Adaptive color quantization using the “baker’s transformation”

Christophe Montagne®, Sylvie Lelandais’, André Smolarz?,
Philippe Cormu®, Mobamed Chaker Larahi®, Christine Fernandez-Maloigne”

[BISC Laboratory ISTIT Labomtory IRCOM-S1C
CNRS FRE 2873 CNRS FRE 2732 CNRS FRE 2731
University of Fviy-Val fEssomme Univesity of Techmology of Troyes University of Poitiers
40 e e Pelyonx 12 me Marie Cove BP 2060 BP 30179
91020 Evry Cedex L0010 Troves Cedex AR062 Futuroseope Codex
cmontagne Winpaniv-evry.fi andresmalarztintt fr chaker lavabitisic nniv-poitiers fr

Abstract: Inths article we propose an ongmal techmgue to veduce the number of colors contmned
woan wnage. This method wses the “Baker's Transgformation”. whiel obtams a statistieally sustable
myrture of the mrels of the ymage. From this mazture, we can ertmet several samples, which present
the sume charaeterstics as the webial wmage. The concept we vnageed v o conseder these samples us
potential pallets of colors. These pallets make it possible to do an adaptive quantization of the effective
wumber of eolors. We conseder, and we put wn competition, three methods to obtam a smgle pallet.
Farstly, we present the “Baker's Transformation”. Secondly, we present methods to have a simgle pallet.
Thard part 15 dedicated to results dlustrating the good wvisual guakity reached by the guantized wmages.
Faally, we present a compartson between our method and three classical methods of quantazation.
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INTRODUCTION

The use of colored numerical mages is very current for professional or Tudie applications. Most of
the time, these images are defined inoa color space with three compoments as RGDH cubic space (Red
Green Blue - 24 bits per pixel] where the value of each chanoel s coded on one byte (1 byte — 8
hits < 2% = 256 available leviels). In this ease, to code an image, the number of available colors is
higher than 16 million (22! = 16, 777,216). This large number implies that, generally, none of the
image pixels has a color identical to the other pixels. Here, we deal with real images both outside and
indoor. For an image of size 256 % 256, it is not surprising to find 2'% = 65,536 different colors. The
D color histogram of the fipure 1 (see fipgnre 2) illustrates this phenomenon: eolors form a seattered
“eloud”, where each point corresponds to one ar two pixels. The will to repraduce the human visoal
system explains this situation but it reguires computer files to be larger than needed. Ap image of

size 256 % 256, stored in s “hitmap” file (*.bmp). weighs 192,662 bytes, if the ending of the eolors



is 24 bpp. Whereas, if this coding is 8 bpp, the size of the file decreases to 66,614 bytes, which is
three times less. Moreover, many image processing are difficult because of 24 bpp coding. We think
for example of the use of a color histogram in image indexation: with a rate close to one color for
one pixel, the histogram is almost flat. Computing times are also multiplied in the case of a 24 bpp
image. Psychovisual research proves that the human eye does not perceive a great disparity of colors:

it appears useless, therefore, to have too many colors to code an image.

Figure 1: Original image (256 x 256): “man-
drill”.

Figure 2: 3D histogram of the image in figure

1.
For these reasons, it seems useful and interesting to define methods to significantly reduce the number
of the colors in an image, while preserving a constant visual quality. Color quantization techniques
are one solution. The objective is to replace a color in the image by another selected in a preset
pallet, which contains a limited number of colors. The new color will have to be the nearest possible
to the original color according to a preset criterion 1] |2]. In the scientific literature, we find articles
that treat color quantization, and which propose various adaptive methods to select the best pallet [3]
[4] [5] [6]. The common objective of all of these methods is to preserve the initial appearance of the
image. In this article, we propose a new adaptive method of color quantization, which is based on the
use of the “Baker’s Transformation” [7] [8]. In the first part of this document, we present the principle
of this transformation, which is a result of ergodic processes analysis. In the second part, we explain
how it is possible to use this transformation to quantize, in an adaptive way, the number of colors
in the image. Several methods are possible and we present them with visual results and quantitative
measurements. In the third part, we present results obtained from several images and we discuss the
interest of the considered approaches. We present also results from the point of view of L*a*b* space.

In the fourth part, we present comparison results between our method and three classical methods of



quantization. The comparison is twice with objective and subjective tools. Finally, we conclude by

evoking possible continuations of this work.

1 THE BAKER’S TRANSFORMATION

It is possible to associate a texture to any image by means of a peculiar transformation of the pixels.
As this transformation is a permutation, it is one-to-one and thus invertible. The computed texture
is locally very homogeneous, even if the original image were not. Furthermore, as this transformation
acts only on the position of the pixels, we can use this transformation with monochromic or with
color images. In the case of color images (in RGB space for example), we just have to apply the

permutation to each of the three channels.

1.1 MIXING DYNAMICAL SYSTEMS

The transformation we use for our purpose is the so-called “Baker’s Transformation” or BT in the
sequel. This function originates in the theory of mixing dynamical systems, theory which has been
introduced by Gibbs in the study of trajectories in the phase space of a mechanical system. We give
now some basic definitions. Let M = [0, 1] x [0, 1] be the unit square, and let u be a measure defined
on M such that u(M) =1. Now let f : M — M be a one-to-one transformation, which is measure
preserving, that is such that p(f(A)) = u(A) for all measurable A. Following Arnold and Avez |9], we
say that (M, u, f) is an abstract dynamical system. When studying such systems, we are interested
among others by the behavior of points of M or of subsets of M when we apply ", n € Z.
By definition (see |9]), an abstract dynamical system is said to be mixing if:

lim u(f"(A)NB)=u(A)-u(B) VA, B € M, A, B measurable

n—-+o0o

These authors give a more “intuitive” definition (see [9] pp. 18-19): «Let M be a glass with 90% of
Martini and 10% of gin, and let S be a spoon. Then mix the cocktail by turning the spoon in the
glass (each turn of the spoon being an iteration of f). Physically, after a while, one can hope that
any part of the cocktail contains 90% of Martini and 10% of gin.»

The interesting fact here is that any (measurable) part of M becomes (asymptotically) a small-scale
model of M.

Let’s now examine the finite discrete case, which is the one of digital images. In this case, a one-to-one



transformation is a permutation and is therefore periodic. All works with a finite number of steps
(finite but even large). After we have mixed the cocktail, we can separate with a finite number of
steps the (discrete) gin from the (discrete) martini. But in this case, unlike for the continuous case,
we can’t expect that all part of M is a small-scale model of M. Indeed, we know from [10] that in

the discrete finite case it is not possible for an abstract dynamical system to be mixing.

1.2 QUASI-MIXING TRANSFORMATIONS AND THE BT

Nevertheless, for some mixing transformations, when restricting its action to a finite space, despite
the fact that the transformation is no longer mixing, it remains a mixing-like property. In this case,
we say that the transformation is a Quasi-Mixing Transformation (or QMT for short - see [8] for
details). The Baker’s Transformation is such a transformation. In the continuous case, following [9],

the BT is described as follows. To compute f on the unit square M (i.e. 0 < z,y <1):

e M 1is contracted by a factor 2 in the y direction and expanded by a factor 2 in the x direction

(see figure 3);

e cut vertically the rectangle in the middle and glue the right half on top of the left half to obtain

a unit square (see figure /).

Figure 3: First step of the BT initial iteration

(128 x 512).
Figure 4: Third step of the BT initial iteration
(256 x 256).

When working with images, the first step is obtained by interlacing lines two by two - we thus get an
image twice larger than the original one, with half height (the transformation is one-to-one). Then,
we cut and paste the image in order to achieve the second step.

Thus, the only condition is that the image must have an even number of lines. As mentioned above,
the BT is periodic but its period is a rather irregular function of the size of the image. Nevertheless,
in the case of a 2" x 2" image, we retrieve the original image after 4n iterations of the BT. For

example, for a 256 x 256 image, i.e. for n = 8, the period is 32. On the other hand, for a 258 x 258



image, the period is 1.1698 x 1034, and for a 300 x 300 image, it is 2.0492 x 10'?. That is the reason
why we are mainly interested with 2" x 2" images in the sequel.

Let’s examine the case of a 256 x 256 image (that is with n = 8). We observe that for each iteration
from 1 to 8, the pixels get more and more mixed, and the image appears to be the most mixed for
iteration 8: we have a microscopic texture (see figure 5). This observation is justified in [11]. Then,
for iterations from 9 to 16, the image is unmixed step by step so that we retrieve the original image
inverted (bottom at the top). Then it works in the same way for iterations from 17 to 32, and we
retrieve the original image in the right position.

In theory, if we apply the inverse BT on a sample extracted from the mixed image, then we obtain
an image of small size which is very close to the original image (see figure 6). In our application, we
are not interested by the inverse transformation. We are interested in obtaining a sample, which is a
good representation of the original image. Hence, for non-2" x 2" images and for rectangular images,

we approach the BT transformation by a homogeneous sub-sampling of the original image.

1.3 The local reconstruction property of the QMT

The property we are going to use in the sequel for the quantification of the image colors comes from
mixing dynamical system properties (continuous case). When one examines the image of figure 5, one
observes a kind of double periodicity (along the 2 and y axes). As mentioned above, it is not possible
in the finite case to take any subset of the space and to find in it the right proportion of each element
of the image. Nevertheless, this property is preserved if we select the part of the texture with respect
to this double periodicity. More precisely, if we have a 2" x 2™ image, let’s consider a partition of the
image with 27 x 2P (p < n) blocks. Thus, for the image of figure 5, we can have a partition in four
blocks of 128 x 128 pixels each. If now we apply the inverse transformation 7B~ to the block shown
on figure 5 with the right number of iterations that is, using the fact that 128 = 27 we get the
image shown in figure 6, which is a 128 x 128 version of the original one. If now we choose p = 6, we
have a 16 block partition with 64 x 64 pixels each block. If now we apply the inverse transformation
TB~! with the right number of iterations that is, using the fact that 64 = 2%, with 6 iterations, we
retrieve a 64 x 64 version of the original image, and so on. If we don’t follow this rule when extracting

a block from the image, we generally don’t get a faithful reconstruction.



Figure 6: Window of size 128 x 128 extracted
from figure 5 and result obtained after p = 7
Figure 5: Suitably mixed image (after N = 8 BT

iterations) (256 x 256) (with extracted window

highlighted in red).

1.4 FAST IMPLEMENTATION OF THE BT

The creation of the color pallet is based on the mixture provided by the BT. This transformation is
iterative: it is a repetition of the same treatment. Consequently, it is a long time treatment. But,
for a given image size, a pixel will be always affected at the same position in the mixed image. It is
thus possible to create a “LUT” (look up table), which defines this position. By this way, we obtain
directly the mixture from the original image. The “LUT” is in 3D and has the following dimensions:
9N

2NV % 2N x 2. For each pixel of an image x 2N the “LUT” provides its new coordinates i and j.

Moreover, a single “LUT” of given size is enough to treat all the images of same dimensions.

2 COLOR QUANTIZATION

2.1 DEFINITION OF THE PALLETS

As we have shown in the previous paragraph, a window of size 2P x 2P preserves the characteristics
of the original image: forms, textures and colors. On the basis of this observation, we consider this
window and its pixels as a set of colors, which are representative of the complete color range of the
image. According to the dimensions of the window, we dispose of a color pallet, which is adapted
to the image and is obtained in a simple and fast way. An obvious difficulty of our proposal is the
manner of choosing the window to be extracted. With an image of size 2V x 2V pixels, it is possible
to obtain K = 22(N-P) pallets containing a maximum of 22 colors. For our experimental protocol,
we limit the number of colors in the pallet to 256, 64, 16 or 4 colors. These pallets correspond to
extracted windows of size 24 x 24, 23 x 23, 22 x 22 2! x 2! (i.e. p=4, 3, 2, 1). Table 1 shows, for an

image 256 x 256, the number of available windows, from 256 to 16,384.



Table 1: Values for an image 256 x 256 (28 x 28, N = 8).

Number Dimensions Available number
of wished of the of windows-pallets
colors windows K =22(N-p)
16,384 128 x 128 4
4,096 64 x 64 16
1,024 32 x 32 64
256 16 x 16 256
64 8 x 8 1,024
16 4 x4 4,096
4 2x2 16,384

2.2 VARIABILITY OF THE PALLETS

To consider one window, which is extracted from the mixed image, as a potential pallet is one thing,
to consider all the extracted windows as equivalent and offering the same potential is another. The
average intensity of the image “mandrill” is 123.29. Figures 7 to 10 show the distribution of the
average intensities of the windows according to their dimensions. For each one of these histograms,
the intensity corresponding to the average intensity of the original image is highlighted in blue. For
each case, the distribution takes the shape of a bell-shaped curve (or Gaussian) whose base is widening
as dimensions of the windows decrease. The variability of the pallets is more significant when the
number of their colors is reduced. The reading of the standard deviation (table 2) of each distribution
confirms this analysis. This variability has a consequence: not all the windows have the potential to
become a pallet. These observations are presented from the image “mandrill” but they are also valid
for other examples. In the case of windows 16 x 16, which have a reduced range of average intensities,
the impact of the choice of an extreme window-pallet will be limited. For windows of smaller size,
the extreme intensities are not comparable with the original intensity. It is necessary to develop a
method of selection of a window-pallet, which will be the nearest possible to the central tendency.
We have considered three approaches [12], which are presented in the continuation of this document.
Table 2: Standard deviation of average intensities of “mandrill” windows.

Number of colors 256 64 16 4
Standard deviation | 2.16 | 3.58 | 10.95 | 21.38

2.3 COLOR QUANTIZATION OF THE IMAGE AND EVALUATION

Color quantization: Before describing the three approaches of selection, we present the adopted
quantization process (see figure 11) and the manner to evaluate the quality of the process result.

We obtain the suitably mixed image from the initial image by the use of a “LUT”. Because we know
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the desired number of colors in the final image, we can determine the size of the extracted window,
which is necessary to build the pallet. We choose a window: pixel colors of this window constitute
the final pallet. Finally, we assign a color of the pallet to each pixel of the image. To do that, for each
pixel of the original RGB image, we calculate an Euclidean distance between its initial color and the

22 colors of the pallet:

Are(i.j.k) = V(B(i,§) — R(k))? + (G(i, ) — G(k)? + (B(i, j) — B(k))?

where (i, 7) are the coordinates of the pixel, and & the index in the pallet. We assign to the pixel the

color of the pallet giving the minimal distance.

Evaluation: In the following paragraphs, we detail the three suggested methods. For each, we
expose the principle of the method, we present results obtained from “mandrill” (see figure 1) reduced
to 256, 64, 16 and 4 colors, and we give a table, which shows two distances between the original image
and the quantized image. We use these distances to evaluate the quality of the color quantization.
The first distance is presented in the form of vector and is called delta. It is an average difference
between two images, color axis by color axis (see equation 1). The second distance is an average

Euclidean distance between two images (see equation 2).

N N .. ..
Z?:1 2]2':1 |Ro(i,3)— Rq(i,)]

(SR 2N><2N
oN ol N (i
deltaRGB = 5G — Zi:] 21:12]‘\[(;)2’;7]:[]) Gq(i,g)] (1)
. S 2 |Bo(i.g)—Ba(ind)
2N x 2N
N N B . B . B . . B . B B .
A o Z?:l ?:1 (RO(Zuj) - Rq(z,]))2 + (GO(Zuj) - Gq(’L,j))Q + (BO(Z’]) - Bq(’L,j))Z 9
RGBE = 2N X 2N ( )

X, and X, indicate the original axis and the quantized axis. ¢ and j are the coordinates of the pixels.
Initially, we compute these distances on RGB space because it is the original color space of the images.
But, in scientific literature (|13] and [14] for example), it is more significant to use a color distance
based on color spaces such as L*a*b*. So, to complete our study, we compute similar distances on
L*C*h space, which corresponds to cylindrical coordinates of L*a*b* space (see equations 3 and 4).
For simplicity, we use the sSRGB (standard RGB space) to XYZ conversion matrix. This conversion

is defined for Dgs illuminant and it includes a gamma correction. The conversion from XYZ to



L*a*b* is standard but we replace a* (red-green opposition) and b* (blue-yellow opposition) by

Cx = va x? +b%? (chroma) and h = arctan Z—i (hue).

SN N . N N o .
5 i Y |ALx(i,j)] iy X L5 (6,5) =L (i)
L 2N 2N 2N 2N
N o N . oN oN P .
— — | XL o 1ACkGg)] | — i1 2j=11C5 (4,5)—Cy (4,9)]
deltarcn = | 0o | = S LEVL - NN (3)
N N . N N Ay e [ Ahgp (i
5y S X [AH ()| S22 2y/Co ) () sin (2lap ) )|
2N x 2N N % oN

oN oN % [+ -
> iz Z_j:] AE} (4, )
2N x 2N

Archr =

with AE* (i, 5) = /(AL x (i,5))? + (AC x (3, 7)) + (AH = (i, 7))>.

2.4 TECHNIQUES OF PALLET CHOICE
2.4.1 “BEST” AND RANDOM METHODS

The ideal solution to choose the window-pallet would be to operate all the available quantizations,
one by available window, and to compare them with the original image. The window-pallet giving
the best result would be selected, but a posteriori. This choice is given by seeking the window-pallet,
which leads to the minimal delta (in a basic way: min(AC; + ACy + AC3) if we consider that Cy, Cs
and C3 have the same weight). For example, table 3 gives the delta, which is obtained from the best
and the worst quantization of “mandrill” with 16 and 256 colors. We also give the quantized images
corresponding to these values (see figures 12a to 13d). As we suggested in section 2.2, the difference
is more perceptible with few colors like 16 colors. We also see that the use of L*a*b* delta is visually
more relevant than the use of RGB delta (see figures 12d and 13d). Although simple to implement,
this solution is bad in computing times because of the significant number of possible pallets. For
example, the quantization of “mandrill” on 16 colors (4096 available pallets) takes over 11 minutes
with a processor frequency of 1.1 GHz and a software written in C++ language.

Table 3: Extreme delta from “16 colors” and “256 colors” quantization of “mandrill”.
Extreme ‘ Colors H 0R ‘ oG ‘ 0B ‘ AgraB H oL ‘ oC ‘ 0H ‘ ArcH ‘

Best 256 490 | 489 | 4.88 9.86 1.47 1 3.17 | 3.07 5.25
16 12.12 | 11.15 | 13.80 | 24.66 | 3.97 | 7.28 | 6.13 | 11.87
Worst 256 5.34 | 5.10 | 5.37 | 10.57 || 1.48 | 3.44 | 3.48 5.76
16 18.14 | 23.92 | 29.17 | 46.54 | 6.13 | 13.09 | 13.20 | 21.69

10



b)

Figure 12: Extreme quantizations of “mandrill” according to RGB delta :
worst with 256 colors; ¢) best with 16 colors; d) worst with 16 colors.

b) c)

Figure 13: Extreme quantizations of “mandrill” according to LCH delta : a) best with 256 colors; b)
worst with 256 colors; ¢) best with 16 colors; d) worst with 16 colors.

Another simple solution consists to choose by a random way, or by an arbitrary way, one of the
K extracted windows, which offers the desired number of colors. Considering the remarks on the
variability of the pallets made in section 2.2, we can easily understand that the random choice can
lead to a suitable result but also to a “catastrophic” result: on the previous images, we can see
important differences due to the used pallet. In the case of a pallet of 256 colors (window 16 x 16),
the difference between the two extremes is weak as we can see on figures 12a, 12b; 13a and 13b. The
advantage of a random choice is its low computing time. For example, one quantization of “mandrill”
on 16 colors takes less 10 milliseconds in the conditions previously described.

To avoid a method, which gives an unguaranteed result, we imagined three approaches with the aim
to obtain a repeatable result. Two of them compute a new window-pallet and one selects a window-
pallet among those available. Usual statistic tools like median or average of a distribution inspire

these methods.

11



2.4.2 BUILDING OF A COLOR MEDIAN WINDOW-PALLET (METHOD 1)

The first approach is to build a new window from the K available windows. For a given pixel (i, 7),
we seek, in the K windows, the median color at this same position. The color found is affected at
the position (7, j) to the new window (K + 1th window). This technique is repeated for all positions.
By median color at the position (i,7), we consider the median value in the sorted list of the K
mean intensities of pixel (i, ). Figure 14 gives visual results obtained from “mandrill”. Table 4 gives
numerical results of delta. Final colors are in the original image but are not from the same extracted

window. The algorithm below details this approach.

For i = 1 to 2P
For j = 1 to 2P
For k = 1 to K

T k) = R(i,j,k:)+G(i,3j,k)+B(i,j,k)

pixel (
End

To sort the I k) by increased order.

pixel(

_ [sorted(g)}
i 2

Eresult = {#I Ipixel(k) pixel

Ryegult (:7) = R(i J: kresult)
Gresult (4:7) = G(i J> kresult)
Bresult (4:7) = B(i: J; kregult)
End
End

b) ) d)

Figure 14: Quantized image by approach 1: a) 256 colors; b) 64 colors; ¢) 16 colors; d) 4 colors.

Table 4: Values of delta calculated from the four images of the figure 14.
| Colors | 6R | 6G | 0B | Agrgs | 0L | 6C | 6H | Apcu |
256 5.09 | 5.59 | 591 | 11.45 || 1.71 | 3.47 | 3.39 5.83
64 881 | 861 | 9.71 | 18.08 || 2.71 | 5.45 | 5.21 9.02
16 16.54 | 17.93 | 16.34 | 32.81 | 5.96 | 840 | 6.35 | 13.94
4 48.81 | 38.12 | 25.85 | 71.81 || 13.36 | 17.14 | 12.57 | 28.53

12



2.4.3 CHOICE OF THE MEDIAN WINDOW-PALLET (METHOD 2)

In the second approach, we use a criterion to find a single window from the K available windows.
We have chosen to calculate the mean intensity of the windows and to retain the window giving the
median intensity, as seen in the following algorithm. Figure 15 presents visual results from “mandrill”.
Table 5 gives numerical results of delta. It is possible to simplify this method by using a different
criterion: the sum of the color levels on each channel. Logically, resulting image is between the two
extreme quantized images (see subsection 2.4.1). We also tested this method by selecting minimal

and maximal intensity but results are bad.

For k = 1to K
B 2?21 E?il R(isj,k)+G(i,31'sk)+B(i,J'sk)

Tyindow (k) = P % 2P
End

To sort the I,

window (k) by increased order.

— — ted (K
Fresutt = {Fllwindow (K) = I‘S,‘?i;gow(*)}

2
Window Window (kyegyit)

result —

d)

Figure 15: Quantized image by approach 2: a) 256 colors; b) 64 colors; ¢) 16 colors; d) 4 colors.

Table 5: Values of delta calculated from the four images of the figure 15.
| Colors || 6R | 0G | 6B | Apgp || 6L | 6C | 6H | Aicn |
256 5.00 | 490 | 489 | 991 145 | 3.16 | 3.16 5.28
64 822 | 7.76 | 8.68 | 16.44 || 2.41 | 4.86 | 4.92 8.32
16 14.09 | 14.23 | 15.57 | 29.16 || 4.38 | 885 | 7.66 | 14.16
4 25.92 | 39.78 | 40.23 | 67.58 || 12.95 | 12.48 | 14.45 | 26.15

13



2.4.4 BUILDING OF A MEAN WINDOW-PALLET (METHOD 3)

The third approach consists, as for the first, to build a new window (K + 1th window) from the K
initial windows. But, this time, the final color at the position (7,7) is the mean of the K colors at
this position, as seen in the following algorithm. Visual results from “mandrill” of this method are
presented on figure 16. Table 6 gives numerical results of delta obtained from images of figure 16. A

priori all the colors in the final pallet are new. In the opposite way, this will be coincidence.

For 2 =1 to 2P

For j = 1 to 2P
o _ ZREF R(4)
Riesult (4,4) = =F=1%

i, j) = Zh=t Glijk)
Gregult (6, 7) = ZE=1 208

_ SRZE B(iwik)
- K

Bresult (4,7)
End

End

b) c) d)

Figure 16: Quantized image by approach 3: a) 256 colors; b) 64 colors; ¢) 16 colors; d) 4 colors.

Table 6: Values of delta calculated from the four images of the figure 16.
| Colors || 6R | 0G | 6B | Apgp || 6L | 6C | 6H | Aicn |
256 6.21 | 6.28 | 6.80 | 12.83 || 1.89 | 4.03 | 3.63 6.51
64 11.40 | 10.31 | 1147 | 21.86 | 3.27 | 6.49 | 5.11 | 10.14
16 22.60 | 21.85 | 27.14 | 44.90 || 6.10 | 13.19 | 8.27 | 19.89
4 34.16 | 34.76 | 43.65 | 70.88 || 11.36 | 15.73 | 12.34 | 27.26

14



3 OTHER RESULTS AND OBSERVATIONS

Visually and numerically, the previous results lead us to conclude the second approach is generally
the best. This approach consists of seeking the median window-pallet from the K available windows.
The interest of this method is confirmed by viewing the processing times. For example, quantization
of “mandrill” on 16 colors takes 70 milliseconds for method 1 and 10 milliseconds for methods 2 and
3, in the conditions previously described. To confirm this conclusion, we present a second set of
experimental results realized from the images in figure 17. Figure 18 shows quantized images to 256
colors by the second approach of the images in figure 17. If we compare these images, we conclude
that the difference between the 2% color image and the 224 color image is less obvious. Results from
the two other methods are not presented because the differences are not significant in the case of the
quantization to 256 colors. In tables 7 and 8, we present numerical results of delta, with the best
values are in bold. We can see the second approach usually gives the best results according to RGB
delta and L*a*b* delta. We note that 0L indicates quasi-systematically approach 2 like the best:
this approach preserves more the luminosity than the two others. Concerning approaches 1 and 3, we
sometimes obtain better results, but it is generally for 64, 16 or 4 colors.

To illustrate the differences between the three suggested approaches, we present the results obtained
for a quantization to 16 colors on “food” and “flowers”. “Food” (figure 19) presents a large variety of
colors, which occupy small surfaces. “Flowers” (figure 20), on the contrary, presents large regions of
relatively homogeneous colors. On these figures, we note approaches 1 and 3 are characterized by a
loss of average brightness, which gives an effect of “fog” on the image. This effect is confirmed by the
values of L. The initial colors appear less degraded by approach 3 than by approach 1. Approach
2 is also satisfactory visually because it preserves a good contrast between the colors. Finally, for
images with 256 colors and obtained by the second method, the ratio does not exceed three percent

between delta values and their maximum values.

4 ALGORITHMS COMPARISON

To finalize this work, we compare this quantization method with three classical color quantization
methods : median cut [15] [16], split & merge [17], and octree [18] [19]. The comparative study is
based on psychovisual tools (subjective criteria) and numerical calculations (objective criteria): M. C.
Larabi provides us the means and the experience of his laboratory on the problematic of quantization

[6] [20]. The comparison shows the interest of our adaptive colors quantization method by the use of
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Figure 17: Original images used for calcula- Figure 18: Quantized images from figure 17 to
tions of table 7 (food, flowers, girl, peppers & 256 colors by the method 3 (food, flowers, girl,
Lena). peppers & Lena).
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Table 7: Values of delta calculated from the images of the figure 17 for each approach (0R,G,B €
[0,255], 6L € [0,100], 6C € [0,134], §H € [0,252]).

[Method [ 1 | 2 [ 3 [ 1 [ 2 [ 3 [ 1 [ 2 | 3 |
Tmage “FOOD” - Size 256 x 256 - Initial coding: 2** colors
Colors 0R oG 0B
256 1014 | 7.04 [ 1744 | 12.72 [ 7.31 | 21.70 || 12.23 [ 7.46 | 19.04
64 21.50 | 12.16 | 34.67 || 28.27 | 13.19 | 32.17 || 25.08 | 12.68 | 39.27
16 43.87 | 20.50 | 49.66 || 40.24 | 22.77 | 47.79 || 43.46 | 24.03 | 48.30
4 49.39 | 51.26 | 58.22 || 52.47 | 32.77 | 53.00 || 54.96 | 39.47 | 63.57
Colors oL éC 0H
256 3.79 | 2.08 | 6.11 6.05 | 4.62 | 11.08 5.39 | 4.36 | 7.66
64 917 | 3.65 | 10.69 970 | 7.89 | 19.93 || 942 | 7.31 | 12.88
16 15.24 | 6.33 | 16.20 || 12.47 | 12.40 | 24.01 || 17.86 | 14.17 | 14.90
4 19.69 | 11.21 | 18.55 || 18.67 | 19.49 | 25.94 || 25.14 | 27.78 | 18.03
Image “FLOWERS” - Size 256 x 256 - Initial coding: 2?* colors
Colors OR oG 0B
256 466 | 4.65 | 5.33 589 | 4.87 | 7.16 514 | 4.80 | 6.26
64 8.99 | 8.48 | 11.22 9.45 | 8.46 | 12.99 || 10.03 | 7.71 | 12.74
16 21.98 | 15.77 | 27.18 || 21.17 | 18.95 | 29.91 || 20.11 | 13.85 | 23.77
4 40.04 | 32.97 | 57.69 || 53.51 | 26.56 | 43.72 || 27.62 | 34.11 | 41.48
Colors oL oC 0H
256 1.62 | 1.35 | 1.91 345 | 3.13 | 4.24 313 | 2.89 | 3.42
64 2.74 | 2.40 | 3.73 5.19 | 5.64 6.54 5.34 | 4.36 | 5.77
16 726 | 5.49 | 9.76 8.88 | 899 | 1209 || 7.26 | 9.56 | 11.06
4 17.62 | 10.26 | 16.40 || 12.57 | 19.71 | 15.21 || 21.48 | 14.65 | 16.09
Tmage “GIRL” - Size 256 x 256 - Initial coding: 2% colors
Colors OR oG 0B
256 411 | 3.84 | 4.48 3.71 | 3.50 | 3.96 364 | 3.45 | 4.14
64 6.98 | 6.68 | 8.26 585 | 5.81 | 6.19 6.39 | 6.40 6.53
16 17.24 | 15.75 | 15.92 || 11.76 | 12.59 | 11.85 || 10.23 | 10.65 | 10.70
4 22.74 | 22.14 | 2591 || 21.09 | 2522 | 20.28 || 20.19 | 20.49 | 18.57
Colors oL oC 0H
256 1.23 [ 1.12 | 1.27 239 | 2.34 | 2.60 253 | 2.51 | 2.82
64 204 | 1.93 | 217 3.92 | 395 4.31 380 | 3.79 | 3.89
16 478 | 3.82 | 4.48 7.06 747 | 6.63 5.94 6.54 | 4.56
4 6.98 | 8.16 7.19 9.53 | 10.72 | 10.04 || 5.51 | 8.04 6.31
Image “PEPPERS” - Size 256 x 256 - Initial coding: 27 colors
Colors OR oG 0B
256 3.98 | 3.91 [ 4.96 3.79 | 3.66 | 4.51 414 | 3.81 | 5.60
64 835 | 6.36 | 12.62 7.08 | 6.33 | 11.91 9.75 | 6.58 | 11.49
16 17.76 | 11.29 | 19.97 || 16.39 | 9.42 | 3244 || 18.15 | 11.16 | 22.69
4 49.52 | 37.06 | 31.33 || 26.69 | 21.74 | 55.37 || 19.98 | 22.72 | 26.39
Colors oL oC 0H
256 1.12 | 1.08 [ 1.44 264 | 2.39 [ 3.22 225 | 2.09 [ 2.60
64 245 | 1.86 | 4.27 558 | 3.99 | 5.87 4.04 | 3.43 | 461
16 6.12 | 3.17 | 9.30 889 | 6.85 | 9.63 6.55 | 5.52 | 8.40
4 1211 | 9.35 | 14.06 | 12.48 | 12.39 | 19.40 || 9.91 | 11.66 | 21.45
Tmage “LENA” - Size 256 x 256 - Initial coding: 2° colors
Colors OR oG 0B
256 292 | 2.62 [ 3.63 3.06 | 2.75 | 3.20 313 | 2.86 | 3.28
64 547 | 4.65 | 6.23 558 | 4.92 | 6.49 5.33 | 5.07 | 7.80
16 11.65 | 9.12 | 19.63 | 14.34 | 8.18 | 17.22 || 11.35 | 7.95 | 13.80
4 23.65 | 17.81 | 28.13 || 20.82 | 23.84 | 27.15 || 20.40 | 18.73 | 19.54
Colors oL oC 0H
256 086 | 0.74 [ 0.93 1.55 | 1.51 [ 1.77 1.86 | 1.90 2.12
64 1.65 | 1.37 | 1.98 2.51 | 2.53 2.93 3.04 | 3.15 3.45
16 450 | 2.75 | 6.08 4.47 | 3.78 | 5.09 524 | 4.44 | 6.69
4 743 | 6.64 | 9.74 9.92 | 10.14 | 6.63 | 10.24 | 7.69 | 8.39
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Table 8: Values of Argp and Arcp calculated from the images of the figure 17 for each approach.

Arap - range = [0, 440] Apcu - range = [0, 260]
[ Method | 1 [ 2 [ 3 1 | 2 [ 3
Colors Image “FOOD”
256 23.34 | 14.89 | 37.64 10.36 7.61 16.77
64 48.18 | 26.15 | 68.00 18.59 | 13.12 | 29.29
16 81.70 | 45.36 | 92.25 30.34 | 22.32 | 37.04
4 102.82 | 84.23 | 109.59 || 41.63 | 41.93 | 42.30
Colors Image “FLOWERS”
256 10.63 9.67 12.58 5.59 5.04 6.59
64 18.81 | 16.67 | 24.05 9.16 8.50 11.07
16 40.18 | 32.57 | 51.38 15.72 | 16.49 | 21.79
4 78.54 | 62.24 | 89.44 33.96 | 29.89 | 32.48
Colors Image “GIRL”
256 7.85 7.42 8.36 4.18 4.07 4.53
64 12.94 | 12.71 | 13.83 6.65 6.63 7.00
16 25.98 | 25.84 | 24.55 11.93 | 12.25 | 10.70
4 40.01 | 43.39 | 41.21 15.67 | 17.83 16.51
Colors Image “PEPPERS”
256 8.16 7.71 10.17 4.14 3.79 4.92
64 1742 | 13.11 | 23.55 8.21 6.33 9.62
16 35.05 | 22.01 | 47.59 14.28 | 10.68 | 18.08
4 63.88 | 54.62 | 73.67 22.17 | 22.07 | 34.78
Colors Image “LENA”
256 6.03 5.51 6.69 2.93 2.85 3.31
64 10.68 9.66 13.42 4.91 4.83 5.76
16 23.76 | 16.52 | 31.79 9.46 7.33 12.10
4 43.34 39.43 46.72 18.17 16.48 16.41

)

a)

Figure 19: Image “food” quantized to 16 colors by the three methods.

a) c)

Figure 20: Image “flowers” quantized to 16 colors by the three methods.
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the “Baker’s Transformation”. Note that we use only the second method based on the selection of the

median pallet because of our previous conclusions.

4.1 CLASSICAL COLOR QUANTIZATION METHODS
4.1.1 MEDIAN CUT METHOD

Heckbert has introduced the median cut algorithm in 1980 [15]. Its concept is based on using each
color of the synthesized color map in order to represent an equal number of pixels in the original
image. This consist in recursive subdivision of the RGB color space cube, containing the n x m colors
(with » and m respectively the row and column numbers), in rectangular boxes of continuous smaller

size. The basic idea is to obtain the same number of pixels in these boxes.

4.1.2 SprLIT & MERGE METHOD

This method, introduced by Brun in [17], uses two steps. In the first step, we uniformly split the
color space in N classes. Then we have to merge N — N, classes to obtain the wished number of
colors. We look for the two classes. The merging of these two classes has to give a minimal error.

This process is iterated until we obtain N, classes.

4.1.3 OCTREE METHOD

This method introduced by Gervautz and Purgathofer [19], as the median cut method, is based on
the partition of the RGB space. The RGB cube is divided in eight sub-cubes of same size by iterative
way. The deep of the tree is equal to logy(N,.). Leaves of this tree are the colors from the image.
Then we have to reduce the tree in order to obtain N, leaves only. Nodes having no leaves or a small

number of leaves are removed.

4.2 TOOLS FOR QUALITY EVALUATION

The quality assessment is an unavoidable stage of color quantization algorithms. In fact, it is impor-
tant to compute a distance criterion between original and reduced images. To do that, we use both
objective and subjective assessment. Notice that using only objective criteria is not enough because

the color is directly related to perception, which is very subjective and difficult to quantify.

Objective assessment. In some of works on color quantization, authors use only the “Mean Square
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Error” (or MSE) [21] to measure the distortion given to the original image. MSE is defined by:

MSE(I, I,) Z D*(I(z,y); I,(z,y)) (5)

( y)el
where I and I, are respectively the image before and after the color quantization, N is the
total number of pixels of the image, and D? indicates the quadratic error computation. We also
propose to use local descriptors of quality [22]. We compute a value called D¢, by the following

equation:

\/DLum C’hr + DEmg + D(‘or

where Dy, is the local difference of intensity, D¢y, is the local difference of chromaticity,
Dy, is the local difference of color occurrence in a given neighborhood, and D¢y, is the local

difference of color correlation between two regions.

Subjective assessment. Here, experiment is of “human in loop” type. It uses the capacities of
human visual system (HVS) to evaluate quality of images. The human observers have a normal
perception of the colors according to Ishihara test [23|. The experiment is realized in a stan-
dardized room according to the international norms ITU-R 500-10 [24]. Walls are in neutral
gray: the light is not reflected. The illumination is artificial and controlled. As shown on figure
21, the observers were seated three feet from the calibrated CRT. The screen delivers sufficient
light to stimulate the HVS. The experiment is an ordering test. The aim of this test is to
make a classification (from the best to the worst) of an image series with regard to the original
image. For the needs of this psychophysical experimentation, we retained, as device of study, a
process that shows on the screen the original image and the four images reduced by the previous
methods, as shown in figure 22. Then, the human observer is asked to indicate, by a mouse
click, the image he sees most qualitatively distant from the original image. This image is then
masked and the same question is then asked and this until the four images are masked in the
presentation device. This technique allows having a classification of the images with regard to a
reference one. Contrary to the classical techniques where the observer has to classify the images
in increasing or lessening quality order, this technique presents the advantage to never put the

observer in a complex choice position.
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Figure 21: Psychophysical quality assessment Figure 22: Ordering test principle on the
protocol. screen.

4.3 RESULTS

For our experimental needs, we used images classified in four categories: portraits, outdoor scenes,
indoor scenes and computer-generated images. These categories were chosen because they provide a
range of natural and artificial colors and textures. All of the images were with a precision of eight bits
per channel and three channels per pixel. The methods are identified by “BTmed” for our method,
“Oct” for octree, “S&M” for split & merge, and “Mcut” for median cut. Figure 23 presents the “Mean
Square Error”, which is computed on all database images and for the four numbers of colors. Smaller
the error is, better is the result: we can see the good behavior of Oct and BTmed methods for 64 and
256 colors. Figure 24 shows the value of the “quality” descriptor D,, which is also computed on all
database images and for the four numbers of colors. This value is normalized between (0 and 1. The
best quality corresponds to D, = 1: best methods are the same than previously.

The subjective tests are performed with a panel of 20 observers, with different image processing
backgrounds, which have been evaluated for visual acuity and normal vision of colors by using the
Ishihara test. Subjective assessments are described by Mean Opinion Score (MOS). This value shows
the observer behavior in front of the different visual tests. Table 9 presents average and standard
deviation of MOS for all images and observers. Higher is the MOS value, best is the quantization
method. Nevertheless, MOS value above 4 is considered as very good result. Only Mcut method does
not satisfy this condition. Our method is not the best but it can be qualified of “good”.

Table 9: MOS and standard deviation for all images.
‘ Algorithm H MOS ‘ Std. dev. ‘

BTmed 4.6 2.1
Oct 5.1 1.9
S&M 5.3 2.3
Mcut 3.0 2.1
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Figure 23: Quality descriptor for all images. Figure 24: Mean quadratic error for all images.

5 CONCLUSION

In this article we present a technique to reduce the number of colors contained in an image. This
method, based on the use of the “Baker’s Transformation”, is very effective and has the advantage of
being completely adaptive. The user imposes only the desired number of colors in the final image.
We explored three approaches to select the pallet giving the most satisfactory quantization. The
approach based on the research of the median pallet satisfies this aim. This result is confirmed by
analysis performed on L*a*b* space. To conclude about the interest of our method, we compared it
with classical methods like median cut, split & merge or octree. Objective and subjective assessments
show that our method is as good as the octree method.

Future works will be to improve our method by introducing a weight of color axes in delta, and to
use our method in color quantization in video sequence. We are currently exploring another way,
which consists of using this technique to build a color “invariant”. This “invariant” would be used in

a procedure of image indexing.
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