u71)).
Numerical simulations (FIGURE [l) show a triangular vortex lattice. The behaviour
is similar to the isotropic case except that the inverted parabola profile (C2H) takes
into account the anisotropy. We will construct an approximate minimizer.

T

15 —

10 5 s

"

ot o o

o N

B S N ]

> + T N 8

5 - # -
+ + +

o + B ]

& + e

+ + + .

+ + + + 8

0 e o + + + =

+ + + + g

+ o + e

! o+ * * + ]

o + i

5= L + L

+

£, + 4 8

a4+ ]

210 |- _

I \ N \ I B
15 10 5 0 5 10

FIGURE 1. Plot of the zeroes of the minimizer (left) and the density (right)
for €2 = 0.002, v = 0.03. Triangular vortex lattice in an anisotropic trap.

e v > ¢!/3 (strong anisotropy): Ry — 0 (in fact R;l/g ~ ¢'3y71). Numerical
simulations (FIGURE ) show that there are no vortices in the bulk, the behaviour
is an inverted parabola in the x; direction and a fixed Gaussian in the x5 direction.
Thus, the size of the condensate does not shrink in the x5 direction and ([L2H) is not
a good approximation of the minimizer. The shrinking of the condensate in the x5
direction is not allowed in Aq (see (C2ZZ)) because the operator z3 is bounded from
below in that space by a positive constant and the first eigenfunction is a Gaussian
in the zy direction. We find an asymptotic 1D problem (upper and lower bounds
match) which yields a separation of variables.
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T I B B B R B I R

20
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-10 -
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FIGURE 2. Plot of the zeroes of the minimizer (left) and the density (right)
for 2 = 0.002, v = 0.73. No vortex in the visible region.

1.4. Main results.

1.4.1. Weakly anisotropic case. In a first step?, we assume that, with & given by

(C2),
(1.26) e<r<el

The isotropic case is recovered by assuming x = €. This case is similar to the isotropic
case and we derive similar results to the paper [3], namely an upper bound given by
the Theta function but we lack a good lower bound.

We recall that the Jacobi Theta function O(z, ) associated to a lattice Z @ Zt is
a holomorphic function which vanishes exactly once in any lattice cell and is defined
by

1 & ‘ ) _

(127) @(Z,T) . Z (_1)n€z7r7'(n+1/2) e(2n+1)7rzz’ 2 eC.

n=—oo

This function allows us to construct a periodic function on the same lattice: w, is
defined by

(1.28) ur (21, 29) = 65(22_‘2‘2)@( TIZ,T), Z=a1+1iry, T =Tg+ 1Ty,
|u,| is periodic over the lattice Z @ 7Z, and u, satisfies

(1.29) I (Jur*ur) = Arur,

with

N A TG

1.30 = -7
( ) f lu |? 271

2We shall see that x ~ v + ¢ in the sense that the ratio k/(v + €) is bounded above and below
by some fixed positive constants, so that the weakly anisotropic case is indeed v < /3.
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and

f lurl*
1.31 T) = —— .
(1.31) Y(7) G el

The minimization of v(7) on all possible 7 corresponds to the Abrikosov problem.
It turns out that the properties of the Theta function allow to derive that

)= 3 et
(j,k)eZ?

2im/3

and prove (see [3]) that 7 +— ~(7) is minimized for 7 = j = e/ which corresponds

to the hexagonal lattice. The minimum is
(1.32) b=(j) =~ 1.1596.

The function wu, allows us to construct the vortex lattice and we multiply it by the
proper inverted parabola to get a good upper bound:

Theorem 1.1. We have for I(g, k) defined in ([LZ), b given in ([L32), « in ([C20),

9 2 /2 3\ /8
(1.33) I I(e, k) < = 9w L o <«/€/@ (%) ,
T

when (e, ke Y/3) — (0,0). Moreover, the following function provides the upper bound:

(1.34) v = Iy (u,p),
where u, is defined by (LZ8) with 7 = ¢ and

(2)? 2 (1 3 3 ) R (490/1) 1/ R <4g06)1/4
€T = " — — s = s = B — .
P VbR, Ry VOR?  VbRZ) ! e 2 T3

We expect v to be a good approximation of the minimizer and the energy asymp-
totics to match the right-hand side of ([L33)). Thus, the lower bound is not optimal
( it does not include b). In addition, the test function (L34 (with a general 7 # j

a priori) gives the upper bound of (C33) with v(7) instead of b. The proof is a
refinement of that in 3.

1.4.2. Strong anisotropy. In the case where the rotation is fast enough in the sense
that

(1.35) ko> el/3

we have found a regime unknown by physicists where vortices disappear and the
problem can be reduced in fact to a 1D energy.

Theorem 1.2. For I(¢, k) defined in (L), b given in (L33), x in (C20), we have

I(e, k) — K2
(1.36) lim Her) = 5 =J,
(e,€1/3k=1)—(0,0) g2/3
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where

(1.37)
1
J = inf{/ §t2p(t)2 + % /p(t)4, p real-valued € L*(R) N L*(R), ||p 12wy = 1}

In addition, if u is a minimizer of I(e, k), then

1 I

in L?(R?) N LY(R?), where p is the minimizer of J.

_ 21/4677“)3%]9(:&),

Note that the minimizer p of ([L3) is explicit:

3 #2 390\
2 _ 9 v _ (29

A few words about the proof of Theorem [C2 The first point is that the operator
Mox3ll, (see (CZ), (CZJ)) is bounded from below by a positive constant:

1
Yu € Ay, / r3|ul* > —/ |u|?.
R2 47 R2

This is proven in Lemma EEd below. Actually, the spectrum of this operator is purely
continuous, and any Weyl sequence associated with the value 1/(4m) converges (up
to renormalization) to the function

(1.39) up(z1, 22) = exp (—ma3 + irz1x2)

which satisfies the equation Iy (ug) = ﬁuo. This gives the lower bound

(2
ez &,
and indicates that in order to be close to this lower bound, a test function should
be close to (L39). Thus, the second point is to construct a test function having the
same behaviour as ([L3) in 5, and a large extension in z;. This is done by using
the function

]. us us ;.
gt / 2 (Cmu ) oy )y,
R

which is equal to Iy(p(z1)do(z2)), where &y is the Dirac delta function and p any
real-valued function of one variable. This test function is then proved to be close
to 2Y/4e T3 p(x1), which allows to compute its energy, and gives the upper bound,
provided that p(t) = '/?p(e2/3t), where p is the minimizer of (37). Finally, in
order to prove the lower bound, we first extract bounds on the minimizer from the
energy, which allow to pass to the limit in the equation (after rescaling as in ([L3J)),
hence prove that the limit is the right-hand side of ([L38). This uses the fact that
the energy appearing in ([C37) is strictly convex, hence that any critical point is the
unique minimizer.

The paper is organized as follows: in section 2, we review some standard facts on
positive definite quadratic forms in a symplectic space. This allows us, in section 3, to
construct a symplectic mapping y, which yields a simplification of the quadratic form
q. In section 4, quantizing that symplectic mapping in a metaplectic transformation,
we find the expression of the LLL and manage to reach the reduced form of the

U1(5617372) =
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energy (Proposition 4.5). Section 5 is devoted to the proof of Theorem 1.1 and
section 6 to Theorem 1.2.

Open questions. We have no information on the the intermediate regime where, for
instance, £'/3 /K converges to some constant Rg/g (in that case, Ry ~ 723 Ry =~ Ry).
We expect that the extension in the x, direction depends on Ry and wonder whether
the condensate has a finite number of vortex lines. We have not determined the
limiting problem.

Acknowledgements. We would like to thank A.L.Fetter and J.Dalibard for very
useful comments on the physics of the problem. We also acknowledge support from
the French ministry grant ANR-BLAN-0238, VoLQuan and express our gratitude
to our colleagues participating to this ANR-project, in particular T.Jolicoeur and
S.Ouvry.

2. QUADRATIC HAMILTONIANS

We first review some standard facts on positive definite quadratic forms in a
symplectic space.

2.1. On positive definite quadratic forms on symplectic spaces. We consider
the phase space R} x R{, equipped with its canonical symplectic structure: the
symplectic form o is a bilinear alternate form on R?" given by

(2.1) o((@,8);(y.m) =& y—n-z=(0XY),

(2.2) with X = @) Y= <z) o= (_Oln Ion) |

where the form o is identified with the 2n x 2n matrix above given in n x n blocks.
The symplectic group Sp(n) (a subgroup of SI(2n,R)), is defined by the equation
on the 2n x 2n matrix Yy,

(2.3) X'ox =0, ie VX,Y €R™ (oxX,xY)=(cX,Y).
The following lemma is classical (see e.g. the chapter XXI in [T0], or [IH]).

Lemma 2.1. Let B € GL(n,R) and let A,C be n x n real symmetric matrices.
Then the matrix =, given by n X n blocks

(24)  Eape= (B TBIC N_ (L O (BT 0) (I -C
. =ABC =\ Ap-! pr—aB-'c) = \A T 0 B* 0 I

belongs to Sp(n). Any element of Sp(n) can be written as a product
EA1,31,015A27B2,C2'

N.B. The first statement is easy to verify directly and we shall not use the last statement,
which is nevertheless an interesting piece of information. For a symplectic mapping =, to
be of the form above is equivalent to the assumption that the mapping x — priZ(z @ 0)
is invertible from R™ to R™.

Given a quadratic form @ on R?*", identified with a symmetric 2n x 2n matrix,
we define its fundamental matriz F' by the identity

F=-0"'Q=0Q, sothatfor X,Y €eR™ (oY,FX)=(QY,X).
The following proposition is classical (see e.g. the theorem 21.5.3 in [I0]).
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Proposition 2.2. Let () be a positive definite quadratic form on the symplectic
R} x RE. One can find x € Sp(n) such that with

RQnBX:XY, Y:(yla--'aynanh"'?nn)?
(QX,X) = (QxY.XY) = Y (0 +uiyd), >0
1<j<n

The {xip;}1<j<n are the 2n eigenvalues of the fundamental matriz, related to the
2n eigenvectors {e; £+ ic; }1<j<n. The {€j, & 1<j<n make a symplectic basis of R*":

o(ej,er) =0k, olejer) =o(ej,ex) =0,
and the symplectic planes 11; = Re; ® Re; are orthogonal for Q.

N.B. A one-line-proof of these classical facts: on C?" equipped with the dot-product given
by @, diagonalize the sesquilinear Hermitian form io.

2.2. Generating functions. We define on R™ x R" the generating function S of
the symplectic mapping of the form Z4 p ¢ given in the lemma T by the identity

1
(2.5) S(w,n) = 5 ((Aw, ) + 2(Bx,n) + (Cn, m)).
We have
_ 0S B oS
(2.6) ZA,BC (8—n,n> = (x, 8_1’) )
—_—
cR” xR™ cR™ xR"

In fact, we see directly

EY 6D (uin)

Given a positive definite quadratic form @ on R?", identified with a symmetric
2n X 2n matrix, we know from the proposition that there exists xy € Sp(n) such

that
2

* O .
X'Qx = (’6 I ) p* = diag(u, ., piy)

Looking for x = =4 p.¢ given by a generating function S as above, we end-up (using
the notation ¢(X) = (QX, X) with X € R?") with the equation

¢(2,0:5) = |nd, SI* + [Inll*,  10yS = (1;0,S)1<j<n € R,

Rn7 xRR™
where || - || stands for the standard Euclidean norm on R™. This means
(2.7) g(x, Av + B') = [|n(Bz + Cn)||* + [Inl|*.

We want now to go back to the study of our quadratic form (CI2).
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2.3. Effective diagonalization.

Lemma 2.3. Let q be the quadratic form on R* given by (CIZ), where w, v, e are
nonnegative parameters such that w? + v? + &2 = 1. The eigenvalues of the funda-
mental matrix are ipy, £ips with

(2.8) 0<pi=14+w—a<pi=1+w’+a, o=Vrt+iw?
20262 4 ¢t
o) @=L re
Ha

In the isotropic case v = 0, we recover jiy, = 1 —w, o = 1 +w. When ¢ > 0, we have
0 < pu? < p3 and q is positive-definite. When € = 0, we have 1 = 0 < iy, and q is
positive semi-definite with rank 2 if v = 0 and with rank 3 if v > 0.

Proof. The matrix ) of ¢ is thus

1— 2 0 0 —w 0 w 1 0

B 0 141> w 0 | —w 0 0 1

(2.10) Q= 0 o 1 0 , and F'=0Q = 21 0 0 w
—w 0 0 1 0 21 —w 0

The characteristic polynomial p of F' is easily seen to be even and we calculate

p(\) = det(F— M) = M +2(1+wH N2+ (1—w?)? — vt = (W 1+w?)? — (v 4+-40?).

The four eigenvalues of F' are thus ii\/ 1 4+ w? +£Vv* 4 4w?, proving the first state-
ment of the lemma. Since (1 + w?)? — a? = (1 — w?)? — v* = &2(2% + £?), we get
w3 = e%(2v? + %) /u3. The statements on the cases v = 0, > 0 are now obvious.
When ¢ = 0 = v, we have w = 1, and rankq = 2 as it is obvious on ([LI7). When
e =0,v > 0, we consider the following minor determinant in F', cofactor of f3;

w 1 0
0 0 1|=(-D(-w’+v*+1)=-202+#0,
-2 -1 —w 0
so that rank () = rank F' = 3 in that case. O

N.B. We may note here that the condition w? + 2 < 1 is an iff condition on the real pa-
rameters v, w for the quadratic form ([CIZ) to be positive semi-definite. This is obvious on
the expression (LI7) in the isotropic case v = 0, and more generally, the (non-symplectic)
decomposition in independent linear forms

q= (&1 +wz2)? + (& —wr)? + 22(1 — 12 — W) + 23(1 + 12 — W?),

shows that ¢ has exactly one negative eigenvalue when w? + 1% > 1 > w? — /2, and exactly

2

two negative eigenvalues when w? — 2 > 1. As a result, when w? + v? > 1, the operator

q" is unbounded from below.

Using now the equations (1), (CIZ) and assuming that we may find a linear
symplectic transformation given by a generating function (ZI), we have to find
A, B, C like in the lemma Bl with n = 2, so that for all (z,7) € R? x R?

[Az + B*nl* + ||z ||* + v*(23 — 21) — 2w(z A (Az + B*n)) = [|u(Bx + Cn)|I* + [In]*,

with zAE = 21§ —19&1, u = diag(puy, p2). At this point, we see that the previous iden-
tity forces some relationships between the matrices A, B, C. However, the algebra
is somewhat complicated and assuming that B is diagonal, A, C' are (symmetrical)
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with zeroes on the diagonal lead to some simplifications and to the following results.
We introduce first some parameters:

2 -9 2 _ .2
(211) 01 = P 2(:/211+ 2 = @ 2::&1 Y since (a — 20?)? — v* = 4w? 4 40 — 40?0 = 4213 |
) ) 2 _ .2
(212) ﬁg = ot 2(;))/;2+ By = @ +2:))M2 Y since (o + 2w?)? — vt = 4w? + 4w + 40?0 = 40?13
2c
(213)  y=-2,
w
1 1 —2w? 4 1?
(2.14) A2 = i} e — o ‘2“ nay
p1+ Bifapa 1+ Sl e ey a
1 1 2w? + 12
(215) A= +%26 - = =2 = R
o+ Dipapn 14 SEBEL 14 Sty
and we have
2 2\2 4
v o+ v — 4w
(2.16) A%+7A§=:1+fz;, Angzz( 422 .

We define also

YA . A2+ 22
2 2A1 )\

Lemma 2.4. We define the 2 x 2 matrices

(A0 (0 dt _ 0 ,\ld,\g_Cd
=% ) o= W) A= (e )
12

The 4 x 4 matriz given with 2 X 2 blocks by

. (L 0\ (B 0\ /[L —C
X==A4B0=\ 4 |, o B)\o 1,

belongs to Sp(2) and

20(1 2 2
which gives cd = Oz( T /a) = atv .

2.1 d
(2.17) 4w 2w

A 0 0o -4

0 A2 —2
(2.18) X=1 00 Lodsed e 0|

)% - )\1€d 0 0 C)\l

Ao 0 0 2

0 C/\1 A 0

—1 _ d

(2.19) X = 0 —Lthed A 0

5+ Ased 0 0 A

Proof. The lemma 1] gives that y € Sp(2) and we have also

. (L C\(B 0 L 0
X =\o n)\o B)\-4a 1,

The remaining part of the proof depends on the formula giving =4 g ¢ in the lemma
P and a direct computation whose verification is left to the reader. O
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Lemma 2.5. Let x be the symplectic matriz given by I8) and Q be the matrix
given in ZI0). Then, with p; given by ), we have

(2.20) X" Qx = diag(pf, 3, 1, 1).

The (tedious) proof of that lemma is given in the appendix [[3]l
Using the expression of ™! in (1), defining

n Ao 0 9 2\ /gy
y2 0 C)\l 71 0 To
2.21 =
( ) Th O _% + )\1€d )\1 O fl ’
T2 —)% + Mocd 0 0 X &2

we get from the lemma the following result.

Lemma 2.6. For (z1,15,&1,&) € RY, (y1, 92,71, m2) € R given by EZ), we have
the following identity,

HiyT + psys + 0t +ns = pi(chizs + )\zd_1§2)2 + p3 (Aot + )\1d_1§1)2
+ (=N + Med)zs + M) + (AT + daed)ar + Aoo)?
=6+ 86+ 1 -2+ (1+v)a3 — 2w(1&e — 2261),

where the parameters c, Ay, d, A1 are defined above (note that all these parameters are
well-defined when (w,v) are both positive with w* + v* < 1).

We have achieved an explicit diagonalization of the quadratic form (CI2) and,
most importantly, that diagonalization is performed via a symplectic mapping. That
feature will be of particular importance in our next section. Expressing the param-
eters in terms of a,w, v, e (cf. section [[2), we obtain

2
q= (2_1/204_1/2(04 — 2w 4 )2 - 9782, 10712 (g - 202 4 )2 (o — VQ)m2>
42w — 2 172 (20262 4 )12

22 4 2 75
(2v2e? + )12 12 2 —1/2vo-3j2 —1,Q 207 =12 1 N2
e Te ) 9 arew v >

+ s (a’* +via™ /%) w™H( 97 £ 22 )T

&2

I (271/2071/2(

I ((1 Fw? 4 )Yl 20 72 (o 1 20 4+ 022,
2
+ (14w’ + a)1/2(1 + a_11/2)2_1/20z1/2(0z +2w? + 1/2)_1/23:2>

2
+ (271/2071/2(01 4202 + 1/2)1/252 _ 273/2&)710;1/2(0[ _ y2)(a 1202 + y2)1/2x1> ’

so that
(2.22)
ﬁ uizﬁ
o — 2w? 4 12 a—v? 2 o202 — 12 ) a + V2 2
q-( 20 )[él_( 2w )1’2:| +< 20013 )8 [£2+( 2w ):1:1]
14+ w?+ a+ 1?2 2 a + 2w? + V2 o — 12 2
22 )| [+ (e |-
e ala + 2w? 4 12 G+ ( 2w ) +\ 20 & ( 2w ) |
g 5

H3y3 2
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The equation (Z22)) encapsulates most of our previous work on the diagonalization
of ¢g. In the appendix [[32 we provide another way of checking the symplectic

relationships between the linear forms, y;, ;.

We have seen in Lemma that when ¢ = 0, > 0, the rank of ¢ is 3, whereas

its symplectic rank is 2. Indeed, ¢ = 0 and v > 0, we have

(2.23)

200 2w
14+ w?+a a + 2 2 a+ 2w+ v o —v? 2
2 —
“ <a(a + 2w? + V2)> [61 +( 2w )xQ] \( 2 ) [52 ( 2w )xl}
ugz:% G

3. QUANTIZATION

3.1. The Irving E. Segal formula. Let a be defined on Ry x R (say a tempered
distribution on R?"). Tts Weyl quantization is the operator, acting for instance on

ue SR,

(3.1) (au)(z) = / / e2in@—aeq (2 ; Y eyu(a')d'de.

In fact, the weak formula (a“u,v) = [p., a(z,§)H(u,v)(x, §)drdE makes sense for

a€ ' (R™), u,v e .(R") since the Wigner functlon H(u,v) defined by

H(u,v)(x, &) = /emm'gu(x + 5)17(:1: — %)d:c'

belongs to . (R*) for u,v € /(R") . Note also our definition of the Fourier

transform 4(£) = [ e 2™ Cy(z)dx (so that u(z) = [ e*™¢a(€)dE) and
w 1 Ou w 1
§iu = %8—% = Dju, zju=uzju, (1;§)" = é(x]D + Djx;).

Let x be a linear symplectic transformation x(y,n) = (z,£). The Segal formula (see
e.g. the theorem 18.5.9 in [I0]) asserts that there exists a unitary transformation M
of L?*(R™), uniquely determined apart from a constant factor of modulus one, which
is also an automorphism of .(R™) and .%/(R") such that, for all a € .'(R*"),

(3.2) (aox)” = M"a"M,
providing the following commutative diagrams

SRY) —C SR

LA(RY) —— L*(RY)

MT lM* and if ¢ € L(L*(R")) MT lM*

S (Ry) —— S(Ry) L2(R}) ——— L*(

(aox) Y7 (aox)®

Rn

Y

)
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3.2. The metaplectic group and the generating functions. For a given y, how
can we determine M 7 We shall not need here the rich algebraic structure of the
two-fold covering Mp(n) (the metaplectic group in which live the transformations
M) of the symplectic group Sp(n). The following lemma is classical (and also easy
to prove directly using the factorization of the lemma EIl) and provides a simple
expression for M when the transformation x has a generating function.

Lemma 3.1. Let x = Z4 ¢ be the symplectic mapping given by ). Then the
Segal formula [B2) holds with
(3.3) (Me)(a) = [ D) det B

where S is given by ().

3.3. Explicit expression for M.

Lemma 3.2. Let x be the symplectic transformation of R* given by &IX). Then
the Segal formula ([B2) holds with M given by

(34) (Mv)(x1,72) = (>\1)\2)_1/262”61((’\1)‘2)717‘3)““

. N -1 -1
% // 62md "1"2v(771,772)62m()‘1 T1M+A5 x2n2)d771d772a

(3.5)  (Mv)(z1,12) = (A Ag) V2e2md((Mado) ! —c)miaa (2imd ™ DiDayy)y (A=l A=),

Proof. We apply the lemmas Bl and 24, along with the fact that the mapping
Mp(n) > M +— x € Sp(n) is an homomorphism or more elementarily that (B2
implies for x; € Sp(n),

(@aoxg0x1)” = Mj(aoxa)"M; = M;Mja” MyM;.
The factorization of the lemma B2l implies that

(M’U)(SL’) _ eiﬂ(Am,m) / €2i7r(B:v n) ’L7I'<C?7 n) ( )d'fh
R2
which gives readily the formulas above. 0

Summing-up, we have proven the following result.

Theorem 3.3. Let q be the quadratic form on R* given by (CI). We define the
symplectic mapping x by ZIF) and the metaplectic mapping M by BH). We have

(3.6) (@0 x)(y,m) = 1y7 + pays + i + 3, (the 1 are given by EF)),
(3.7) (qox)” = M"q“M.
We can also explicitly quantize the formulas of the lemma EZH, to obtain®

(n3)® 13 ()"

>Sw

~

2

2 L
(3.8) ¢ = ((Alcd — Ay )as + A Dm) 4l ()\Qd_le n c)\gxl)

2
+ ((AQCd AN Yz + AeD ) 4l (Ald*1D$1 ¥ cAle) .

J/

-~ -~

(3w u3(y3)w

3Note that for a linear form L on R?", L¥ LY = (L2)v.
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4. THE FOCK-BARGMANN SPACE AND THE ANISOTROPIC LLL

4.1. Nonnegative quantization and entire functions.

Definition 4.1. For X,Y € R?>" we set
(4.1) (X,Y) = e s XYPeimlXy]

where [X,Y] = (0 X,Y) is the symplectic form ). For v € L*(R"), we define

Y

(4.2)  (Wo)(y,m) = (0, pymdra@ey,  with gy ,(x) = 2 4e ™" 2inlemin,
We define also

(4.3) Ao ={u € L*(R2") such that u = F(2)e 350 2= n4iy , f entire}

Proposition 4.2. The operator 11y with kernel T1(X,Y )is the orthogonal projec-
tion in L*(R*™) on Ay, which is a proper closed subspace of L*(R*"), canonically
isomorphic to L*(R™). We have

(4.4) Ag = ranW = L*(R*") N ker (0 + gz),

(4.5)  W*'W =1Idi2mny (reconstruction formula u(x) = / (Wu)(Y)ey (x)dY ),
R2n

(4.6) WW* =1l,, (W is an isomorphism from L*(R™) onto Ay).

Proof. These statements are classical (see e.g. [I2]) ; however, since we shall need
some extension of that proposition, it is useful to examine the proof. We note that
e "™ (Ww)(y,n) is the partial Fourier transform w.r.t. z of

R"” x R" 3 (z,y) — v(z)2" e "@v)*,

whose L?(R**)-norm is ||v||2(gn) so that W is isometric from L*(R™) into L*(R*"),
thus with a closed range. As a result, we have W*W = Idp2gn), WW™ is selfadjoint
and such that WW*WW* = WW*: WIWW* is indeed the orthogonal projection on
ran W (ran WW* C ran W and Wu = WW*Wu). The straightforward computation
of the kernel of WW* is left to the reader. Let us prove that Ag = ran W is indeed
defined by [3). For v € L*(R"), we have

(4.7) (Wv)(y,n):/ v(x)2n/4e*’f(l“*y)2e*%r(rf%)ndw

:/ v(x) 2"/ et dpe= 3 W) o= 3 nti)®
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and we see that Wov € L*(R*")Nker(9+2z). Conversely, if & € L*(R?")Nker(0+5z2),
we have ®(z, &) = e 2+ £(€ +4x) with ® € L2(R*") and f entire. This gives

WWo),) = [ [ e emnaarsim) oy pyayay
— 5 (E+2?) // e—%(n2—2£n+y2—2wy+2iﬁy—2i”z><I>(y,n)dydn
— e (&% 42?) / / n 2 4y2 -2y (E+iz)— 2"(5+i$))®(y,?7)dyd77

— e_%|2|2 // 6_ﬂ|C|2eﬂ§Zf(C)dydn (C =n-+ Wy, 2= f + ’LZL‘)

=5 [0 T1 sotge (e

1< i<n
us 2 8 1 2 ~
— €7§|Z| _ ’677.‘-'(' eﬂ'CZ (P20 2n

1<j<n

= e 5 f(2),

since f is entire. This implies WIW*® = & and ® € ranW. The proof of the
proposition is complete. 0

Proposition 4.3. Defining
(4.8) H = ker(d + gz) n.7 (R™),

the operator W given by ([E2) can be extended as a continuous mapping from %' (R™)
onto H  (the L*(R™) dot-product is replaced by a bracket of (anti)duality). The
operator Il defined by its kernel I1 given by [E]) defines a continuous mapping from
S (R*™) into itself and can be extended as a continuous mapping from .7 (R*™) onto

J . It verifies
(4.9) M2 =10, T, =Idy.

Proof. As above we use that e (Wwv)(y,n) is the partial Fourier transform w.r.t.
x of the tempered distribution on R2"

v(x)2M e @),

Since e™" are in the space @);(R?") of multipliers of .%(IR?"), that transformation
is continuous and injective from ./(R") into .#/(R?"). Replacing in (E7) the inte-
grals by brackets of duality, we see that W (.'(R")) C . Conversely, if & € 7,
the same calculations as above give ([£9) and (IH). O
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For a Hamiltonian @ defined on R?", for instance a bounded function on R?", we

define aWVik = W*qW :
L2 (RQn) a L2 (R2n)

(multiplication by a)

w lW*
L2(R") — L2(R")

aWick

we note that a(z,£&) > 0 = aVi = W*aWW > 0, as an operator. There are many
useful applications of the Wick quantization due to that non-negativity property, but
for our purpose here, it will be more important to relate explicitely that quantization
to the usual Weyl quantization (as given by ([Bl)) for quadratic forms.

Lemma 4.4. Let ¢(X) = (QX, X) be a quadratic form on R* (Q is a 2n X 2n
symmetric matriz). Then we have

- 1
(4.10) gk = ¢ + — trace Q.
47

Let L(y,n) = 7-y—t-n be a real linear form on R**; then, for all ® € Ay, we have

2 2 |7 + |t 2
(4.11) L{y, n)"|®(y, n)|"dydn = = ———[|®[|z2en)-
Proof. A straightforward computation shows that
(4.12) Vi = (¢« )", where I'(X) = 2" 2P (X e R™™).

By Taylor’s formula, we have (¢ I')(X) = ¢(X) + [zon 2me~ 2"V (QY, Y)dY, we can
use the formula [, 21/212¢=2™"dt = L to get the first result. For ® € Ao, we have
¢ = Wu with u € L*(R™) and thus

1
A

IL®||72m2ny = (LW, W) paggeny = (W*L*Wu, u) r2@n)

Wick w trace(L?)
= <(L2) u’u>L2(Rn) = <(L2) u,u>L2(Rn) + THUH%Q(Rn)’

and since LYLY = (L?)* for a linear form, we get since L is real-valued,

w 7] + |t
||L(I>||%2(R2") =|IL UH%Q(R”) + TH(I)H%Q(RQ")?

which implies (EE1T]). O

N.B. The inequality (IT]) looks like an uncertainty principle related to the localization
in R?" for the functions of Ag. Moreover the equality [@IW) provides a simple way to
saturate approximately the inequality ([II); for instance if L(y,n) = y1, we consider the
sequence @. = W, with u.(z) = p(z1/e)e20(@"),  |ellpam) = Il 2oty = 1, and
we get, provided zp(z) € L*(R),

1

_ 1
J[ o Pavan = [ Soter/oPe o+ - = 06 + -
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4.2. The anisotropic LLL. Going back to the Gross-Pitaevskii energy (ILTTl), with
q given by (LT3), we see, using the theorem and ([B3) that, with v = Mo,

2Ecp(u) = (q"u, u) 2(m2) +g/ u|*dx
= <M*quv,v>L2(R2) +g/ |(MU)($)|4dl‘

= ((Dj, + uiyi + Dy, + 13y3)0,v) p2(2) + g/ |(Mv)()[*dz
= (((Med — d\; M)za + Alel)zu + ui(Aad ™' Dy, + c)\gxl)Qu, u)
+ ((Naed — dATY 21 + Ao Day) u, ) + (2 (Md ™ Dy + chias) *u, )

+g/\u\4da:.

The question at hand is the determination of infj,|,,=1 Egp(u), which is equal to

inf ), ,=1 Eap(Mv). Since p; = 0 at ¢ = 0 (see ([E9)) and pp € [1,4] (see (),

it is natural to modify our minimization problem, and in the (y,7n) coordinates, to

restrict our attention to the Lowest Landau Level, i.e. the groundspace of D;Q +p3y3,

that is the subspace of L?(IR?)
(413)  LLL, = {vi(y) ® 24y e ™8} pamy = ker(Dy, — ipays) N L2(R?).

If we want to stay in the physical coordinates (x, ) we reach the following definition,
obtained by using Segal’s formula ([B2) with M, x given in the lemma Bl so that

LLL, = M(LLL,).

Proposition 4.5. Let q be the quadratic form on R* given by (CIJ). We define the
LLL as

(4.14) LLL = (ker £) N L*(R?), with
(415) L= ()\QCd - d)\fl)l’l + )\QD:BQ — Z’/,LQ)\ldilel — Z'IMQC)\lSL’Q = T];U — ZIMQ’y;U
The LLL is the subspace of L*(R?) of functions of type

2 2 2
(4.16)  F(z1 + ifomw2) exp <—Z77; {x%(l - QV_a) + (Ba2)?(1 + ;—a)]> exp (—2‘7741/@7951%2),

where F' is entire on C, and the parameters v, B2, v, a are given in the section [7.3
The real part of the phase of the Gaussian function multiplying F(:z:l + iﬁg@) is a
negative definite quadratic form when (w,v) # (0,0).

Proof. We have

H%ZjQ 72

e N 7~

’L,C = (MQ)\ld_lel + ,lLQC)\llQ) +Z ()\QD$2 — (d)\l_l — )\QCd)ZL'1>

1
= % <M2>\1d_161 + i)\g@g + 2’L.7T,LLQC>\1I‘2 + 27T(d>\1_1 — )\QCd)l‘l)
1

1 1
= E (aug)\ldilal + 25)\282 + i7T,LLQC)\1.T2 + W(d)\fl — )\2Cd).§lf1> .
We set

(417) tl = [L2_1>\1_1dl‘1, tQ = )\2_11‘2,
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and we get for z = t1 + ity,

g + i?TMQC)\l)\QtQ + W(d)\l_l — )\QCd)MQAld_ltl

9 _
= + W,LLQc)\l)\g —|— T(dA\" = Xoed)pphyd ™ : _g -
0 0
= EP + z7r'u— + 27?%(1 — 2\ \0) = 9z + zwg — zw%zﬂa !
= 67”%2226””42152 (2)? ge”%zzeﬂr ViZQ @7,
0z

As a consequence, the LLL is the subspace of L?(C) of functions

1/2 —
f(z)e*”%%ze7r 1.2(0”  with f holomorphic.

We note that the real part of the exponent is

2
_TH2 9 2 2 2 7W2[2
t—l—t——t—t t

200 — V2 200 + 12
)+ (5]

and that
20 — 12 > 0 <= (w,v) # (0,0).
Leaving the t-coordinates for the original z-coordinates, we get with f entire,

. L ™ 200 — 12 200 + 12 V2
o Ay o+ i7g ) exp (-T2 [0 + )] ) exp (<12 ),

2 2c 2c0
ie.

C1y—1 N1 CTH2T 9 9 200 — 2 5 20 + 12 . Tpovd
Flay Ay i x2>exp< 2 ot ) + ] ) e (i s
and since

ped ™A = a2y TIATIATIAT = 10297 = 10297 Ba(200) T = o,

27 e d APy ? = 27 ey AT NGy Y = 27 ey AT 20y T By = ﬁ,

2
27 o)y =27 ;BQ 77@,
2
muovid  mAd mty
20[)\1)\2”2 N 20()\1)\2 N 202 '

we obtain

Fug ANy + i padid A a0])
=03

2
that is, with F" entire on C,

T 200 — 1/? 200 + /2 C Tuod
X exp <—ﬁ [az%dQ( )+ x%(m)}> exp (—zLxle),
2

202 2 2001 Az i

TV

2 2 2
(118) Flar+ i) exp (27 o200 = 50 4 (a0 + )] exp (17 ara).

43 [ 2( 2a

The proof of the proposition is complete.

1562)’

0
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Remark 4.6. We note that in the isotropic case v = 0, we have 3y = 1,7 =
4, recovering (ICIH) (f(xy + izo)e ™#1+%3)) for w = 1. On the other hand, the
reader may have noticed that it seems difficult to guess the above definition without
going through the explicit computations on the diagonalization of ¢ of the previous
sections.

4.3. The energy in the anisotropic LLL.

Lemma 4.7. The LLL is defined by the proposition [{.] and the Gross-Pitaevskii
energy by ((LI). For w € LLL, we have

1 2a 2(2v% + €
(4.19) Egp(u) = —/ (—621‘% + Q ) \u(z1, 29)|*dwydxy

2 o+ 2w? + V2 o — v2 4 2w? 2
+ g |U(ZL‘1, $2)|4dl‘1dl‘2 + & —_ — (ﬁlﬁg + )
2 R2 41 5162

Proof. In the LLL, one can simplify the energy. We define
A2 = M(T]Q — ’L.[Lgyg)wM* = M2 (Ald_lel + C)\ll‘g) +Z ()\Qng — (d)\l_l — )\QCd)l‘l) s
Al = M(’Ih — ’iuly1>wM* = U1 ()\QdileQ + C)\Qﬂfl) +1 ((Alcd — d)\gl)l’g + )\1D$1) s

which satisfy the canonical commutation relations: [Aj, Aﬂ = p;/m, while all other
commutators vanish. We have proven that

+
¢ = ATA + AsA + P2 (Re Ap)? 4 (ImA))? + (Re Ay)? + (Im Ay)?
and the LLL is defined by the equation Asu = 0. On the other hand, we have
d,ufl ReA; —ImA, = dAflxl, dus 'Re Ay —Im A, = d)\glxg,

and thus for uw € LLL, since Asu = 0, using the commutation relations of the A,’s,
one gets

AN\ 20] = d*u(Re Ay)? + ((Ag — A3)/20)* + 2dp; (Re Ay) (Ag — A3)/2i

_ M2
= i (Re Ay’ + 2,

and similarly,

d*Xy "y = A1y (A2 + A3)/2)" + (Im Ay )

, @
= (ImA )
(Im A;)” + 17113
As a result, we get on the LLL,
2y-2, 2 2y-2,.2 2 2 &’ Y%
piAL T 4+ d7A s = (Re Ap)” + (Im Ay)” + P + A
and q¥ = p2\; 202 + d2)\; 20k — Jf; — Zfrﬁ + £2, so that

QEva(u) = %/%2 (Mlﬁlx% + %I’%) ‘u<l’1,l’2)|2d$1dl’2

+g |u(x1,x2)|4dx1dx2
2

+5—2 - (ﬁlﬁQ +
™

75)
b2
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for any w € LLL, that is, satisfying ([ZI6]). We note that

2 20(20°? 2
vty = a 2, (coefficient of z%) I U2+ e )’
2 o+ 2w? + V2 201 o — %+ 22

Definition 4.8. Foru € LLL (see the proposition [[3), we define

1
(4.20) Erpp(u) = 5/ (e*x] + kizy)|u(zy, zo)|*daday + %/ |u(1, 2)|*daydas,
R2 R2

(coefficient of 2) .

with
o+ 202 + 12) (202 + £2 a + 2w?% + 12
R N = N R

We note that, from (EIJ),

PR 2?; n y25LLL(U) + Z—; - % (ﬁlﬁz + ﬁ) .

Remark 4.9. Since o? = v* + 4w?, we see that

(423) (21/2 + 52)(1 + 2—1/2) _ /{2 _ (a + 2?2 —+ 1/2)(2]/2 —+ 52) . 2]/2 N 62’
o — 12 + 2w? o — 12 + 2w?

and k2 =2 <= v = 0.

Remark 4.10. We stay away from the case where w = 0 and shall always assume
w > 0. In the case w = 0, the quadratic part of the energy is diagonal and the LLL
is,
vy <x1> ® 21/4<2 . 82)1/8677r(2752)1/2m%’

and we get a 1D problem on the function v;.

4.4. The (final) reduction to a simpler lowest Landau level. Given the fact
that in (EIH), we can write F(21 + if23) as a holomorphic function times e~
with § = yrv?/(83.cr), and that the energy €117 depends only on the modulus of u
and not on its phase, it is equivalent to minimize £;7; on the LLL or on the space

f(xl + iﬁgxg) exp (—Z% [:pf + (ﬁgxg)Z] ), with f entire.
2

A rescaling in x; and x, yields the space of the introduction with

(424) U(IL‘l,{L‘Q) = \/gv(ylayQ)v = xl’ / 2lﬁ27 Yo = T2 \l 77&7

and, with Ay given by (3), the mapping LLL > u — v € Aq is bijective and
isometric. With k1,91 given in the definition R, 5y in [ZIZ), v in ZI3), we
introduce

K1 917
(4.25) K= % go = 15,
and
420)  Bw = [ (@0 Raloln ) Pdude + Blole,
Using the transformation [EZ24]), we have
(4.27) Erpr(u) = Q—BZE(U)a

v
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so that, via the definition L8, we are indeed reduced to the minimization of ([LC2T])
in the space Ay (given in (CZZ)) under the constraint |ju(| 2@y = 1. We note also
that the quantities

2c0 252
a+ 2w+ y
2 2 | 2

¥ o+ 2w+ v

429) and §,, L, LT TV
429) and o, T, 2

are bounded and away from zero as long as w stays away from zero, a condition that
we shall always assume, say 0 < wp < w < 1.

(4.28) ,  (factors of £prr(u) in @EZY) and E(v) in EZD)),

(factors of k in ([EZH), of ¢1 in [EZH)), of g in EZI) ,

5. WEAK ANISOTROPY

This section is devoted to the proof of Theorem [LIl We assume ¢ < k < el/3,
The isotropic case is recovered by assuming x = . We first give some approximation
results in subsection .1l and prove the theorem in subsection

We recall that the space Ag, the operator Ily, the energy E and the minimization

problem [(e, k) are defined by ([C22), (CZ3J), (CZI) and (C24), respectively. An

important test function will be (L2]), namely

(5.1) U (21, 0) = 6%('227"2‘2)@( TIZ,T), 2=x+1iT,.
for 7 =71+ i1 = e

5.1. Approximation results.

Lemma 5.1. Let u(z) = f(z1 +ixy)e” 21 € L(R?), with f holomorphic. Assume
0< B <1 andletpec C%(R?) be such that supp(p) C Bg the Euclidean ball of
radius S > 0 and of center 0. Define

Then, for any r > 1, there ewists a constant Cg, > 0 depending only on S and r
such that, setting R = min(Ry, Ry), we have,

(R Ro)
RSB
Proof. We first prove the lemma in the case § = 0. For this purpose, we write

M| < [ e 5 u)loto)ldy

S =
=

(5.3) 1Mo (pu) = pull 1wy < Csprllul| oo re)l[pllcosge)

Young’s inequality implies, for any » > 1 and any p,q > 1 such that 1/p+ 1/q =
1+1/r,

_ |2 PP
Mool < |le 5| lupllze < lullex [|e 3] ol
Fixing ¢ = r, hence p = 1, we find
1_1
(5.4) ITo(pu)ll < 2l ol = 2llullze (BiRo)** ol

This proves (E3) for = 0.
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Next, we assume 3 = 1. We use a Taylor expansion of p(y) = p(x +y — x) around

Y1 — I Y2 — T2 Y1 — X1 Y2 — T2
— +1 24t : , dt.
\/ Rl RQ ( Rl RQ RQ ) ( Rl RQ )
We then notice that, although u ¢ Ag a priori, it belongs to J# (see the proposition
) and we have Tly(u) = u since u € L™ and u(z) = f(x1 + iz) exp(—7|x|*/2)
with f holomorphic. Hence, we have

o) = = [ € F
BRl Ro

S+1

yr-T Ta LYo o Y1 — T1 Y2 — T
vV Rl Ry / ( R1 R2 Rs ) ( Ry Ry ) Y
— ,0(1‘) / u(y)g‘%\x—y\2+iﬂ($2y1—y2$1)dy
(BEh™)”

Ri,R2
where the set By s

(5.5) Bg11” = {(y1,42) = (Ritr, Rats), t € By},
We thus have, with R = min(R;, Rs),

w12 1 |y—ZL‘|
B > lz—yl
5.9 Moo = pul < ol [, F Pl o=t

S+1
5 le—yl?
|/ iy y)le > dy.

S+1

We bound the first term of the right-hand side of (Bf) using Young’s inequality,
while for the second term, we have, Yz € supp(p) C BE"™

)

T g2 mp2 a2

/<BRI,RQ)C|“<9>|6 ey < e T [ Ty
S+1

™ p2 C

= dfuflpee™ i < lulli=F,

where C' is a universal constant. Hence, we have

|BR1 JR211/r

1 _ T 2
IWo(pw) = pulle < = IVl o [ lyle 3 S

C
+ EHuHLw 1ol .-
1 11 ,
= 5 VPl V2l (Ri o) 772 Bsia |
C 11 .
+EHUHL°°HPHL°°(3132)T 2| Bg|'/".

This gives (BE3) for § = 1. We then conclude by a real interpolation argument
between C° and C%!. 0
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A comment is in order here: we have chosen to state Lemma BTl with a general

function p. However, since our aim is to apply the above result with the special case
plz) = (1— |x|2)i/2, it is also possible to use explicitly this value of p in order to
give a simpler proof of the above result. The method would then be to prove the
estimate for r = 400 first, then for » = 1, and then use an interpolation argument

between L' and L*°. For instance, the proof of the » = 400 case would go as follows:
— T z—y|2+in(zoy1 —yoz1
o (pu) () — plz)u(z)] = /2 e sl ) (p(yyu(y) — p(a)uly)) dy
R
LT g—yl2
lullom [ e E0 ota) = ple)] dy

< MNullyeo | e 3le—vl Md
<l [ gy

ullee [ _zpyp
R LY

The proof of the case r = 1 is slightly more involved, but is based on the same idea.
We now prove

IN

Lemma 5.2. With the same hypotheses as in Lemma [2, we have, for any s > 1,

1/2 1+ R;S°
60 ([ M) - pul) < Callllmgen Illonscen i
R2
and
1/2 1+ R3S
(5.8) (/2 xgs [Tl (pu) — pu|2) < CS,SHUHLOO(R2)”pHCO,B(R2)( Rﬁ2 )’
R

where Cg s depends only on S and s.

Proof. Here again, we first deal with the case g = 0. For this purpose, we write:

(5.9) |z1]*|Ho(pu)| < 257! / |21 — w1220 u(y) |p(y) dy
RQ

s5— s —Zlz—y|?
w2 [ e B )l dy,
R

where we have used the inequality (a+b)* < 2571(a*+b%), valid for any a,b > 0,s > 1.
The first line of (L9) is dealt with exactly as in the proof of Lemma B.1], leading to
(B4) with r» = 2, which reads here

(5.10)

s —Zlz—y|?
/ 21— ilfe TR u(y)l () dy
]RQ

< Julls |lafe%"

oz
L2

< Csllullo<[lpll 2,
where Cy depends only on s. The second line of (B) is treated in the same way,

but p(y) is replaced by |y1|*p(y), that is, p(y) is replaced by Rj|y:1]°p(y). Hence, we
have

51| [ e B

< 2R7||ullzes i Ppll - -
L2
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Collecting (B9), (BI0) and (E110), we find
1 " To(pu) 2 < Co(1 + BES*)|lull o[l co] Bs| 2.

This proves (1) for 8 = 0.
Next, we consider the case § = 1. Here again, we use a Taylor expansion to obtain
(Ed). This implies

s— || p” oo —T|z—yl|?
fral* Mo(m) — puf < 2 0 [ gy )
Bgii?

1
_ _rl5d
mw {L‘||y1 l‘1| Y
s—1 ||Vp||L°° —Z|z—yl?
R BR1R26 |u ()I\/_|y—x||y1| dy

r— 2
Han e \/ o )l By

S’+1

where Bg}rf ? is defined by (BH). We use Young’s inequality again, finding

RiR 1/2
M HUHLoo
Lt RlRQ

2 1/2
[ iy )l
Lt Bgi’lR2 R1R2

+plullze 2Pl 2

Vol =
B e A e

+231HVZJ7%HLOO H|y|€f%|y\2

where C' is a universal constant. Hence,

s I s gs
| [To(pu) = pulll 2 < Cs0™% (14 RIS [lufl v
This gives (&) in the case § = 1. Here again, we conclude with a real interpolation
argument. The proof of (E8) follows the same lines. O

5.2. Energy bounds.

Proposition 5.3. Let 7 € C\ R, let p € COY2(R?) be such that supp(p) C K for
some compact set K, and [ |p|* = 1. Consider u, as defined by [(L28), and define

(5.12) v = [|Mo(pur) || 2(gz) o (pur),

where p is given by

(513)  ple) = —— oo o (AT ()
. P N vV Rlep le RQ ' L med ’ 2 TR '
Then we have, with E(u) defined by (CZI)

610) B0 =225 ([ Sl + ) +0 (r (—)/> ,

for (g,ke1/3) — (0,0), where (1) is given by ().

N.B. The L* function pu, does not belong to Ay since it is compactly supported
and not identically 0; as a result, ||IIy(pu,)||zz # 0 and v makes sense.
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Proof. First note that R = min(R;, Ry) = R», and that Lemma Bl with r = 2
implies

(5.15) o (o) |22 — || pusr||z2] < CR™Y2 = C <%3>1/8.
We then apply Lemma B2 for s = 1, 8 = 1/2, finding
/Rz 22 Ho(pur) - / Bl < Clartlo(pun) e + oapur] ) s
< ¢ (depln+ o) L

We also compute

| o) lus ()P de < Rl [ otlpta)Pde < CRE

Hence, we get

2 ) 1+ R2 3\ /8
516) — 1 o(pus)|” — 2o |u, | < O L<Over | — ) .
616) G| [ Mo = [ atloPluf| < csigt < over (
A similar argument allows to show that

2 1+ Rj

< CK?

3\ 1/8
2 2 21 12 2 K

1L B - . <C — .
/RQ%I opu-)| /Rgmm ] S < f()

Turning to the last term of the energy, we apply Lemma Bl again, with r =4, 5 =
1/2, finding

/ Ty ()| — / s |
R2 R2

In addition, we have

[ ol <l [ 1ol = e (RaF) ™ [ ot
R2 R2 R

Hence, we obtain

(5.17) %

VAN

2 (Mo (pur )[4 + lpurl74) Mo (prr) — puucl|

< Cllpurllps (RiRo) ARV,

3\ 1/8
(5.18) M) = [ puelt| < € (o)™ B2 < O (%) |
R2 R2

Combining (&1d), (ET0) and (2I8), we have
[ 3\ /8

Hence, with the help of (E1H), we get

5= £ () :1 "o <<_) />
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Finally, we estimate the terms of E(pu,/||pu,||z2): using real interpolation between
C° and C%!, we obtain

(5.19) lpu-ll7> = /2 [p(2)*ur Ry, Rows)|*da
R

:][ 2 40 (#) :][ 2 40 ((%3)1/8> .

|UT|2+O ( ) ZL‘l|p
13

eo())]
1/8
62§ [ loltult = wito (S / bl
4 2R1R2 ’ 8

Thus, collecting (BE19), (E20), (EZ1) and (&2Z2),
2 2
Bw = (S8 [ @l 58 [ dpopa
2 R2 2 R2

L fluelt /RQW 1+o<<’§)1/8>]

" (a2

2g0ek 1 (T
= T (L3 @+ ad) P + =
90 (/R ( 2+ 2) |p( )|2+ ( )| |4)

Moreover, we have

2
(5.20)%/RQx%|p|2|uT|2 = —R2 )|“dz,

)7
K2 )
G2 [ ol = S8 o)Pda,

_[2g0er (/R % (27 + 23) Ip(x)|* + %(T)W)

O

Proof of Theorem [Ll: We first prove the lower bound in ([[C33): this is done by
noticing that
J(eak) < I(e.r),

where
J(g, k) = inf {E(u), ue L? (R (1+ |z[*)dz) N LY(R?), u|? = 1} _
]R2

In addition, the minimizer of J(e, k) may be explicitly computed (up to the multi-
plication by a complex function of modulus one):

2 x? x2 1/2
5.23 = " 2
( ) u(aj) TR Rs ( R% R%) ’
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with Ry, Ry defined by (I3)). Inserting (B23)) in the energy, one finds the lower
bound of ([[33)). In addition, the inverted parabola ([22Z3) is compactly supported,
so it cannot be in Ag. Hence, the inequality is strict.

In order to prove the upper bound, we apply Proposition B3, with

) = -—3—_<1_ o )Ui
WA\ VA,

and 7 = j. This corresponds to minimizing the leading order term of (&2I4]) with
respect to 7 and p, with the constraint [ |p|* = 1. O

6. STRONG ANISOTROPY

We give in this Section the proof of Theorem [[21 We deal here with the strongly
asymmetric case that is, ((C34), which we recall here:
(6.1) K> ell?
We first prove an upper bound for the energy in Subsection Bl then a lower bound
in Subsection B2, and conlude the proof in Subsection
6.1. Upper bound for the energy.

Lemma 6.1. Assume that p € L*(R). Then the function

1 —Ix —Z((z1— —2iy1x
(6.2) u(xl’xQ) = W@ 2 %/Re 2(( 1 —y1)2—2iy 2>p(y1)dy1,
satisfies u € Ag.

Proof. We first write
T 1 x .
u(xl,xg)ef(x%ﬂ%) _ W / 675(y%f2(m1+lm)y1)p(yl)dyl’
R

which is a holomorphic function of xy + ix,. In addition, we have

<x1)7

1
u(wy, 22)] < e |px e 3

— 91/4
Hence, using Young’s inequality, we get

1 _m.2
lull ) < srllelezm ||l | =20l age)

L(R)
hence u € L*(R?). O

Lemma 6.2. Let p € C*(R) have compact support with supp(p) C (=T,T), and
consider the function

(63) p@wzj%p(%).

Then, for any r > 1, there exists a constant C,. depending only on r such that the
function u defined by [&2) satisfies, for R > 1,

(64) Hu(xh x2) _ 21/4p(x1)efﬂmg+i7rm1mz _ i21/4x2p/<x,1)efwx%Jriﬂ—g;le

L7 (R?)

< C Tl/r ||p/l||L°O(R)
= M R5/2-1/r
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Proof. We use a Taylor expansion of p (

65 0 (4)

v z1 1
R) around %%, that is,

() ()

1 2 1 T t(yl - l‘l)
— — 1—t)p" | =+ 22— "2) dt.
+R2<x1 Y1) /0< )p (R+ Ia
In addition we have

1 - 1 1 -
WeQﬂ/Re 2 ((w1—)2- szlxz)\/_ <x1>dy1 _ ﬁp (%) 21/4677T1'%+Z7F:B1:B2’

T

Ri/Qp (R) (y1 — 1)dys

X1 2
21/4.1’2]7/ (E) e 7r12+z7r11:v2.

R

~ R32
Setting

(6.6) wv(xy,z2) = u(xy, 29) — 21/4p(:1€1)6_7”65“7”3””2 — i21/4x2p'(x1)6_”3””””2,

we infer

o2 < st / / vie PR — o) (5 + %) | dtay
Ip"lle 523

S 272 y26_%y%(1 — t)]_ —TR,TR (IL‘l —+ tyl)dtdyl
21/4R5/2 /R/O 1 ( )

Hence, using Jensen’s inequality, we see that there is a constant C,. depending only
on r such that

[v(21, 29)[" < CrHRJl/L;O e xQ// yie 2yl(l—t)l( TrTR)(T1 + ty1)dtdy,,

whence

r p ©© —r z2
||’U||LT S ||R5|7|1512 /// 2’y e 2y1(1 — t)/ ]—(—TR,TR)(:L‘l +ty1)d$1dtd{['2d’y1

el orpy / / / iy B (1~ didasdy,
RJR

/”p HL°°
Cr R57/2 TR’

which implies (64). O

Lemma 6.3. Under the same assumptions as LemmalGA, let u be defined by (G2).
Then, there exists a constant Cr > 0 depending only on T such that u satisfies

(6.7) /R K

u(xl, 1‘2) . 21/4p(x1)6—7m:§+i7m:1a:2 o ,L~21/4l,2p1(x1)e—wx§+i7ra:1x2 2 du

||P”||%oo(R)

S CT R2 )
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and
. . 2
(68) / x% ‘U(l‘l, {L‘Q) . 21/4p(l,1)6—7m%+m$1$2 _ ,L~21/4l,2p1(x1)e—mcg-i-zm:lxg dr
R2

1P |7 =)
R*
Proof. Here again, we use the Taylor expansion (EX). Hence, v being defined by

(Ed), we have

// 1
mwmmﬂS-Mkﬁmfﬁ//ﬁfﬁﬂ4mTMMMwaM
RJO

<Cr

21/4 R5/2

[V T L
= SuapseC ” ’ yre 211 —t)|z1 + tyr|L—rrrr) (21 + tys)dtdy,

+2||1€4|]|3L572€gm2// ly1 e 2ylt(l—t)l( rrrR) (1 + tyr)dtdy, .

Hence, using Jensen’s inequality and arguing as in the proof of Lemma 2, we have

/!
|210]| 2y < c”%lb";“ ((RT)‘W + \/RT) ,

where C'is a universal constant. This implies (E7). A similar computation gives

[ =
”x2’U”L2(R2 <C R5/2 RT,

which proves (6]). O

6.2. Lower bound for the energy. We first recall an important result by Carlen
[7 about wave functions in Ag (defined by (C22)):

Lemma 6.4 (E. A. Carlen, [7]). For any u € Ay, Vu € L?, and we have

(©:9) [ vl == [
R2 R2

Remark 6.5. The result of Carlen is actually much more general than the one we
cite here, but the special case (£3) is the only thing we need.

Lemma B4 implies the following decomposition of the energy in Ag:

Lemma 6.6. Let u € Ay be such that ||ul|2 = 1. Then, we have

K2 K2 1 9
E = —— 4+ (= ) 2lul?
(u) %+2QﬂAJmnﬁ@%m)
K ), € 90
6.10 — 0 — 2| | —/ 4
(6.10) o [of+ 5 [ P+ 2 [

Proof. We write

9o
611)  B(u)=- 8W+—+—/ wBluf? + /]R A+ %2 [l

Hence, applying (69), we find (GI0). O
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Note that the first line is easily seen to be bounded from below by the first
eigenvalue of the corresponding harmonic oscillator, namely x%/(47). Hence, (GI0)
readily implies

2

=

(6.12) E(u) >

0
=

This explains why we chose the constant 8—2 in the decomposition (EI1): it is the
. . . T .
constant which gives the highest lower bound in (G12).

6.3. Proof of Theorem
Step 1: upper bound for the energy. We pick a real-valued function p such that
p € C*(R),supp(p) C (~T.T), /p2 =1,
R

and define u by (£2), where p is defined by (E£3), with

(6.13) R=¢"%3,

Hence, setting v = mu, we know by Lemma that v is a test function for
I(e, k). Hence,

(6.14) I(e,k) < E(v).

Next, we set
— 24 . 2
vy 21/4p<x )6 Tx5HITT T2 Z21/4.§L’2pl<.1’1)€ Trs+HiTr T

and point out that, applying Lemma B2 with r = 2,

[ull72 = |Jor]| 72 + O (*?) =1 +21/2/R|p’(x1)|2/Rx2 e 2 dpy 4+ O (£9/7)

= 1+C€4/3/p’2+0(84/3),
R

where we have used that the two terms defining v; are orthogonal to each other.
Hence,

)

ul|r2 = 1+ O (%),

where the term O (£%/%) depends only on ||p'||z2, ||p"||1~ and T. According to (GIZ)
and the definition of v, we thus have

(6.15) I(e,5) < B(u) [1+ 0 ()],

where the term O (54/ 3) is independent of k. We now compute the energy of wu:
applying Lemma B3, we have

/ﬁW—/ﬁwQ
R2 R2

Moreover, we have, since p is real-valued,

/ 23 |v| dx—/xlp(x1)2dx1+—/:p1p (z1)*dzy =&~ 4/3/ p(t)*dt +0O(1).
R? R

R

< O3 (||lwyul| g2 + |Jz1vn| 12) < Ce¥? (2| ||z + Ce¥P).

Hence, we have

(6.16) /RQ:cf|u|2:5 4/3/ p()*dt + O (1).
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The same kind of argument allows us to prove that

(6.17) / r3|ul? = / 230 + O (e7%) = L +0 (54/3) :
R2 R2 4

™

Next, we apply Lemma with r = 4:

[t [ et
R2 R2

Moreover, we have ||ul[zs < ||v1]|zs + Ce?/?, hence

[t [ et
R2 R2
We also have

/ o[t = / 2/7(371)46747@ +4/7(371)2/)I(371)2x§€74m% +25L’£21/)/(1’1)4€74m%
R2 R?

1 3
_ .2/3 4, 21 D20/ (02 dt 4 £10/3 //4.
0 [ vt [ oo eraee o [

Hence, we obtain
(6.18) jul* = £2/3 / p(t)*dt + O (7).
R? R
Collecting (E16), (E17) and (EIX), we thus have
E(u) = s + 0 (k%Y3) + &%/ / 1t2p(t)20lt + @/
8T R 2 2 Jr

Recalling (613), this implies

< 2flu = vil|zs (lullze + lollza) < Ce¥2 (Jullge + llullze) -

< o 7a.

p(t)4dt) +0 (£7).

I(e,r)— £ 1
%/38” < —/t2p(t)2dt+@/p(t)4dt+0(n252/3) +0 (%)
€ 2 Jr 2 Jr

As a conclusion, we have

, I(e, k) — ””—; 1 90
lim sup Tg < §/t2p(t)2dt+ g/p(t)‘ldt,
€ R R

for any real-valued p € C*(R) having compact support, and such that ||p||;2 = 1. A
density argument allows to prove that

where J is defined by ([L37). Thus, we get
[(5, FL) — g 81/3
—an /T (5’ T) :

with lim c(t,s) =0.

(t,5)—(0,0)
t,s>0
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Step 2: convergence of minimizers. Let u be a minimizer of I(e, k). Then, according
to the first step, we have

2 1/3
E(u) < o 4 Je* 4 &2/ (e, 6—) ,
8 K

with lim c(t,s) = 0. Hence, applying Lemma G0, we obtain

(t,5)—(0,0)
t,s>0

6.19) = (L / EY ||2+/ 2Juf?
. - u TolU
2 47T2 R2 2 2
- . /3 2/3
+87T2/RQ‘31|U|| + 5 /R 371‘“‘ / \ \ —|—J€ + € c<5 —/{ )

We set

1 X1
(6.20) v(xy, z9) = =Y ’u (m,l’g)

so that ||v]|z2 = ||u]|z2 = 1, v > 0, and (EI9) becomes

(6.21) _( / EXE +/ ;1;31)2)
R2
K243 £1/3
+7/ |81v| +— / x1v2+go/ v +J52/3+52/3 g, — .
87T 2 R2 R2 4 K

This implies that

(6.22) / |8gv|2+/ w20? < C,
R2 R2

where C' does not depend on (e,k). Moreover, since the first eigenvalue of the
operator —ﬁ% + 23 is equal to 1/(27), (EZT) implies that
2

(6.23) / riv? +gO/ vt <O,
R? R?

where C' does not depend on (g,x). Hence, up to extracting a subsequence, v
converges weakly in L? and weakly in L? to some limit vy > 0. Using (E22) and

E23)), we see that
[ e <c
R2

hence v converges strongly in L2 Since in addition dyv converges weakly in L?, we
have:

Y

202
(5,51/314——1);(0,0) v strongly in L*(R®),

1V — r1v weakly in L*(R?),
(6 24) (g,e1/3k—=1)—(0,0)
' v — vy weakly in L*(R?),

(e,e1/3k=1)—(0,0)
v — davg weakly in L?(R?).

{7 (ee/3 )= (0,0)
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Hence, we may pass to the liminf in the two first terms of (GZI]), getting
(6. 25

1 , 1
— 15, lim inf — O: < —
/ | 2v0| +/RQ xQUo S (8761/?1,?11?_)(0’0) (47?2 /R?| hv| +/]R? :Ezv ) .

ﬁdd—é + 22 on L?(R) is equal to

1/(27), is simple, with an eigenvector equal to 2'/* exp(—mx32). Thus,

We use that the first eigenvalue of the operator —

(6.26) vo(x1, x9) = f(x1)21/46_”2,
with € > 0. Next, (@2ZI)) and (E24) also imply
1 90 4 B 1 / 2.2 90 / 4
6.27 — = < 1 f (= = < J
(6.27) QAQHﬁ? W%—ﬁﬁ$%(2wﬁv+2Rf =

Using (620), we infer

1 2.2 90/ 4
_ I < J.
Q/Rxlg 2 Rg =/

Hence, recalling that, in view of (E24]) and ([G2G)), we have [ £? = 1, the definition of
J implies that ¢ is the unique non-negative minimizer of ([L3T). This proves (C3Y),
with strong convergence in L? and weak convergence in L*. Moreover, using (6.27)
again and the fact that £ is a minimizer of ([L3), we have

lim 22 (v2 — %) + / v4—v4):O.
(6751/3,4—1)H(0,0) (/Rz 1( 0 ) Jo R2 ( 0 )

Next, using the explicit formula giving vy, a simple computation gives

2
/ x%(02—00)+go(v4—vo) >g/ (vg—vg) ,
R2 R2

hence v? converges to v3 strongly in L?(R?). Thus,

vt — g
R2 R2

The space L*(R?) being uniformly convex, this implies strong convergence in L?,

hence (C3J).

Step 3: lower bound for the energy. Using Lemma 28, we have

Bzt + ([ g [ o
u — —_— T4 v .
Yy 2 RQI Jo R2

In addition, we already proved ([C38), which implies

1 2 2, 90 4 / g/ 4
: 90 90 —J
24ﬂ”+2 w2 2 Jo 0

which implies the lower bound for the energy. U

7. APPENDIX

7.1. Glossary.
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7.1.1. The harmonic oscillator. The operator

(71) D wGHN) = > w(DL X)), N >0, Dy =——0,,

; ; 20T
1<j<n 1<j<n

has a discrete spectrum

(7.2) % DRERDS ajAj}(

9
A1,...,Q N7

and its ground state is one-dimensional generated by the Gaussian function

(7.3) pa(z) =24 T A/ te ™

1<j<n

7.1.2. Degenerate harmonic oscillator. Let r € {1,...,n}. Using the identity

: Aj
(74) (Hawu)= > (D7 + N uu) = > [(Day = idja)ull7z + o ullz,
1<j<r 1<j<r
we can define the ground state F, of the operator H, as
(75) Er = L2<Rn> ﬁlgjgr ker(ij — Z)\J.TJ)
= {90()\17---)\0(1‘17 A ,{L‘r) & ’U(IL‘T_H, e axn)}veLQ(R"*T)-
The bottom of the spectrum of 7H, is %Egjgr Aj.
7.2. Notations for the calculations of section
(7.6) P rwr<l, et 4e? =1,
(7.7) a=Vrt+40? = a4+ (1—-w?—£2)? (fr=0,a =2w).
14+ w22 a2 1 w224 9,22 4 4
U SN EUV. Ly e, VAN VT
l+w*+a H3 125
(7.9) pr=14+w’+a (fr=0u=14+w).

Remark 7.1. If v = 0, 3 = O(£?) and if v # 0, 3 = O(g). Moreover, for v? + w? < 1,
p3 € [1,4] and for v2 + w? =1, p3 € [2,4]: we have indeed

(7.10) 1<1+w’+ @ +4*)2 <4

since v* 4+ 10w? < (1 —w?)? 4+ 10w? = 8w? + 1 +w* < 9+w?, implying (3 —w?)? > v +4w?
and [CI). If v +w? = 1, we have (1-w?)? = v* < 14 4+40? = 2 < 1+W2+ (V4 +4w?) 12,
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We define the following set of parameters,

9 ) 2 .2
(711) 61 = 2W/21/1+ 5 = a 2w v since (@ — 2w?)? — vt = 4w? + 40! — dw?a = 40 p? |
a — 2w v Wit
9 9 2 .2
(712) 62 = i 2Wl;2+ 5 = a +2w Y since (a + 2w?)? — vt = 4w? + 40? + 40 = 40?3
« w v Wit
2c
7.13 = —,
(713) v =—
(7.14) N =M _ 1 a2y
p+ Pifapz 1+ ﬁl—ﬁf’ﬁ 1+ % 20
(715) M——t2 1 1 Loty
po+ B1Bepr 1+ % 1+ % 20 7
2 22 4
—4
(7.16) andwehave M+M=1+2, A= (o + ”42)(2 “
_ 7A1A2 _ )\% + )\% . 2a(1+u2/a) atv?
(717) d= T, C = m so that Cd:T:T'
We have also
241 _ a—2w? + 12 _ a—2w? + 12 2
VB wy 2 v
2p o+ 2w? + 12 B o+ 2w? + 12 )2
W wy 20 7
and
A2 4 )2 91/2,,1/2
g = L2 tA (1+v2a 2™t a
2\ o — 2w? + 12

_ cA2 _ B o Ja+20w2 — 12
Aod—! = G2 _ 9-3/2(,1/2 2 —1/2y 1]
2 cd (@ +v7a Jw W2 42 o412’

(7.18)
(7.19)

CA A
(720) C)\l == 2)\2 ==

= (1 + % 2!

21/2a1/2 /a+2w2_y2

Va—2w? +1v2Va + 2w — 12
Vo + 2w — 2
Vo — (2w% — 12)2

= (1+ 1207127202 \/a 4 202 — w2 (2w) 122 + 62TV

Moreover, we have

Ay = 2’3/2(041/2 4 y2a’1/2)w’1

o+ 2w? — 1?2

(if v =0,cho = 27 V/2(1 —w)~1/2),
202 4 g2

2w

202 — 12
Aod ™t =2712(a1/? 4 1/204_1/2)\/ aTow —;ﬂw_i_ €2V (41271,

(1+a—1y2)2—1/2a1/2(a+2w2+V2)—1/2

Q02 — 12
hod ™t = (2a)*1/2\/ a; 2w+ Gt —0ed T — 2121 - w) ),
v S

Md™t = Ae(ed) ™ = (1 + 0711/2)271/20[1/2((1 +2w? + 1/2)71/22w(oz + 057

39

(if v =0,cA; =22 (1 +w)"1/?),
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(7.21) Ad ' =220 20+ 207 + 027V (if v =0,0d 7 = 27121+ w) TV,
Ared = (o + 1227w a — 202 4 12)/227 12712,

Med = 2732 (a0 + 1) w a2 (@ — 202 + 2)V2 (if v =0, Med = 2712(1 — w)1/?),

DT Y (a— 2w? + 02012072 = 9120120, (- 20 4 12) 2,

Aed — )\i = (o — 2% + y2)1/2 (2_3/2(a + uz)u)_loc_l/2 — 2_1/2a1/2w_1),
2

Ared — )\i = 2732, 0 V2 (0 — 2% + H)Y2 (a4 1% - 2a),
2

(7.22) Ared — )\i = 2732, a7V 2 (0 — 2w + 22 (a — 1),
2

if v =0, cd — & = —271/2(1 —w)~1/?),
A2

(7.23) A =2"207 2 (0 — 22 + 022 (ifr =0, = 2721 —w)Y/?),

d d
d— — =)} d— —
)\QC )\1 )\1 )\2()\16 )\2)

_ —2_3/2w_1a_1/2(a—2w2—|—y2)1/2(a—1/2)(a+2w2+1/2)1/2(a—2w2+y2)_1/2

— _2—3/2w—1a—1/2(a _ 1/2)(0[ + 2w2 + 1/2)1/2,

(7.24) )\ch—)\i = 27320707V 2 (a—1?) (a4 202 + 122 (if v = 0, Aped — )\i = 27121+ w)1/?)
1 1
(125)  de=2a  ak a4 ) (10 =000 =2 P40,
(7.26) b 22 5 am_ dew@P 4t
2 o+ 2w+ 23 o — V2 4 202

7.3. Some calculations.



ANISOTROPIC BOSE-EINSTEIN CONDENSATES 41

7.3.1. Proof of the lemmalZZ. We have to calculate

-2 0 0 —w A 0 -4
~ 0 14 w0 0 A2 —2 0
Q=Xx"Ex=x 0 w 1 0 0 )%—AQCd chy 0
—w 0 0 1 )\% — M\ed 0 0 ¢\
(1=2)A1 = £+ Arcdw 0 0 —%‘”%—cxlw
— 0 (1412 Ao+ 42— Agedw SYEESZ01" ST 0
0 WAzt —Xged 222 1exy 0
—whiHE —Ared 0 0 M e
)\1 0 0 )\12 — )\1€d
. 0 )\2 %7>\ch 0
Sl o =2 en 0
—A 0 0 chi
(1=v2)A1 = 2+ Arcdw 0 0 S TCE=Ti0 BPS W
% 0 (1+u2))\2+%i7)\gcdw 7%4’&)6}\2 0
0 WAz+E—Azed R oY 0
—wAi+ 5L —Ared 0 0 M e

We get easily g1 = 13 = 0 = ¢oqs = ¢34. To prove that the symmetric matrix Q is
diagonal, it is thus sufficient to prove that ¢4 = 0 = ¢23. We have

A A cdA
G1a = —El(l - V2) - wc)\f +w)\—: + C)\Ql _ A%cw _ Czkfd
)‘% 2 wd Cd2
=—| -1 — Qwed . de}
d[ +v we +>\2>\1+>\2)\1 c
A (a+vH)a (a+1v?)?
) N | 2 2 a }
d[ Trmemytar 2w w 42
_)‘_%__w2+(a2+1/20z)_(0z+1/2)2]
N dw? L 2 4
— )‘_% [ L2 (vt + 4w + v2a) B (@ + vt + 20z1/2)]
dw? L 2 1
_)\—%-—wz (V4+4w2+’/20‘)_(V4+4w2+1/4+2a1/2)}
Cdw?l 2 1
AT 201 4 8w? + 207 204 + 4w + 20
:d_le _w2+(7/ u:l I/Oz)_(l/ uil 041/)}:07 ed.
Moreover we have
A Ay cdA
Q23 = —32(1 + %) 4 weds — w)\—: + C}\f + A2we — A2ed
A3 2 wd cd? 5
=—|—-1- 2wed — =2 ]
d [ Ve + 2wc on + o c
A3 2 2 (a+v*)a (a+v?)?
=—=|—-1- — a*rry)e 7]
d[ v+ a+v o+ ST o
A2 2 4,2 2\2
- d—22 [ - w’ (a +2V 04) - (Oé +4V ) ] =0, from the previous computation.
w
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We know now that Q is indeed diagonal. We calculate

~ MA—v?) 2eMw 5.5 A 2 2 12 A 2 o (a+1%)?
Qs = 7 + pi +c°A\] = - [1—y +2wed+cd ] =0 [1—1/ +a+v +T)2]

22 44402 4 A 4 9202 22 4 2
Jua = 2;2 [w2+aw2 + (o + dw ZU ooy )] = 2;2 [2w2+0zw2 + 7@ +20W )]

w w

2

Since w;\llQ = '\/2)\4§w2 = a21)\§ = a2(a+22ié)2+l/2)’ we have
1 a? + 2aw? + av?

[4w2 + 200% + 4 + CYI/Z] = =1

faa = a? + 20w? + av?

ala+2w? +1v2)

Analogously, we have

~ AM(L+1%) 2eNw 55 A3 2 2 12 A3 2 o (a+17)°
33 = 7 — +cA; = - [1+1/ —2wed+c°d ] =5 [1+1/ —a—v +T]
_ Ao, s (VM 4w+ vt + 200%) A2 5 s (VM +ar?)
Q33:w2d2[u) —aw” + 1 ]szdQ[Qw — aw +f]
. 2 o
Since w)z\QdQ = y2)\4%w2 = Q,QI)\% = a2(a_22w2+yz), we have
1 a? — 2aw? + arv?

[4w2 —2aw? + vt + om2] = =1

g33 =
a? — 2aw? + av?

ala — 2w? + 1?)

We calculate

d\ d? A2\
Q= N1 = v7) = 255 2dedw o+ ;= 2555 4 NP
2 2 2
2wd d? cd?
q :)\2[1_2_ 2¢d _9 QdQ]
G = A |(1—=07) WY + 2cdw + 22~ O +e

_ o> _a+rvra  (a+1?)?
(J112)\%[(1—1/2)—2044—044—1/24—?—2 —+< )]

2w w 4w?
\2 o+ 12)2
qu = w—;[(l —a)w2+a2—a2—ay2+%}
. o — 2w + V2 9 9 9 vt 4+ 4w? + vt + 2a1?
el T T ; }
5 o — 2w? + V2 1 vt
T LR e L 3
More calculations:
A 2
(a0 — 2w + %) (2w* + 5 a(w?* + 3))

2 2

= (% — 2w%) (22 + %) (4wt (WP %) +a(2w2 + ”; (Wt %)(w - 1/2)>
= —8w* — 2wt + a (2w + 2w?)
which is equal to
20w (1 4 w? — a) = a2w* + 2w?%) — 20%w? = a(2w* + 2w?) — 2w (V! + 4w?),

proving thus that ¢;; = 1 + w? — a. The previous calculations and ([Z3X) give gz =
1 + w? + a, completing the proof of the lemma.
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7.3.2. On the symplectic relationships in Lemma[Z@. The reader is invited to check

the following formulas®, with the notations of lemma
— 12 2 2
{o - (2 )x2,§2+(“;” )xl} = aw {6 — (D)o 6+ (D )aa} = aw”
a—v? — 2 a—v?
{51—( )562,514-( 2 )332}—0{51 ( 7 )2, & — ( 7 )z} =0,
2 a+v +v? — v
{§2+(a2y)3€17§1+( = )xz}=0,{§2+(a2wy Jor, & — (o—)m} =0,
as well as

2

(a —2w? + 1/2)1/2(04 + 2w —v 62)1/2aw

1_ 271(8“271&)71 (a2 B (2w2 . V2)2)1/2

20 20043

=2 epy tw™? (4w2—4w4+4w2y2)1/2 = 5u51(1—w2+u2)1/2 = eu§1(2y2+62)1/2 = I

and

[1]

[11]

[12]

[13]

aw™ = (1+w?+a)? = p,.

(a+2w2+y2)1/221/2w( 1_'_(/()2_'_0{ )1/2
20 ala+ 2w? +1?)
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