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Summary. This chapter deals with the exact enumeration of certain classes of self-
avoiding polygons and polyominoes on the square lattice. We present three general
approaches that apply to many classes of polyominoes. The common principle to all
of them is a recursive description of the polyominoes which then translates into a
functional equation satisfied by the generating function. The first approach applies
to classes of polyominoes having a linear recursive structure and results in a rational
generating function. The second approach applies to classes of polyominoes having
an algebraic recursive structure and results in an algebraic generating function. The
third approach, commonly called the Temperley method, is based on the action of
adding a new column to the polyominoes. We conclude by discussing some open
questions.

1 Introduction

1.1 Subclasses of polygons and polyominoes

This chapter deals with the ezact enumeration of certain classes of (self-
avoiding) polygons and polyominoes. We restrict our attention to the square
lattice. As the interior of a polygon is a polyomino, we often consider polygons
as special polyominoes. The usual enumeration parameters are the area (the
number of cells) and the perimeter (the length of the border). The perimeter
is always even, and often refined into the horizontal and vertical perimeters
(number of horizontal /vertical steps in the border). Given a class C of polyomi-
noes, the objective is to determine the following complete generating function

of C:
C(ac, Y, q) = Z xhp(P)/vap(P)/Qqa(P),
precC
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where hp(P), vp(P) and a(P) respectively denote the horizontal perimeter,
the vertical perimeter and the area of P. This means that the coefficient
c(m,n, k) of z™y"¢" in the series C(x,y, q) is the number of polyominoes in
the class C having horizontal perimeter 2m, vertical perimeter 2n and area k.
Several specializations of C'(z,y,q) may be of interest, such as the perimeter
generating function C(t,t,1), its anisotropic version C(z,y,1), or the area
generating function C(1,1, q). From such exact results, one can usually derive
many of the asymptotic properties of the polyominoes of C: for instance the
asymptotic number of polyominoes of perimeter n, or the (asymptotic) average
area of these polyominoes, or even the limiting distribution of this area, as
n tends to infinity (see Chapter 11). The techniques that are used to derive
asymptotic results from exact ones are often based on complex analysis. A
remarkable survey of these techniques is provided by Flajolet and Sedgewick’s
book [BJ).

The study of sub-classes of polyominoes is natural, given the immense dif-
ficulty of the full problem (enumerate all polygons or all polyominoes). The
objective is to develop new techniques, and to push further and further the
border between solved and unsolved models. However, several classes have an
independent interest, other than being an approximation of the full problem.
For instance, the enumeration of partitions (Fig. f(e)) is relevant in number
theory and in the study of the representations of the symmetric group. The
first enumerative results on partitions date back, at least, to Euler. A full
book is devoted to them, and is completely independent of the enumeration
of general polyominoes [E] Another example is provided by directed polyomi-
noes, which are relevant for directed percolation, but also occur in theoretical
computer science as binary search networks [@]

All these classes will be systematically defined in Section B For the mo-
ment, let us just say that most of them are obtained by combining conditions
of convexity and directedness.

From the perspective of subclasses as an approximation to the full prob-
lem, it is natural to ask how good this approximation is expected to be. The
answer is quite crude: these approximations are terrible. For a start, all the
classes that have been counted so far are exponentially small in the class of all
polygons (or polyominoes). Hence we cannot expect their properties to reflect
faithfully those of general polygons/polyominoes. Why would the properties
of a staircase polygon (Fig. (b)) be similar to those of a general self-avoiding
polygon? Indeed, the number of staircase polygons of perimeter 2n grows like
220y —3/2 (up to a multiplicative constant), while the number of general poly-
gons is believed to be asymptotically p?"n=>%/2, with y = 2.638. .. ] The
average width of a staircase polygon is clearly linear in n, while the width
of general polygons is conjectured to grow like n3/* (see [id]). And so on! In
this context, it may be a pure coincidence that the average area of polygons
of perimeter 2n is conjectured to scale as n*/? (see [@]), just as it does for
staircase polygons. But it is also conjectured that the limit distribution of
the area of 2n-step polygons (normalized by its average value) coincides with
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the corresponding distribution for staircase polygons, and for other exactly
solved classes. The universality of this distribution may not be a coincidence
(see Chapter 11 or [p(] for more references and details).

1.2 Three general approaches

In this chapter, we present three robust approaches that can be applied to
count many classes C of polyominoes. The common principle of all of them is
to translate a recursive description of the polyominoes of C into a functional
equation satisfied by the generating function C(x,y,q). Some readers may
prefer seeing a translation in terms of the coefficients of C(x,y, ¢), namely the
numbers ¢(m, n, k). This translation is possible, but it is usually easier to work
with a functional equation than with a recurrence relation. The applicability
of each of these three approaches depends on whether the polyominoes of C
have, or don’t have, a certain type of recursive structure.

The most versatile approach is probably the third one, as it virtually ap-
plies to any class of polyominoes having a convexity property. It was already
used by Temperley in 1956 [@] and is often called, in the physics literature,
the Temperley approach. However, it often produces functional equations that
are non-trivial to solve, even when the solution finally turns out to be a simple
rational or algebraic series (these terms will be defined in Section E below).
From a combinatorics point of view, it is important to get a better understand-
ing of the simplicity of these series, and this is what the first two approaches
provide: the first one applies to classes C having a linear structure, and gives
rise to rational generating functions. The second applies to classes having an
algebraic structure, and gives rise to algebraic generating functions.

We have chosen to present these three approaches because, in our opinion,
they are the most robust ones, and we want to provide effective tools to the
reader. To our knowledge, almost all the classes that have been solved exactly
can be solved using one (or several) of these approaches. Still, certain results
have been given a beautiful combinatorial explanation via more specific tech-
niques. Let us mention two tools that are often involved in those alternative
approaches. The first tool is specific to the enumeration of polygons, and con-
sists in studying classes of possibly self-intersecting polygons, and then using
an inclusion-exclusion principle to eliminate the ones with self-intersections.
This idea appears in an old paper of Pélya [@ dealing with staircase polygons,
and was further exploited to count more general polygons [@, , including
in dimensions larger than two [Bg, [[3]. The second tool is the use of bijections
and is of course not specific to polyomino enumeration. The idea is to describe
a one-to-one correspondence between the objects of C and those of another
class D, having a simpler recursive structure. In this chapter, even though we
often use encodings of polyominoes by words, these encodings are usually very
simple and do not use the full force of bijective methods, which is clearly at

work in papers like [l or [R(].
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The structure of the chapter is simple: the three approaches we discuss
are presented, and illustrated by examples, in Sections E, E and ff respectively.
A few open problems which we consider worth investigating are discussed in
Section E

We conclude this introduction with definitions of various families of poly-
ominoes and formal power series.

1.3 A visit to the zoo

All the classes studied in this chapter are obtained by combining several con-
ditions of converity and directedness. Let us first recall that a polyomino P
is a finite set of square cells of the square lattice whose interior is connected.
The set of centres of the cells form an animal A (Fig. [I). The connectivity
condition means that any two points of A can be joined by a path made up
of unit vertical and horizontal steps, in such a way that every vertex of the
path lies in A. The animal A is North-Fast directed (or directed, for short) if it
contains a point vy, called the source, such that every other point of A can be
reached from vy by a path made of North and East unit steps, having all its
vertices in A. In this case, the polyomino corresponding to A is also said to be
NE-directed. One defines NW, SW and SE directed animals and polyominoes
similarly.

A polyomino P is column-convez if its intersection with every vertical line
is connected. This means that the intersection of every vertical line with the
corresponding animal A is formed by consecutive points. The border of P is
then a polygon. Row-convexity is defined similarly. Finally, P is d-convex
if the intersection of A with every line of slope 1 is formed by consecutive
points. One defines d_-convex polyominoes similarly.

[ 1]

B o [ 3
| - OFH O m ,\iB

@ (b) © (d)

l

Fig. 1. From left to right: (a) a polyomino and the corresponding animal, (b) a
NE-directed animal, (c) a column-convex polygon, (d) a d_-convex polyomino.

As discussed in [J], the combination of the four direction conditions and the
four connectivity conditions gives rise to 31 distinct (non-symmetric) classes
of polyominoes having at least one convexity property. To these 31 classes we
must add the 4 different classes satisfying at least one directional property.
Some prominent members of this zoo, which will occur in the forthcoming
sections, are shown in Fig. :
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e conver polyominoes (or polygons): polyominoes that are both column- and
rOW-convex,

e staircase polyominoes (or polygons): convex polygons that are NE- and
SW-directed,
bargraphs: column-convex polygons that are NE- and NW-directed,
stacks: row-convex bargraphs,
partitions, a.k.a. Ferrers diagrams: convex polygons that are NE-, NW-
and SE-directed.

Finally, a formal power series C(x) = C(z1,. .., x)) with real coefficients is
rational if it can be written as a ratio of polynomials in the x;’s. It is algebraic
if it satisfies a non-trivial polynomial equation

P(C(x),x1,...,2x) = 0.

@ (b) E_ @, (d) ©
N | | [ [] ]

Fig. 2. A photo taken at the zoo: (a) a convex polygon, (b) a staircase polygon, (c)
a bargraph, (d) a stack, (e) a Ferrers diagram.

2 Linear models and rational series

2.1 A basic example: bargraphs counted by area

Let b,, denote the number of bargraphs of area n. As there is a unique bargraph
of area 1, by = 1. For n > 2, there are two types of bargraphs:

1. those in which the last (i.e., rightmost) column has height 1,
2. those in which the last column has height 2 or more.

Bargraphs of the first type are obtained by adding a column of height 1 to the
right of any bargraph of area n— 1. Bargraphs of the second type are obtained
by adding one square cell to the top of the last column of a bargraph of area
n — 1. Since a bargraph cannot be simultaneously of type 1 and 2, this gives

by =1 and forn>2, b,=2b,_1,
which implies b, = 2"~ !. The area generating function of bargraphs is thus a

rational series: q
B(q)::anqn:172 :
n>1 q
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2.2 Linear objects

The above enumeration of bargraphs is based on a very simple recursive de-
scription of bargraphs. This description only involves the following two con-
structions:

1. taking disjoint unions of sets,
2. concatenating a new cell to an already constructed object.

In terms of generating functions (g.f.s), taking the disjoint union of sets means
summing their g.f.s, while concatenating a new cell (of size 1) to all elements of
a set means multiplying its g.f. by ¢. Hence the above description of bargraphs
translates directly into a linear equation for the g.f. B(q):

B(q) = q+qB(q) + ¢B(q).

This equation reflects the fact that the set of bargraphs is the union of three
disjoint subsets (the unique bargraph of area 1, bargraphs of type 1, bargraphs
of type 2), and that the second and third subsets are both obtained by adding
a cell to any bargraph.

More generally, we will say that a class of objects, equipped with a size, is
linear if these objects can be obtained from a finite set of initial objects using
disjoint union and concatenation of one cell, or atom. It is assumed that the
concatenation of an atom increases the size by 1. The construction must be
non-ambiguous, meaning that each object of the class is obtained only once.
The construction may involve several classes of objects simultaneously. For
instance, the class B of bargraphs whose last column has height 1 is linear:
the objects of BB, other than the one-cell bargraph, are obtained by adding one
cell to the right of any bargraph. The associated series B (q) is defined by the
linear system: ~

{ B(q) = q+ ¢B(q),
B(q) = g+ qB(q) + ¢B(q).

In general, the generating function of a linear class of objects is the first
component of the solution of a system of k linear equations of the form

k
Bi(q) = P;(q) + qzai,ij(q) 1<i<k, (1)

where a; ; € N and each P;(g) is a polynomial in ¢ with coefficients in N. The
polynomial P;(q) counts the initial objects of type i, and there are a; ; ways
to aggregate an atom to an object of type j to form an object of type ¢. The
system () uniquely defines each series B;(g), which is rational. The series
obtained in this way are called N-rational. Their study is closely related to
the theory of reqular languages [@]
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2.3 More linear models

In this section we present three typical problems that can be solved via a linear
recursive description. The first one is the perimeter enumeration of Ferrers
diagrams (and stacks). The second one generalizes the study of bargraphs
performed in Section @ to all column-convex polygons (and to the subclass
of directed column-convex polygons) counted by area. The third one illustrates
the role of linear models in the approximation of hard problems, and deals
with the enumeration of self-avoiding polygons confined to a narrow strip. In
passing, we illustrate the two following facts:

1. it may be useful to begin by describing a size preserving bijection between
polyominoes and other objects (having a linear structure),

2. linear constructions are conveniently described by a directed graph when
they become a bit involved.

Ferrers diagrams by perimeter

The set of Ferrers diagrams can be partitioned into three disjoint subsets: first,
the unique diagram of (half-)perimeter 2; then, diagrams of width at least 2
whose rightmost column has height 1; finally, diagrams with no column of
height 1. The latter diagrams can be obtained by duplicating the bottom row
of another diagram (Fig. [J).

RV AN

Fig. 3. Recursive description of Ferrers diagrams.

From this description, it follows that the set of words that describe the
North-East boundary of Ferrers diagrams, from the NW corner to the SE one,
admits a linear construction. This boundary is formed by East and South
steps, and will be encoded by a word over the alphabet {e,s}. Any word
over this alphabet that starts with an e and ends with an s corresponds to
a unique Ferrers diagram. Let F be this class of words, and let £ be the set
of all non-empty prefixes of words of F. Then F and £ admit the following
linear description:

F=Ls and L={e}ULeULs.

In these equations, the notation £s means {us, u € L}, and the unions are
disjoint. The series that count the words of these sets by their length (number
of letters) are thus given by the linear system
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F(t)=tL(t) and L(t) =t+ 2tL(t).

Since the length of a coding word is the half-perimeter of the associated dia-
gram, this provides the length g.f.:

t2
F@t) = = n—2n,
(*) 1— 2t ;

By separately counting East and South steps, we obtain the equations
F(z,y) =yL(z,y) and L(z,y) =z +zL(z,y) +yL(z,y),  (2)
and hence the anisotropic perimeter g.f. of these diagrams:
Ty m4+n—2
r - mon.
O i) Dl G
m,n>1

A similar treatment can be used to determine the perimeter g.f. of stack
polygons: the construction schematized in Fig. E gives:

S(x,y) =xy+xS(x,y) + S (z,y), Si(x,y) =yS(x,y)+ xS (z,y)

which yields
zy(l — )

SV =y

@ = B U Q U &
Fig. 4. Recursive description of stack polygons.

Column-convex polygons by area

Consider a column-convex polygon P having n cells. Let us number these
cells from 1 to n as illustrated in Fig. E The columns are visited from left to
right. In the first column, cells are numbered from bottom to top. In each of
the other columns, the lowest cell that has a left neighbour gets the smallest
number; then the cells lying below it are numbered from top to bottom, and
finally the cells lying above it are numbered from bottom to top. Note that for
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8] [a ]
[ ] 3171 [13] al la]
2161(9|10/15 alclc
114 1114 clc ble
L] L 5] (12 o] [b]

Fig. 5. A column-convex polygon, with the numbering and encoding of the cells.

all ¢, the cells labelled 1,2, ..., form a column-convex polygon. This labelling
describes the order in which we are going to aggregate the cells.

Associate with P the word u = uy - - - u,, over the alphabet {a, b, ¢} defined
by

—u; = ¢ (like Column) if the i*! cell is the first to be visited in its column,

—u; = b (like Below) if the i*" cell lies below the first visited cell of its
column,

— u; = a (like Above) if the i*" cell lies above the first visited cell of its
column.
Then, add a bar on the letter u; if the i*" cell of P has a South neighbour,
an East neighbour, but no South-East neighbour. (In other words, the barred
letters indicate where to start a new column, when the bottommost cell in
this new column lies above the bottommost cell of the previous column.)
This gives a word v over the alphabet {a,b, ¢, a, b, ¢}, and P can be uniquely
reconstructed from v.

We now focus on the enumeration of these coding words. Let £ be the set
of all prefixes of these words, including the empty prefix €. By considering
which letter can be added to the right of which prefix, we are led to partition

L into five disjoint subsets L1, ..., L5, subject to the following linear recursive
description:
‘Cl = {6}5
£2 = £16U£20U£3GU£4C, £4 = EQ&Uﬁg@UﬁMlUﬁsb, (3)
Eg = EQCUEgbUEgC, £5 = EQEU EgbUﬁgEUEsb.

The words of £4 and L5 are those in which a barred letter (the rightmost one)
still waits to be “matched” by a letter ¢ creating a new column. The words
of Lo U L3 are those that encode column-convex polygons. This construction
is illustrated by a directed graph in Fig. E: every path starting from 1 and
ending at ¢ corresponds to a word of £;, obtained by reading edge labels. The
series counting the words of £; by their length satisfy:

Li=1,
Ly=q(Li+ Lo+ L3+ L), Li=q(Lo+Ls+ Ls+ Ls),
Ly =q(Ly+ L3+ Ls), Ls; =q(La+ Lsg+ L3+ Ls) .

The area g.f. of column-convex polygons is C(q) = La(q) + L3(g). Solving the
above system gives:
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Fig. 6. Linear construction of the words of £. The words of £; encode the paths
starting from 1 and ending at .

_ q(1-q)°
Cla) = 1-5¢+7q¢>—4q¢>

We believe that this result was first published by Temperley [@]

A column-convex polygon is directed if and only if its coding word does
not use the letter b. We obtain a linear description of the prefixes of these
words by deleting all terms of the form £;b in the description (f]). The class
L5 becomes irrelevant. Solving the associated system of linear equations gives
the area g.f. of directed column-convex polygons:

q(1—q)

As far as we know, this result was first published by Klarner [B].

Polygons confined to a strip

Constraining polyominoes or polygons to lie in a strip of fixed height endows
them with a linear structure. This observation gives a handle to attack diffi-
cult problems, like the enumeration of general self-avoiding polygons (SAP),
self-avoiding walks, or polyominoes [EI, E, @, E, @] As the size of the strip
increases, the approximation of the confined problem to the general one be-
comes better and better. This widely applied principle gives, for instance,
lower bounds on growth constants that are difficult to determine. We illus-
trate it here with the perimeter enumeration of SAP confined to a strip.
Before we describe this calculation, let us mention a closely related idea,
which consists of considering anisotropic models (for instance, SAP counted
by vertical and horizontal perimeters), and fixing the number of atoms lying
in one direction, for instance the number of horizontal edges. Again, this
endows the constrained objects with a linear structure. The denominators
of the rational generating functions that count them often factor in terms
(1 — y*). The number of exponents i that occur can be seen as a measure of
the complexity of the class. This is often observed only at an experimental
level. However, this observation has been pushed in some cases to a proof that
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the corresponding generating function is not D-finite, and in particular not
algebraic (see for instance [[i], and Chapter 5).

But let us return to SAP in a strip of height k (a k-strip). A first ob-
servation is that a polygon is completely determined by the position of its
horizontal edges. Consider the intersection of the polygon with a vertical line
lying at a half-integer abscissa (a cut): the strip constraint implies that only
finitely many configurations (or states) can occur. The number of such states
is the number of even subsets of {0, 1, ..., k}. This implies that SAP in a strip
can be encoded by a word over a finite alphabet. For instance, the polygon of
Fig. ﬁ is encoded by the word bbbaabaaba.

Fig. 7. A self-avoiding polygon in a strip of height 2, encoded over a 3-letter alpha-
bet.

It is not hard to see that for all k, the set of words encoding SAP confined
to a strip of height k has a linear structure. To make this structure clearer,
we refine our encoding: for every vertical cut, we not only keep track of its
intersection with the polygon, but also of the way the horizontal edges that
meet the cut are connected to the left of the cut. This does not change the
size of the alphabet for k = 2, as there is a unique way of coupling two edges.
However, if £ = 3, the configuration where 4 edges are met by the cut gives
rise to 2 states, depending on how these 4 edges are connected (Fig. E) The
number of states is now the number of non-crossing couplings on {0, 1, ..., k}.
This is also the size of our encoding alphabet A.

Fig. 8. A self-avoiding polygon in a strip of height 3, encoded by the word
dba féceaa féaceeabece.

Fix k, and let S be the set of words encoding SAP confined to a k-strip.
The set L of prefizes of words of S describes incomplete SAP, and has a simple
linear structure: for every such prefix w, the set of letters a such that wa lies
in £ only depends on the last letter of w. In other words, these prefixes are
Markovian with memory 1. For every letter a in the encoding alphabet, we
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denote by L, the set of prefixes ending with the letter a. The linear structure
can be encoded by a graph, from which the equations defining the sets £, can
automatically be written. This graph is shown in Fig. ] (left) for k = 2. Every
path in this graph starting from the initial vertex 0 corresponds to a word of
L, obtained by reading vertex labels. The linear structure of prefixes reads:

Lo=(e+ Lo+ Ly+Ly)a, Ly=(e+Ly+Ly)b, Lj=(e+Ly+L;)b

From this we derive linear equations for incomplete SAP, where every hori-
zontal edge is counted by /z, and every vertical edge by |/y = z:

L, = (2% +Lo+zLy+zLi)x, Ly=(2+z2La+Ly)x, Lj=(2+2Ls+ Lj)x.

These equations keep track of how many edges are added when a new letter
is appended to a word of L. They can be schematized by a weighted graph
(Fig. E, middle). Now the (multiplicative) weight of a path starting at 0 is
the weight of the corresponding incomplete polygon. Finally, the completed
polygons are obtained by adding vertical edges to the right of incomplete
polygons. This gives the generating function of SAP in a strip of height 2 as:

Sg(w, y) = Z2La + zLy + ZLB.

Qw O
/ 2z Tz 2z
@4,01 i, Oz

AR

Hos

Fig. 9. The linear structure of SAP in a 2-strip.

Clearly, we should exploit the horizontal symmetry of the model to obtain
a smaller set of equations. The letters b and b playing symmetric roles, we
replace them in the graph of Fig. E by a unique vertex 3, such that the
generating function of paths ending at J is the sum of the g.f.s of paths
ending at b and b in the first version of the graph (Fig. f, right). Introducing
the series Lg = L + Lj, we have thus replaced the previous system of four
equations by

Lo=(2+ Lo+ 2Lg), Lg=x(22+22La+Lg), Sa(z,y) = 22La + 2L,
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from which we obtain

xy(2 — 2z + y + 3ay)
(1 —x)% —222%y

SQ(‘Tay) =

Note that this series counts polygons of height 1 twice, so that we should
subtract S1(z,y) = zy/(1 — ) to obtain the g.f. of SAP of height at most 2,
defined up to translation.

2uz 20z
. C}@ <)gv(1+zz)
Tz

Tz
2z
xrz 1'22 ;
wz? (o
223 2z

Tz
2
— T~
-~
2

Fig. 10. The linear structure of SAP in a 3-strip.

For k = 3, the original alphabet, shown in Fig. E, has 8 letters, but two
pairs of them play symmetric roles. After merging the vertices b and b on the
one hand, ¢ and ¢ on the other, the condensed graph, with its z, z weights, is
shown in Fig. E The corresponding equations read

Lo = (24 Lo + 2Lg + 2°Ly + 2°Lq + zL.) ,

Lg :x(222+2zLa+(1+22)L5+2LW+2zLd),
Ly=2(224222L,+2Lg+ L, +22zLy),
Ld:x(z+22La+ng+Ld),

L.=2? (22+zL7+Le),

Ly =22 (ZLaJrLf),

and the generating function of completed polygons is

ryN(z,y)

S3(z,y) = 2°Lg + 2°Lg + 2Ly + 2Lg + 2°Ly = D)

where

N(z,y)=3@+1)°1-2)"+6G2r+2)2e—-1)(z+1)*(@z-1)7"y
—(x—1)(62°+42° — 182" —62° + 112> + 8z + 1) y°
—z(z+1) (22" +62° — 82> +4x+1)y°

and
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D(z,y) = (¢ +1)" (& = 1)° =z (1 +42) (z + 1)* (z = 1)"y
+ 22 (3x4+4x3—6z2—8z—3) (x — 1)2y2
+ 2% (z+1) (2® + 32> =5z +3) y°.
By setting x = y = ¢, we obtain the half-perimeter generating function of
SAP in a 3-strip,
2 (=8t + 415+ 107 — 2015 — 5 — t* + 713 + 3> — Tt + 3)

Sa(t) =
3() 4110 — 249 _ 548 1 84T — 6 1 245 — 414 + 243 + 342 — 4t + 1

and, by looking at the smallest pole of this series, we also obtain the (very
weak) lower bound 1.68... on the growth constant of square lattice self-avoiding
polygons.

The above method has been automated by Zeilberger [5q. It is not hard
to see that the number of states required to count polygons in a k-strip grows
like 3%, up to a power of k. This prevents one from applying this method for
large values of k. Better bounds for growth constants may be obtained via
the finite lattice method described in Chapter 7. A further improvement is
obtained by looking at a cylinder rather than a strip [E]

2.4 g-Analogues

By looking at the height of the rightmost column of Ferrers diagrams, we have
described a linear construction of these polygons that proves the rationality
of their perimeter g.f. (Fig. E) Let us examine what happens when we try to
keep track of the area in this construction.

They key point is that the area increases by the width of the polygon when
we duplicate the bottom row. (In contrast, the half-perimeter simply increases
by 1 during this operation.) This observation gives the following functional
equation for the complete g.f. of Ferrers diagrams:

F(z,y,q) = 2yq + 2qF (z,y,q) + yF(rq,y,q).

This is a g-analogue of the equation defining F'(z,y, 1), derived from (B). This
equation is no longer linear, but it can be solved easily by iteration:

ryq y
F = F
(2,9,4q) —2g T1-2g (zq,y,49)

2
ryq Yy xyq y y )
- ” A
l—xq 1—2q1—x¢? 1—.’Eq1—xq2}(xq v,q) (4)

-3 ry"q"

n>1 (zq)n

with
(xq)o=1 and (zq), = (1 —zq)(1 — 2¢*)--- (1 — 2q").
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Similarly, for the stack polygons of Fig. E, one obtains:

S(z,y,q) = zyq+xqS(z,y,q) + S (z,y,q),
Si(z,y,q) = yS(xq,y,q) + ¢S4 (x,y,q).

Eliminating the series S gives

ryq Yy
1—xq * (1 —2q)?

B zy"q"
B Z (‘TQ)n—l(‘TQ)n'

n>1

S(z,y,q) = S(zq,y,q)

In Section E we present a systematic approach for counting classes of
column-convex polygons by perimeter and area.

3 Algebraic models and algebraic series

3.1 A basic example: bargraphs counted by perimeter

Let us return to bargraphs. The linear description used in Section E to count
them by area cannot be directly recycled to count them by perimeter: indeed,
when we add a cell at the top of the last column, how do we know if we increase
the perimeter, or not? Instead, we are going to scan the polygon from left to
right, and factor it into two smaller bargraphs as soon as we meet a column
of height 1 (if any). If there is no such column, deleting the bottom row of the
polygon leaves another bargraph. This description is schematized in Fig E

A A Y WY S I I T

Fig. 11. A second recursive construction of bargraphs.

Let B be the set of words over the alphabet {n, s, e} that naturally encode
the top boundary of bargraphs, from the SW to the SE corner. Fig. @ trans-
lates into the following recursive description, where the unions are disjoint:

B=nls with L=nLsU{e}UelLUnLseUnLseL. (5)

This implies that the anisotropic perimeter g.f. of bargraphs satisfies

{B(x,y) = yL(z,y),
L(z,y) = yL(z,y) + = + xL(z,y) + xyL(z,y) + zyL(z,y)*.

These equations are readily solved and yield:
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l—z—y—ay— /(1 —y)((1 —2) -y +2)?)
2x ’

B(z,y) =

(6)

Thus the perimeter g.f. of bargraphs is algebraic, and its algebraicity is ex-
plained combinatorially by the recursive description of Fig. @

Note that one can directly translate this description into an algebraic
equation satisfied by B(z,y), without using the language B. This language
is largely a convenient tool to highlight the algebraic structure of bargraphs.
The translation of Fig. EI into an equation proceeds as follows: there are
two types of bargraphs, those that have at least one column of height 1, and
the others, which we call thick bargraphs. Thick bargraphs are obtained by
duplicating the bottom row of a general bargraph, and are thus counted by
yB(z,y). Among bargraphs having a column of height 1, we find the single
cell bargraph (g.f. xy), and then those of width at least 2. The latter class can
be split into 3 disjoint classes:

— the first column has height 1: these bargraphs are obtained by adding a
cell to the left of any general bargraph, and are thus counted by xB(z,y),

— the last column is the only column of height 1; these bargraphs are obtained
by adding a cell to the right of a thick bargraph, and are thus counted by
zyB(z,y),

— the first column of height 1 is neither the first column, nor the last column.
Such bargraphs are obtained by concatenating a thick bargraph, a cell, and
a general bargraph; they are counted by xB(z,y)?%.

This discussion directly results in the equation

B(z,y) = yB(x,y) + xy + 2B(z,y) + vy B(z,y) + 2B(z,y)". (7)

3.2 Algebraic objects

The above description of bargraphs involved two constructions:

1. taking disjoint unions of sets,
2. taking cartesian products of sets.

For two classes A; and As, the element (a1, az2) of the product A; x Ay is
seen as the concatenation of the objects a1 and as. We will say that a class of
objects is algebraic if it admits a non-ambiguous recursive description based
on disjoint unions and cartesian products. It is assumed that the size of the
objects is additive for the concatenation. For instance, (ﬂ) gives an algebraic
description of the words of £ and B.

In the case of linear constructions, the only concatenations that were al-
lowed were between one object and a single atom. As we can now concatenate
two objects, algebraic constructions generalize linear constructions. In terms
of g.f.s, concatenating objects of two classes means taking the product of the
corresponding g.f.s. Hence the g.f. of an algebraic class will always be the first
component of the solution of a polynomial system of the form:
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Ai:Pi(t,Al,...,Ak) fOI’ 1§Z§k/’,

where P; is a polynomial with coefficients in N. Such series are called N-
algebraic, and are closely related to the theory of context-free languages. We
refer to [@] for details on these languages, and to [IE] for a discussion of
N-algebraic series in enumeration.

3.3 More algebraic models

In this section we present three problems that can be solved via an algebraic
decomposition: staircase polygons, then column-convex polygons counted by
perimeter (and the subclass of directed column-convex polygons), and finally
directed polyominoes counted by area.

Staircase polygons by perimeter

In Section E we defined staircase polygons through their directed and con-
vexity properties. See Fig. E(b) for an example. We describe here a recursive
construction of these polygons, illustrated in Fig. . It is analogous to the
construction of bargraphs described at the end of Section B.1 and illustrated
in Fig. @ Denote by S(x,y) the anisotropic perimeter generating function of
staircase polygons.

1y . od

Fig. 12. A recursive construction of staircase polygons.

We say that a staircase polygon is thick if deleting the bottom cell of each
column gives a staircase polygon of the same width. These thick polygons are
obtained by duplicating the bottom cell in each column of a staircase polygon,
so that their generating function is yS(z,y).

Among non-thick staircase polygons, we find the single cell polygon (g.f.
xy), and then those of width at least 2. Let P be in the latter class, and denote
its columns C1, ..., C, from left to right. The fact that P is not thick means
that there exist two consecutive columns, C; and C;41, that overlap by one
edge only. Let ¢ be minimal for this property. Two cases occur:
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— the first column has height 1. In particular, i = 1. These polygons are ob-
tained by adding a cell to the bottom left of any general staircase polygon,
and are thus counted by xS(z,y),

— otherwise, the columns C,...,C; form a thick staircase polygon, and
Cit1,...,Ck form a general staircase polygon. Concatenating these two
polygons in such a way that they share only one edge gives the original
polygon P. Hence the g.f. for this case is S(z,y)?.

This discussion gives the equation
S(z,y) = yS(z,y) +ay + xS(z,y) + S(z,y)

so that

1
S(‘Tay):5(1_1'_:1/_\/1—21‘—2y—2$y+$2+y2)

_Z 1 (p—i—q—l)(p—i—q—l)pq

= p— xPy?.

a1 P+q p q

This expansion can be obtained using the Lagrange inversion formula @] The

isotropic semi-perimeter g.f. is obtained by setting t = x = y:

Stt)y==(1-2t—V1-4t) = Z ot

n>1

DN | =

where C), = (27?) /(n+1) is the nth Catalan number. The same approach can
be applied to more general classes of convex polygons, like directed-convex

polygons and general convex polygons. See for instance [E, .

Column-convex polygons by perimeter

We now apply a similar treatment to the perimeter enumeration of column-
convex polygons (cc-polygons for short). Their area g.f. was found in Sec-
tion @ Let C denote the set of these polygons, and C(xz,y) their anisotropic
perimeter generating function. Our recursive construction requires us to in-
troduce two additional classes of polygons. The first one, Cy, is the set of
cc-polygons in which one cell of the last column is marked. The correspond-
ing g.f. is denoted Ci(x,y). Note that, by symmetry, this series also counts
cc-polygons where one cell of the first column is marked. Then, Cs denotes the
set of cc-polygons in which one cell of the first column is marked (say, with
a dot), and one cell of the last column is marked as well (say, with a cross).
The corresponding g.f. is denoted Cs(z,y). Our recursive construction of the
polygons of C is illustrated in Fig. .

We say that a cc-polygon is thick if deleting the bottom cell of each column
gives a cc-polygon of the same width. These thick polygons are obtained by
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Fig. 13. A recursive construction of column-convex polygons.

duplicating the bottom cell in each column of a cc-polygon, so that their
generating function is yC'(x, y).

Among non-thick cc-polygons, we find the single cell polygon (g.f. zy),
and then those of width at least 2. Let P be in the latter class, and denote
its columns C1, ..., C, from left to right. The fact that P is not thick means
that there exist two consecutive columns C; and C;y; that overlap by one
edge only. Let ¢ be minimal for this property. Two cases occur:

— the first column has height 1. In particular, ¢ = 1. These polygons are
obtained by adding a cell to the left of any cc-polygon having a marked
cell in its first column, next to the marked cell. They are thus counted by
:CCI (SC, y)a

— otherwise, the columns C1,...,C; form a thick cc-polygon P;, and the
columns Cit1,...,C form a general cc-polygon P,. There are several
ways of concatenating these two polygons in such a way they share only
one edge:

— either the shared edge is at the bottom of C; and at the top of C;41:
such polygons are counted by C(x,y)?,

— or the shared edge is at the top of C; and at the bottom of C;1: such
polygons are also counted by C(x,y)?,

— if (341 has height at least 2, there are no other possibilities. However,
if C;41 consists of one cell only, this cell may be adjacent to any cell
of C;, not only to the bottom or top ones. The case where C; is the



20 Mireille Bousquet-Mélou and Richard Brak
last column of P is counted by zy(C1 (z,y) — C(z,y)). The case where
i+ 1 < k is counted by x(C1(z,y)* — C(z,y)C1(x,y)).

Let us drop the variables x and y in the series C', C7 and Cy. The above
discussion gives the equation:

C =yC + xy + xCy +20? + 2y(C, — C) + 2(C? — CC).

The construction of Fig. B can now be recycled to obtain an equation for
the series C, counting cc-polygons with a marked cell in the last column.
Note that the first case of the figure (thick polygons) gives rise to two terms,
depending on whether the marked cell is one of the duplicated cells, or not:

Ch = y(C + Cl) + Yy + xzCy +2CCT + :Cy(Cl — C) + .T(Clcg — CCQ)

We need a third equation, as three series (namely C, C; and C3) are now
involved. There are two ways to obtain a third equation:

— either we interpret C; as the g.f. of cc-polygons where one cell is marked
in the first column. The construction of Fig. E gives:
C1 =y(C+C1)+ay+aC +2(C+C)C +ay((C1 — C) + (C2 — C1))
+ $((012 - CCl) + (0201 — 012))

Note that now many cases give rise to two terms in the equation.

— or we work out an equation for Cs using the decomposition of Fig. E
Again, many of the cases schematized in this figure give rise to several
terms. In particular, the first case (thick polygons) gives rise to 4 terms:

Cy = y(C+2C1+Ca) +ay+aC2+2(C+C1)Cr+ay ((C1—C)+(C2—Ch))
+ ZL'((0102 — CCQ) + (022 — Clcz))

Both strategies of course give the same equation for C' = C(z,y), after the
elimination of C'; and Cs:

(—=5zy — 18 +2zy* — 18y + 36y + 22) C*
+(y—1)(5ay® —21y* +42y — Mday+ 5z —21) C®
+2 (y—1)2 (—4y* +2zy* + 8y —Tay —4+22) C?
+(y—1)3(:cy2—y2+2y—6xy+x—1)0—acy(y—1)4:O.

This quartic has 4 roots, among which the g.f. of cc-polygons can be identified
by checking the first few coefficients. This series turns out to be unexpectedly
simple:

22
3\/5\/1+z+\/(1x)216¢

(1-y)?

Cla,y)=(1-y)[1-
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Fereti¢ has provided direct combinatorial explanations for this formula [@,
@]. The algebraic equation satisfied by C(t,t) was first® obtained (via a
context-free language) in [@] The method we have used is detailed in [@]

Directed column-convex polygons by perimeter

It is not hard to restrict the construction of Fig. to directed cc-polygons.
This is illustrated in Fig. @ Note that the case where the columns C; and
C;+1 share the bottom edge of C; (the fourth case in Fig. E) is only possible
if C;41 has height 1. Moreover, only one additional series is needed, namely
that of directed cc-polygons marked in the last column (Dy).

Fig. 14. A recursive construction of directed column-convex polygons.

One obtains the following equations:

D =yD + 2y + zD + xD? 4+ zyD + D? + zy(D; — D) 4+ z(Dy — D)D,
Dy =y(D+ Dy)+ay+axD1 +xDD1 + 2yD + DDy + xy(Dy1 — D)
+.’L'(D1 — D)D1

Eliminating D; gives a cubic equation for the series D = D(z,y):

3 Eq. (32) in [@] has an error: the coefficient of t°c® in p» should be —40 instead
of +40.
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D*+2(y-1)D*+(y—1)(z+y—1)D+ay(y—1)=0.

This equation was first obtained in [@} The first few terms of the semi-
perimeter generating function are

D(t,t) = t* 4+ 2t3 + 6t* 4+ 20> + 71° 4 263t7 + 1005¢> + 3933t + - - -

Directed polyominoes by area

Let us move to a class that admits a neat, but non-obvious, algebraic structure:
directed polyominoes counted by area. This structure was discovered when
Viennot developed the theory of heaps . Intuitively, a heap is obtained by
dropping vertically some solid pieces, one after the other. Thus, a piece lies
either on the “floor” (when it is said to be minimal), or at least partially
covers another piece.

Directed polyominoes are, in essence, heaps. To see this, replace every cell
of the polyomino by a dimer, after a 45 degree rotation (Fig. ) This gives
a heap with a unique minimal piece. Such heaps are called pyramids. If the
columns to the left of the minimal piece contain no dimer, we say we have a

half-pyramid (Fig. B, right).

&

e

Fig. 15. Left: A directed polyomino and the associated pyramid. Right: a half-
pyramid.

The interest in heaps lies in the existence of a product of heaps: The product
of two heaps is obtained by putting one heap above the other and dropping its
pieces. Conversely, one can factor a heap by pushing upwards one or several
pieces. See an example in Fig. E This product is the key in our algebraic
description of directed polyominoes, or, equivalently, of pyramids of dimers,
as we now explain.

A pyramid is either a half-pyramid, or the product of a half-pyramid and
a pyramid (Fig. , top). Let D(q) denote the g.f. of pyramids counted by the
number of dimers, and H(q) denote the g.f. of half-pyramids. Then D(q) =
H(q)(1+ D(q))-

Now, a half-pyramid can be a single dimer. If it has several dimers, it is the
product of a single dimer and of one or two half-pyramids (Fig. E, bottom),
which implies H(q) = q + qH (q) + ¢H?*(q).
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Fig. 16. A factorization of a pyramid into a pyramid and a half-pyramid. Observe
that the highest dimer of the pyramid moves up as we lift the white dimer.

DAY
.

*—o *—0 *—0

Fig. 17. Decomposition of pyramids (top) and half-pyramids (bottom).

Note that D(q) is also the area g.f. of directed polyominoes. A straightforward
computation gives:
1 1+g¢
D(q) = = —1). 8
w=3(yi%1) 0
This was first proved by Dhar [@] The above proof is adapted from [ﬂ]

3.4 g-Analogues

By looking for the first column of height 1 in a bargraph, we have described
an algebraic construction of these polygons (Fig. EI) that proves that their
perimeter g.f. is algebraic (Section @) Let us now examine what happens
when we try to keep track of the area of these polygons.

As in Section @, the key observation is that the area behaves additively
when one concatenates two bargraphs, but increases by the width of the poly-
gon when we duplicate the bottom row. (In contrast, the half-perimeter simply
increases by 1 during this operation.) This observation gives rise to the fol-
lowing functional equation for the complete g.f. of bargraphs:
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B(z,y,q) = yB(xq,y,q) + zyq + vqB(x,y, q) + zyqB(zq,y, q)
+xqB(vq,y,q)B(z,y,q9). (9)

This is a g-analogue of Equation (ﬂ) defining B(x,y,1). This equation is no
longer algebraic, and it is not clear how to solve it. It has been shown in [i4]
that it can be linearized and solved using a certain Ansatz. We will show in
Section @ a more systematic way to obtain B(x,y, q), which does not require
any Ansatz.

4 Adding a new layer: a versatile approach

In this section we describe a systematic construction that can be used to find
the complete g.f. of many classes of polygons having a convexity property @]
The cost of this higher generalization is twofold:

e it is not always clear how to solve the functional equations obtained in this
Wa'y7

e in contrast with the constructions developed in Sections E and E, this
approach does not provide combinatorial explanations for the rational-
ity /algebraicity of the corresponding g.f.s.

This type of construction is sometimes called Temperley’s approach since Tem-
perley used it to write functional equations for the generating function of
column-convex polygons counted by perimeter [% But it also occurs, in a
more complicated form, in other “old” papers [E, |. We would prefer to see
a more precise terminology, like layered approach.

4.1 A basic example: bargraphs by perimeter and area

We return to our favourite example of bargraphs, and we now aim to find the
complete g.f. B(x,y,q) of this class of polygons. We have just seen that the
algebraic description of Fig. @ leads to the g-algebraic equation (E), which is
not obvious to solve. The linear description of Section @ cannot be directly
exploited either: in order to decide whether the addition of a cell at the top
of the last column increases the perimeter or not, we need to know which of
the last two columns is higher.

We present here a variation of this linear construction that allows us to
count bargraphs by area and perimeter, provided we also take into account
the right height by a new variable s. By right height, we mean the height of
the rightmost column. The g.f. we are interested in is now

B(x,y,4,5) = »_ Bu(z,y,9)s",
h>1

where By, (z,y,q) is the complete g.f. of bargraphs of right height h.
Our new construction is illustrated in Fig. @ The class B of bargraphs is
split into three disjoint subsets:
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o P T

Fig. 18. A third recursive construction of bargraphs.

1. bargraphs of width 1 (columns): the g.f. of this class is xysq/(1 — ysq),

2. bargraphs in which the last column is at least as high as the next-to-last
column. These bargraphs are obtained by duplicating the last column of a
bargraph (which boils down to replacing s by sq in the series B(z,y, g, s)),
and adding a (possibly empty) column at the top of the newly created
column. The corresponding g.f. is thus

B .
T (2,9,4,5q)

3. bargraphs in which the last column is lower than the next-to-last column.
To obtain these, we start from a bargraph, say of right height h, and add
a new column of height ¢ < h to the right. The g.f. of this third class is:

h—1
>3 (Bh(z,y,Q) Z(S(N) =z). <Bh($’y’Q) %)

h>1 =1 h>1

—— SqB(:CayaQa 1) - B(xay,anQ)
1—sq '

(10)

Writing B(s) = B(x,y,q, s), and putting together the three cases, we obtain:

B(s) = —2y5 9 g xsq(y — 1) B(sq).
l1-ysq 1-sq (1= sq)(1 —ysq)

This equation is solved in two steps: first, an iteration, similar to what we did

for Ferrers diagrams in () (Section R4), provides an expression for B(s) in

terms of B(1):

B(s) = Z (s(y — 1))"_1(](3) ( zysq” N rsq" B(1)> .

n>1 (8@)n—1(y5¢)n—1 1—ysq™ 1—sq™

(11)

Then, one sets s = 1 to obtain the complete g.f. B(1) = B(z,y,q,1) of
bargraphs:

Iy
1-1_

B(z,y,q,1) = (12)

oy = st

= @ea e = (@n(y@)n

n;rl)
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4.2 More examples

In this section, we describe how to apply the layered approach to two other
classes of polygons: staircase and column-convex polygons, counted by perime-
ters and area simultaneously. In passing we show how the difference of g.f.s
resulting from a geometric summation like (@) can be explained combinato-
rially by an inclusion-exclusion argument.

Staircase polygons

As with the bargraph example above, we define an extended generating func-
tion which tracks the height of the rightmost column of the staircase polygon,

S(x,9,0,8) = > Sulw,y,9)s",

h>1

where Sy (z,y,q) is the generating function of staircase polygons with right
height h. The set of all staircase polygons can be partitioned into two parts

(Fig. [Ld):
1. those which have only one column: the g.f. for this class is xygs/(1 —ygs),

2. those which have more than one column: their g.f. is obtained as the
difference of the g.f. of two sets as follows.

Staircase polygons of width ¢ > 2 can be split into two objects: a staircase
polygon formed of the £ — 1 first columns, and the rightmost column. The left
part has generating function S(x,y,q,1) (ignoring the rightmost height), to
which we then attach a column of cells. The attached column is constrained
in that it must not extend below the bottom of the rightmost column of the
left part. It is generated (see Fig. [[) by gluing a descending column (with g.f.

N

Fig. 19. The two types of staircase polygons.

1/(1—g¢s)) and an ascending column (with g.f. 1/(1 —ygs)) to a single square
(with g.f. zygs). The single square is required to ensure that the column is not
empty and is glued to the immediate right of the topmost square of the left
part. An important observation is that only the ascending column contributes
in the increase of the vertical perimeter. This gives the generating function
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1 1
1—qs 1—ygs

S(z,y,q,1) - zygs -

This construction however results in configurations which might have the
rightmost column extending below the rightmost column of the left part. We
must thus subtract the contribution of these “bad” configurations from the
above g.f. We claim that they are generated by

1 1
1—¢qs 1—ygs

S(z,y,4q,5q) - xygs -

The replacement of s with sq in S(x,y, g, sq) is interpreted as adding a copy
of the last column of the left part, as illustrated in Fig. . The zyqs factor
is interpreted as attaching a new cell to the bottom of the duplicated column
(thus ensuring the rightmost column is strictly below the rightmost column
of the left part). Finally, we add a descending and an ascending column.
Again, the height of the latter must not be taken into account in the vertical
perimeter.

a) b) 1
} 1 —ygs
h T h
i }f s S(z,y,4q,5q)
} TYqs
S@yas) — S0 T

Fig. 20. a) Replacing s by sq¢ in S(z,y,q,s) duplicates the last column of the
polygon. b) Generating function of “bad” configurations.

Thus the final equation for the generating function is

T S
S(@,y:0,8) = 5 _yzqs + (S(z,y,4,1) — S(x, 9,4, 59))

xYqs
(1 —aqs)(1 —ygs)
It can also be obtained via geometric sums, as was done for (@) The equation

is solved with the same two step process as for bargraphs. First we iterate it
to obtain S(z,y, ¢, s) in terms of S(x,y, ¢, 1), and then we set s to 1, obtaining

Ji
SSC,,,IZ )
(z,9,9,1) V7,

where Jy and J; are two ¢—Bessel functions [@]
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k+1)

Jl(xay,(Z) = Z(_l)k+1 :qu( 2

2 (@r—1(ya)x
and (")
I NS A
Jo(x,y,Q) = ;%%( 1) (q)k(yQ)k

Note, the appropriate limit as ¢ — 1 leads to standard Bessel functions which
are related to the generating function for semi-continuous staircase polygons
~ see [ for details.

Column-convex polygons

The case of column-convex polygons is more complex and we will not give
all the details but only discuss the primary additional complication. We refer
to [m] for a complete solution. Like for staircase polygons, a functional equa-
tion for column-convex polygons can be obtained by considering the rightmost
(last) column. The position of the last column compared with the second last
column must be carefully considered. Again there are several cases depending
on whether the top (resp. bottom) of the last column is strictly above, at the
same level or below the top (resp. bottom) of the second-last column. The
case which leads to a type of term that does not appear in the equation for
staircase polygons is the case where the top (resp. bottom) of the last col-
umn cannot be above (resp. below) the top (resp. bottom) of the second-last
column. Thus we will only explain this case which we will refer to as the
contained case, as the last column is somehow contained in the previous one.

If the generating function for the column-convex polygons is C(s) =
C(z,y,q,s) then we claim that the polygons falling into the contained case
are counted by the generating function

R
1—sq Os

(1) - ——L_(Cc(1) - C(sq)). (13)

(1—sq)

Thus we see we now need a derivative of the generating function. As a polygon
of right height h contributes h times to the series 9C'/Js(1), this series counts
polygons with a marked cell in the rightmost column.

Let us now explain this expression, which is illustrated in Fig. @ We
consider a polygon as the concatenation of a left part with a new (rightmost)
column C'. In the left part, we mark the cell of the rightmost column that is at
the same level as the bottom cell of C'. So, starting from a marked polygon, we
first add a single square to the right of the marked cell — this gives a factor zsq.
Above this square we then add an ascending column which is generated by
1/(1—sq). However, as with the staircase polygons, the resulting series counts
“bad” configurations, where the last column ends strictly higher than the
second last column. We subtract the contribution of these bad configurations



Exactly solved models of polyominoes and polygons 29
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Fig. 21. A schematic representation of the equation for the case where the rightmost
column does not extend above or below the second-last column.

by generating them as shown on the second picture of Fig. @ This results in
subtracting the term x¢?s>C(1)/(1 — sq)?. However, we have now subtracted
too much! Indeed, some configurations counted by the latter series have a
rightmost column that ends below the second last column. We correct this by
adding the contribution of these configurations, which is z¢?s*C(sq) /(1 — sq)?
(Fig. R}, right). This establishes (E) for the g.f. of the contained case.

The other cases are simpler, and in the same vein as what was needed for
staircase polygons. Considering all cases gives

Tsyq rsq 0C xs*q*(2y — syq — 1)
_ ov 1
C(s) 1—syq 1—sq Os ( (1 —59)*(1 — syq) e

xs2¢%(1 — y)?
(1—sq)2(1 — Syq)QC(Sq)- (14)

In order to solve this equation, we first iterate it to obtain C(s) in terms of
C(1) and C'(1) = 0C/Js(1). Setting s = 1 gives a linear equation between
C(1) and C’(1). Setting s = 1 after having differentiated with respect to s
gives a second linear equation between C(1) and C'(1). We end up solving a
linear system of size 2, and obtain C(1) as a ratio of two 2 x 2 determinants.
The products of series that appear in these determinants can be simplified,
and the final expression reads

(1-yX
C 1 _—
where
n+1
Y n+1 2" (1 7y)2n—4q( N )(y2q>2n72
Z :

(1-y) 1—yq = (@Dn-1 WDn—2 WD)n_1 YD (Y2 @)n-1

and
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o (CDman (1= )2 3¢0 ) (42) 0,0
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The first solution, involving a more complicated expression, was given in [@]
The one above appears as Theorem 4.8 in [L(].

4.3 The kernel method

In Sections E and E, we have explained combinatorially why the area g.f.
of bargraphs, B(1,1,q), and the perimeter g.f. of bargraphs, B(z,y, 1), are
respectively rational and algebraic. It is natural to examine whether these
properties can be recovered from the construction of Fig. E and the functional
equation ([L1)).

As soon as we set ¥y = 1 in this equation, the main difficulty, that is,
the term B(sq), disappears. We can then substitute 1 for s and solve for
B(z,1,q,1), the width and area g.f. of bargraphs. This series is found to be

rq

B(z,1,¢,1) = T_q—uq

From this, one also obtains a rational expression for the series B(z,1,q, s).
The rationality of B(z,1,q, 1) also follows directly from the expression (@)
setting y = 1 shrinks the series Iy and I_ to simple rational functions.

How the perimeter g.f. of bargraphs can be derived from the functional
equation () is a more challenging question. Setting g = 1 gives

Bl = 7+ T3P0 ) xifiy(—f Uys)

Cl-ys 1-—s
This equation cannot be simply solved by setting s = 1. Instead, the solution
uses the so-called kernel method, which has proved useful in a rather large
variety of enumerative problems in the past 10 years [H, , B, @, @, @]
This method solves, in a systematic way, equations of the form:

B(s). (15)

K(s,z)A(s,x) = P(x,s, A1 (x),..., Ax(x))

where K(s,z) is a polynomial in s and the other indeterminates = =
(x1,...,2p), P is a polynomial, A(s,x) is an unknown series in s and the
x;’s, while the series A4;(x) only depend on the z;’s. (It is assumed that the
equation uniquely defines all these unknown series.) We refer to [[[4] for a
general presentation, and simply illustrate the method on (@) We group the
terms involving B(s), and multiply the equation by (1 — s) to obtain:

(1 s M) B(s) = 219 | o), (16)

1—ys 1—ys

Let S = S(z,y) be the only formal power series in « and y that satisfies
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B xS(y—l)_

S=1
1—9yS

That is,

_loztytay— VO -y —2)? —y( +2)°)

S o

Replacing s by S in (E) gives an identity between series in z and y. By
construction, the left-hand side of this identity vanishes. This gives

B(l)EB@yaLl):yl(si;;)
_l-a—y—ay— O — 2P —y(+ 2

B 2z ’
and we have recovered the algebraic expression (ﬂ) of the perimeter g.f. of
bargraphs.

5 Some open questions

We conclude this chapter with a list of open questions. As mentioned in the
introduction, the combination of convexity and direction conditions gives rise
to 35 classes of polyominoes, not all solved. But all these classes are certainly
not equally interesting. The few problems we present below have two impor-
tant qualities: they do not seem completely out of reach (we do not ask about
the enumeration of all polyominoes) and they have some special interest: they
deal either with large classes of polyominoes, or with mysterious classes (that
have been solved in a non-combinatorial fashion), or they seem to lie just at
the border of what the available techniques can achieve at the moment.

5.1 The quasi-largest class of quasi-solved polyominoes

Let us recall that the growth constant of n-cell polyominoes is conjectured
to be a bit more than 4. More precisely, it is believed that p,, the number
of such polyominoes, is equivalent to p"n~!, up to a multiplicative constant,
with p = 4.06... [@] The techniques that provide lower bounds on p involve
looking at bounded polyominoes (for instance polyominoes lying in a strip of
fixed height k) and a concatenation argument. See [fJ] for a recent survey and
the best published lower bound, 3.98.... It is not hard to see that for k fixed,
these bounded polyominoes have a linear structure, and a rational generating
function. This series is obtained either by adding recursively a whole “layer”
to the polyomino (as we did for self-avoiding polygons in Section E), or
by adding one cell at a time. The latter approach is usually more efficient
(Chapter 6).
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What about solved classes of polyominoes that do not depend on a param-
eter k, and often have a more subtle structure? We have seen in Section E
that the g.f. of directed polyominoes is algebraic, with growth constant 3.
This is “beaten” by the growth constant 3.20... derived from the rational
g.f. of column-convex polyominoes (Section P-J). A generalization of directed
polyominoes (called multi-directed polyominoes) was introduced in [@] and
proved to have a fairly complicated g.f., with growth constant about 3.58. To
our knowledge, this is the largest growth constant reached from exact enu-
meration (again, apart from the rational classes obtained by bounding column
heights).

However, in 1967, Klarner introduced a “large” class of polyominoes that
seems interesting and would warrant a better understanding [BJ]. His defi-
nition is a bit unclear, and his solution is only partial, but the estimate he
obtains of the growth constant is definitely appealing: about 3.72. Let us
mention that the triangular lattice version of this mysterious class is solved
in [[1]. The growth constant is found to be about 4.58 (the growth constant
of triangular lattice animals is estimated to be about 5.18, see [@])

5.2 Partially directed polyominoes

This is another generalization of directed polyominoes, with a very natural
definition: the corresponding animal A contains a source point vy from which
every other point can be reached by a path formed of North, East and West
steps, only visiting points of A (Fig. P3(a)). This model has a slight flavour
of heaps of pieces, a notion that has already proved useful in the solution
of several polyomino models (see Section E and [ﬂ, , E]) The growth
constant is estimated to be around 3.6, and, if proved, would thus improve
that of multi-directed animals [[].

(b) (©)

Fig. 22. (a) A partially directed animal. The source can be any point on the bottom
row. (b) A directed animal on the square lattice, with the right neighbours indicated
in white. (c) A directed animal A on the triangular lattice. The distinguished points
are those having (only) their South neighbour in A.
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5.3 The right site-perimeter of directed animals

We wrote in the introduction that almost all solved classes of polyominoes
can be solved by one of the three main approaches we present in this chapter.
Here is one simple-looking result that we do not know how to prove via these
approaches (nor via any combinatorial approach, to be honest).

Take a directed animal A, and call a neighbour of A any point that does
not lie in A, but could be added to A to form a new directed animal. The
number of neighbours is the site-perimeter of A. The right site-perimeter of A
is the number of neighbours that lie one step to the right of a point of A. It
was proved in [E] that the g.f. of directed animals, counted by area and right
site-perimeter, is a very simple extension of (§):

L (I+q)(1+q—qx)
D(an)_§ <\/1q(2+$)+q2(1z) _1>-

The proof is based on an equivalence with a one-dimensional gas model, in-
spired by [@] It is easy to see that the right site-perimeter is also the number
of vertices v of A whose West neighbour is not in A. (By the West neighbour,
we mean the point at coordinates (i — 1,7) if v = (4, 5)).

Described in these terms, this result has a remarkable counterpart for
triangular lattice animals (Fig. PJ). Let us say that a point (i, ) of the animal
has a West (resp. South, South-West) neighbour in A if the point (i — 1, j)
(resp. (4,5 — 1), (i — 1,5 — 1)) is also in A. Then the g.f. that counts these
animals by the area and the number of points having a SW-neighbour (but
no W- nor S-neighbour) is easy to obtain using heaps of dimers and the ideas
presented in Section ﬁ

D( )71 1+qg—qx
GE =5 1-3¢—qz )’

What is less easy, and is so far only proved via a correspondence with a gas
model, is that D(q,z) also counts directed animals (on the triangular lattice)
by the area and the number of points having a South neighbour (but no SW-
nor W-neighbour). Any combinatorial proof of this result would give a better
understanding of these objects. One possible starting point may be found in
the recent paper [@], which sheds some combinatorial light on the gas models
involved in the proof of the above identities.

5.4 Diagonally convex polyominoes

Let us conclude with a problem that seems to lie at the border of the ap-
plicability of the third approach presented here (the layered approach). In
the enumeration of, say, column-convex polyominoes (Section @), we have
used the fact that deleting the last column of such a polyomino gives another
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column-convex polyomino. This is no longer true of a d_-convex polyomino
from which we would delete the last diagonal (Fig. El(d)) Still, it seems that
this class is sufficiently well structured to be exactly enumerable. Note that
this difficulty vanishes when studying the restricted class of directed diagonally
convex polyominoes [E, @], which behave approximately like column-convex
polyominoes.
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