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Distributed Chasing of Network IntrudersL�elia Blin�IBISCUniversity of Evry91000 Evrylelia.blin�lami.univ-evry.fr Pierre FraigniaudyLRICNRS & University of Paris Sud91405 Orsay, Franepierre�lri.fr Niolas NisseyLRIUniversity of Paris Sud91405 Orsay, Franenisse�lri.frSandrine Vial�IBISCUniversity of Evry91000 Evrysandrine.vial�lami.univ-evry.frAbstratGraph searhing is one of the most popular tool for analyzing the hase for a powerfuland hostile software agent (alled the "intruder"), by a set of software agents (alled the"searhers") in a network. The existing solutions for the graph searhing problem su�erhowever from a serious drawbak: they are mostly entralized and assume a global syn-hronization mehanism for the searhers. In partiular: (1) the searh strategy for everynetwork is omputed based on the knowledge of the entire topology of the network, and (2)the moves of the searhers are ontrolled by a entralized mehanism that deides at everystep whih searher has to move, and what movement it has to perform.This paper addresses the graph searhing problem in a distributed setting. We desribea distributed protool that enables searhers with logarithmi size memory to lear anynetwork, in a fully deentralized manner. The searh strategy for the network in whih thesearhers are launhed is omputed online by the searhers themselves without knowing thetopology of the network in advane. It performs in an asynhronous environment, i.e., itimplements the neessary synhronization mehanism in a deentralized manner. In everynetwork, our protool performs a onneted strategy using at most k+1 searhers, where kis the minimum number of searhers required to lear the network in a monotone onnetedway using a strategy omputed in the entralized and synhronous setting.Keywords: graph searhing, distributed algorithm, network seurity.
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1 IntrodutionGraph searhing [26℄ is one of the most popular tool for analyzing the hase for a powerfuland hostile agent, by a set of software agents in a network. Roughly speaking, graph searhinginvolves an intruder and a set of searhers, all moving from node to node along the links of anetwork. The intruder is powerful in the sense that it is supposed to move arbitrarily fast, andto be permanently aware of the positions of the searhers. However, the intruder annot rossa node or an edge oupied by a searher without being aught. Conversely, the searhers areunaware of the position of the intruder. They are aiming at surrounding the intruder in thenetwork. The intruder is aught by the searhers when a searher enters the node it oupies.For instane, one searher an ath an intruder in a path (by moving from one extremity of thepath to the other extremity), while two searhers are required to ath an intruder in a yle(starting from the same node, the two searhers move in opposite diretions). Another typialexample is the n-node square mesh, in whih �(pn) searhers are neessary and suÆient forathing an intruder. In addition to network seurity, graph searhing has several other pratialmotivations, suh as resuing speleologists in aves [8℄ or deontaminating a set of pollutedpipes [27℄. It has also several appliations to the Graph Minor theory as it provides a dynamiapproah to the analysis of stati graph parameters suh as treewidth and pathwidth [6℄.The main question addressed by graph searhing is: given a graph G, what is the searhnumber of G? That is, what is the minimum number of searhers, s(G), required to learthe graph G, i.e., to apture the intruder? This question is motivated by, e.g., the need foronsuming the minimum amount of omputing resoures of the network at any time, whilelearing it. The deision problem orresponding to omputing the searh number of a graphis NP-hard [26℄, and NP-ompleteness follows from [7, 24℄. Computing the searh number ishowever polynomial for trees [25, 26℄, and the orresponding searh strategy an be omputedin linear time [30℄. In fat, the searh number of a graph is known to be roughly equal tothe pathwidth, pw, of the graph, and therefore the searh number of an n-node graph an beapproximated in polynomial time, up to multipliative fator O(lognplog tw) where tw denotesthe treewidth of the graph (see [14℄, and use the fat that pw=tw � O(log n)).The graph searhing problem has given rise to a vast literature (f. Setion 1.2), in whihseveral variants of the problem are disussed and solved. Nevertheless, from a distributedsystems point of view, the existing solutions for the graph searhing problem (f., e.g., [25, 26,30℄) su�er from a serious drawbak: they are mostly entralized. In partiular, (1) the searhstrategy for every network is omputed based on the knowledge of the entire topology of thenetwork, and (2) the moves of the searhers are ontrolled by a entralized mehanism thatdeides at every step whih searher has to move, and what movement it has to perform. Thesetwo fats limit the appliability of the solutions. Indeed, as far as networking or speleology isonerned, the topology of the network is often unknown, or its map unpreise. The topology aneven evolve with time (either slowly as for, e.g., Internet, or rapidly as for, e.g., P2P networks).Moreover, the mobile entities involved in the searh strategy an hardly be ontrolled by aentral mehanism ditating their ations. All these onstraints make entralized algorithmsinappropriate for many pratial instanes of the graph searhing problem.This paper addresses the graph searhing problem in a distributed setting, that is thesearhers must ompute their own searh strategy for the network in whih they are urrentlyrunning. This distributed omputation must not require knowing the topology of the networkin advane (not even its size), and the searhers must at in absene of any global synhro-nization mehanism, hene they must be able to perform in a fully asynhronous environment.Distributed strategies have been proposed for spei� topologies only, suh as trees [2℄, hyper-ubes [16℄, and rings and tori [15℄. In this paper, we address the problem in arbitrary topologies.2



The searhers are modeled by autonomous mobile omputing entities with distint IDs. Morepreisely, they are labeled from 1 to the urrent number k of searhers in the network (if a newsearher has to join the team, it will take number k + 1). Otherwise searhers are all idential,and run the same program. The network and the searhers are asynhronous in the sense thatevery ation of a searher takes a �nite but unpreditable amount of time. Moreover, motivatedby the fat that the intruder models a potentially hostile agent that an, e.g., orrupt the nodememories, the searh strategy must perform independently from any loal information storedat nodes a priori, and even independently from the node IDs. We thus onsider anonymousnetworks, i.e., networks in whih nodes do not have labels, or these labels are not aessible tothe searhers. The deg(u) edges inident to any node u are labeled from 1 to deg(u), so thatthe searhers an distinguish the di�erent edges inident to a node. These labels are alled portnumbers. Every node of the network has a whiteboard in whih searhers an read, erase, andwrite symbols. (A whiteboard is modeling a spei� zone of the loal node memory that isreserved for the purpose of exhanging information between software agents). At every node,the loal whiteboard is assumed to be aessible by the searhers in fair mutual exlusion. Sinethe ontent of the whiteboard at every node aessible by the intruder is orruptible, it is therole of the searhers to protet information stored at nodes' whiteboards.The deisions taken by a searher at a node (moving via port number p, writing the wordw on the whiteboard, et.) is loal and depends only on (1) the urrent state of the searher,and (2) the ontent of the node's whiteboard (plus possibly (3) the inoming port number, ifthe searher just entered the node).The powerful intruder is assumed to be aware of the edge-labeled network topology, andthus it does not need the whiteboards to navigate. In fat, as mentioned before, when theintruder enters a node that is not oupied by a searher, then it an modify or even removethe ontent of the loal whiteboard.All searhers start from the same node u0, alled the entrane of the network, or the homebaseof the searhers. This node u0 is also a soure of searhers, in the sense that if the urrent teamof searhers realize that they are not numerous enough for learing the network, then they anask for a new searher, that will appear at the soure. Initially, one searher spontaneouslyappears at the soure. The size of the team will inrease until it beomes large enough tolear the network. Basially, the searhers are aiming at expanding a leared zone around theirhomebase u0, that is at expanding a onneted sub-network of the network G, ontaining u0,until the whole network is lear. In partiular, as the entrane u0 of the network is a ritialnode, it has to be permanently proteted from the intruder in the sense that the intruder mustnever be able to aess it.Among all searh strategies, monotone ones play an important role. A monotone strategyinsures that, one an edge has been leared, it will always remain lear. Monotone strategiesguaranty a polynomial number of moves: exatly one move for learing every edge, plus fewmoves required by the searhers to set up their positions before learing the next edge. In theonneted setting (i.e., the leared part of the network is always onneted), the orrespondinggraph searhing parameter is alled monotone onneted searh number starting at u0 (f.,[2, 3, 16, 15, 21℄), and is denoted by ms(G;u0).1.1 Our resultsWe desribe a distributed protool, alled dist searh, that enables the searhers to learany asynhronous network in a fully deentralized manner, i.e., the searh strategy is omputedonline by the searhers themselves, after being launhed in the network without any informationabout its topology. This is the �rst distributed protool that addresses the graph searhing3



problem in its whole generality, i.e., for arbitrary network topologies.The distributed searh strategy performed by the searhers in an asynhronous environmentuses a number of searhers that is optimal up to a logarithmi fator. Indeed, we prove thatthe number of searhers involved in the strategy omputed by our protool in a network G isequal to 1 plus the minimum number of searhers required to lear G by a monotone onnetedsearh strategy starting at the homebase u0 2 V (G), i.e., is equal to ms(G;u0) + 1. Sine it isknown [21℄ that, for any graph G and for any u0 2 V (G), we have ms(G;u0) � s(G)dlog ne,we get that our protool uses at most O(logn) times the optimal number of searhers. In fat,it is onjetured that ms(G) � 2s(G) for all graph G (f. [3℄). If this holds, then our protooluses at most twie the optimal number of searhers.Our protool is spae-eÆient from many respets. First, it requires only O(log k) bits ofmemory for eah of the k searhers involved in the searh. In partiular, this amount of memoryis independent from the size n of the network. Seond, the amount of information stored atevery whiteboard never exeeds O(m log n) bits, where m is the number of edges of the network.To obtain our results, we had to address several problems.� First, sine the network is a priori unknown to the searhers, they have to explore it.However, this exploration annot be ahieved easily beause of the potential orruptionof the whiteboards by the intruder. Our protool insures that exploration and searhingare performed somehow simultaneously, and that the whiteboards of leared nodes remainpermanently proteted unless there is no need to protet the stored information anymore.� Seond, as the searhers asynhronously spread out in the network, they beome rapidlyunaware of their relative positions. Our protool synhronizes the searhers in a non trivialmanner so that an ation by a searher is not ruined by the ation of another searher.� Finally, to obtain spae-eÆient solutions, our protool takes advantage from the aessesto the whiteboards, to store and read information useful to the searhers: it maintainsa stak at every whiteboard, and every searher at a node has aess only to the top ofa stak stored loally on the urrent node's whiteboard, and to few other variables alsostored on the whiteboard.1.2 Related WorksGraph searhing, originated by Parson in [27℄, has been extensively studied in the literature(see [6℄ for a survey). Variants of the problem have been de�ned by Kirousis and Papadimitriouin [22, 23℄, and by Bienstok and Seymour in [7℄. The notion of rusade allowed Bienstokand Seymour to simplify the proof of LaPaugh [24℄ about monotone graph searhing: for anygraph, there exists a minimal searh strategy that is monotone (i.e., reontamination does nothelp). The notion of onneted searh strategy has been introdued by Barri�ere et al. [2, 3℄. [2℄desribes a linear-time algorithm that omputes minimal monotone onneted searh strategyfor trees. [3℄ proves that, for any tree T , ms(T ) � 2 s(T ) � 2 and this bound is tight. [31℄shows that there exist graphs for whih no minimal onneted searh strategies are monotone.On the other hand, [2℄ proves that reontamination does not help for onneted searh in trees.Several protools for learing some spei� networks in distributed setting have been pro-posed in the literature. Flohini et al. have proposed protools that address the graph sear-hing problem in trees [2℄, hyperubes [16℄, tori and hordal rings [15℄. For eah of these lassesof graphs, the authors have designed a protool using ms(G;u0) + 1 searhers with O(log n)bits of memory and whiteboards of size O(log n) bits, that monotonously lears the graph in4



polynomial time and polynomial number of moves. [16℄ proved that any distributed proto-ol learing an asynhronous network in a monotone onneted way requires ms(G;u0) + 1searhers. Moreover, this remains true even if the topology of the network is known in advane.Our problem is also very muh related to graph exploration and mapping. In absene ofwhiteboards, it is known that network exploration is impossible using a �nite team of �niteautomata [20, 29℄. In fat, it is known that no �nite team of �nite automata is able to exploreall graphs, even if these automata are given powerful ommuniation failities (f., e.g., [10℄).However, exploring trees is relatively easy [11℄, and a pre-omputed labeling of the nodes withonly three di�erent labels enables just one �nite automaton to explore all graphs [9℄. In thereent paper of Reingold proving that SL = L [28℄, a log-spae onstrutible universal explo-ration sequene exploring all d-regular n-node graphs is desribed. Finally, [4, 5, 19℄ investigatedexploration of direted graphs.In [12, 13℄, the objetive of the authors is to determine the position of a blakhole in anetwork. A blakhole is an harmful node that destroys any agent visiting that node withoutletting any trae. On the other hand, the blakhole annot move. [12, 13℄ have proved that� + 1 agents are neessary and suÆient to �nd a blakhole in any network, where � is themaximum degree of the network.2 Model, Formal Statement, and Main ResultIn this setion, we speify our problem, and we state formally our main result.2.1 Our problemWe summarize our problem setting. A network is an anonymous edge-labeled graph G. Thedeg(u) edges inident to any node u are labeled by distint integers from 1 to deg(u). Theselabels are alled port numbers. A searher is a mobile omputing entity that an move alongthe edges of the network. At every node of the network, there is a whiteboard aessible to thesearhers urrently oupying this node. A whiteboard is a zone of the node's memory reservedto the searhers to read, write, and erase information. The aess to every whiteboard isassumed to be performed under the ontrol of a fair mutual exlusion mehanism. The deisiontaken by a searher at a node depends on its internal state, the ontent of the loal whiteboard,and the inoming port number. A deision results in either leaving the node through someport p, or waiting at the node until it has (again) aess to the whiteboard. The searhersare generated by a unique node u0 2 V , alled the homebase. The homebase is a soure ofsearhers, in the following sense. New searhers an be generated at the homebase. For a newsearher to be generated, at least one searher must be oupying the homebase, and allingfor a new searher. The ith searher generated at the homebase is given label i. The searhersare asynhronous in the sense that every ation of a searher takes a �nite but unpreditableamount of time. When they are launhed in a network, they ignore its topology, and have noinformation about it (they even ignore its size). The goal of the searhers is to apture an"intruder".The intruder is a maliious mobile omputing entity that an move along the edges ofthe network. The intruder is arbitrarily fast, and is assumed to be permanently aware of thepositions of the searhers. It is invisible in the sense that the searhers are unaware of theposition of the intruder. On the other hand, the intruder knows the topology of the networkand is assumed to be permanently aware of the positions of the searhers. The intruder is aughtif it meets a searher at a node or along an edge. The intruder has the ability to orrupt thenodes, inluding the ontent of their whiteboards.5



A distributed searh protool is a distributed program exeuted by the searhers for athingthe intruder. Initially, one searher is spontaneously generated at the homebase u0, and theintruder an be plaed at any node or edge of the network. The searher an start movingin the network or alling for a new searher. The exeution of the searh protool results ina team of searhers moving in the network, looking for the intruder. A searh protool mustperform independently from any a priori knowledge about the network. Hene, initially, thesearhers ignore in whih network they are running. On the other hand, the intruder is given apreise map of the edge-labeled network in whih it has been plaed, and it knows where in thenetwork it has been plaed. Again, all previous works [2, 16, 15℄ ompute the searh strategyfrom the entire knowledge of the network, and the strategy performs in synhronous steps. Inour setting, the searh strategy is omputed by the searhers applying the searh protool, inabsene of any a priori knowledge about the network, and in an asynhronous environment.Clearly, n+1 searhers an easily apture the intruder in any n-node network (the team ofsearhers expand from the homebase until they oupy all the nodes, while one extra searher"lear" all the edges). A searh protool is minimal if, for any network G, and for any nodeu0 2 V (G), the number of searhers required by the protool to apture the intruder in Gstarting from the homebase u0 is the smallest for this setting. This paper addresses the problemof designing a minimal distributed searh protool. This problem has been widely investigatedin the literature in the framework of searh games. In the general setting of searh games, asearh strategy for a network G is an ordered sequene of searh steps resulting in the intruderbeing aught, where eah step is of one of the following three types:1. plae a searher at a vertex v 2 V (G);2. remove a searher from a vertex v 2 V (G);3. move a searher along an edge e 2 E(G).A k-searh strategy is a searh strategy in whih at most k searhers are present in the networkat every step. The searh number s(G) of a network G is the smallest k for whih there exists ak-searh strategy forG. Several searh games as been de�ned in the literature [2, 3, 7, 22, 23, 31℄.We onsider the most realisti one as far as network seurity is onerned.� A searh strategy is internal if it does not ontain any removal step. Internal searhstrategies are desired in ommuniation networks sine an agent annot easily be plaedat or removed from any node.� A searh strategy is monotone if it performs so that the intruder never oupies a nodeor an edge that has been previously visited by a searher. Monotone searh strategies aredesired for they insure that the number of searher moves is polynomial in the size of thenetwork.� A searh strategy is onneted if, at any step, the "leared zone" of the network (i.e., theset of nodes and edges that has been leared so far, and proteted from reontaminationby the intruder) is onneted. Conneted searh strategies are desired beause they insurethat ommuniations between the searhers an be performed without risk of orruptionby the intruder. A onneted strategy is obviously internal.If there exists a monotone onneted k-searh strategy for the network G, then there existssuh a strategy in whih the k searhers are initially plaed at a same node, and all stepsonsist in moving searhers along the edges of the network (f., e.g., [3℄). In the following, allour strategies are onneted. Given a network G, and a node u0 2 V (G), the smallest k forwhih there exists a monotone onneted k-searh strategy for G where all searhers are initiallyplaed at u0 is denoted by ms(G;u0). 6



2.2 Main ResultsOur main result is the design of a provably distributed searh protool, dist searh, for ateam of searhers as de�ned in Setion 2.1. The performanes of our protool are ompared tothe ones of monotone onneted searh strategies. The following theorem summarizes the mainharateristis of dist searh.Theorem 1 For any onneted, asynhronous, and anonymous network G, and any u0 2 V (G),dist searh enables apturing an intruder in G using searhers, in a onneted way, startingfrom the homebase u0, and initially unaware of G. The main harateristis of dist searhare the following:� dist searh uses at most k = ms(G;u0) + 1 searhers if ms(G;u0) > 1, and k = 1searher if ms(G;u0) = 1;� Every searher involved in the searh strategy omputed by dist searh uses O(log k) bitsof memory, where k is the number of searhers;� During the exeution of dist searh, at most O(m(log k+log�)) bits of information arestored at every whiteboard, where � and m are respetively the mawimum degree and thenumber of edges of G, and k is the number of searhers.Remarks.� Note that the theorem above implies that, for networks searhable by a monotone on-neted searh strategy using a onstant number of searhers, the protool dist searhan be implemented using �nite state automata.� The strategy performed by the searhers is onneted but not neesseraly monotone.However, it is easy to hek that, one the whole graph has been leared by searhersapplying dist searh, the desription of a searh strategy S is stored in a distributedway on the nodes' whiteboards of G. S is a monotone onneted searh strategy for G,starting from u0, and using at most ms(G;u0)+1 searhers. Moreover, an automaton withat most O(log n) bits of memory an ollet S, assuming that no intruders an orruptthe information on the graph while S is olleted.� Note also that the searh strategy S omputed by protool dist searh is optimal inthe following sense. For any k � 1, there exists a network G and u0 2 V (G) suh that,k = ms(G;u0) and for any distributed protool P designed for apturing a fugitive in amonotone onneted way, starting from u0, P requires k + 1 searhers [16℄.2.3 Sketh of Protool dist searh and of its proofGiven a onneted network G, and X � E(G), we denote by Æ(X) the nodes in V (G) that areinident to an edge in X and an edge in E(G) n X. Given k � 1, we all k-on�guration anyset X � E(G) suh that jÆ(X)j � k. The k-on�guration digraph Ck of G is de�ned as follows.V (Ck) is the set of all possible k-on�gurations. There is an ar from X to X 0 in Ck if theon�guration X 0 an be reahed from X by one step (i.e., plae, move or remove a searher)of a monotone onneted searh strategy using at most k searhers. The objetive of Protooldist searh is essentially to try, for suessive k = 1; 2; : : :, whether the on�guration graphCk an be traversed from ; to E(G) under the onstraint that the searhers starts at u0. Ifyes, then dist searh ompletes after having aptured the intruder using at most k searhers.Otherwise, dist searh tries with k + 1 searhers.7



Remark. This approah is similar to the (entralized) parametrized algorithms of the litera-ture (f., e.g., [1, 17, 18℄). However, the diÆulty of our approah is to disover whether theon�guration digraph Ck an be traversed from ; to E(G) in a deentralized manner.For a �xed k, the objetive of dist searh is to organize the movements of the searhers sothat they perform a DFS of Ck (again, ignoring the topology of G, and in an asynhronous envi-ronment). This objetive is ahieved aording to an order spei�ed by a virtual stak in whihare stored information related to the moves of the searhers. Roughly, Protool dist searhonstruts all possible states for the virtual stak, aording to a lexiographi order on thestates of the stak. The diÆulty of the protool is to distribute the virtual stak on the white-boards so that when a searher visits a node, it �nds on the whiteboard enough informationfor omputing the next step of the searh strategy that it should perform. Sine the intruderan orrupt the whiteboards, withdrawals from previously visited nodes must be sheduled sothat to make sure that no information will be lost. Note here that, albeit the searh strategyeventually omputed by the searhers is monotone (in the sense that the ontents of all thewhiteboards desribe a monotone searh strategy when the protool ompletes), failing searhstrategies investigated before (aording to the lexiographi order on the states of the virtualstak) lead to withdrawals, and therefore to reontamination. If all strategies with k searhershave failed, then the searhers terminate at the homebase, all a new searher, and restartsearhing the network with k + 1 searhers.The additional searher used by dist searh, ompared to ms(G;u0), is used for avoidingdeadloks suh as the one desribed in [16℄. It is also used to shedule the moves of the othersearhers and to transmit information between the searhers. It ould be replaed by simpleommuniation failities. For instane, if the searhers would have the ability to send to andread from a mailbox available at the homebase, this additional searher ould be avoided. Inpartiular, in the Internet, eah searher would just have to keep in its memory the IP addressof the homebase.The proof of orretness of Protool dist searh is twofold. First, we prove the orretnessof an algorithm, denoted by A, that uses a entralized stak for traversing the on�gurationdigraph Ck. The seond part of the proof onsists in proving a one-to-one orrespondenebetween every exeution of dist searh using a virtual (i.e., deentralized) stak, and everyexeution of A using a entralized stak.3 Searh strategy using a entralized stakIn this setion, we desribe the algorithmA enabling a team of searhers launhed in an unknownnetwork to apture an intruder hidden in this network. Algorithm A is not fully distributedbeause it uses a entralized stak whose top is aessible from every node by every searhers.3.1 Algorithm AAlgorithm A uses the notion of extended moves, that are triples (ai; aj ; p) where ai and ajdenote searhers, and p is a port number.De�nition 1 An extended move (ai; aj ; p) orresponds to the following: (1) searher ai joinssearher aj, and (2) the searher with the smallest ID among ai and aj leaves the node nowoupied by the two searhers via port p. (Note that i = j is allowed, in whih ase ai leaves thenode it oupies by port p). 8



The entral stak stores extended moves and thus desribes a sequene of operations per-formed by the searhers. More preisely, reading the stak bottom-up de�nes a sequene ofoperations that desribes a partial exeution of a searh strategy.De�nition 2 For a �x parameter k � 1, a state of the virtual stak is valid if there existsa monotone onneted searh strategy using at most k searhers whose partial exeution isdesribed by this state.By some abuse of terminology, we sometime say that a stak Q is valid, meaning that theurrent state S of the stak Q is valid. Given a valid state S of a stak Q, we denote by XSthe on�guration indued by S, that is XS is the set of lear edges after the exeution of theextended moves in S.The priniple of Algorithm A is the same as the one desribed in Setion 2.3. That is, ittries, for eah k = 1; 2; : : :, every possible monotone onneted searh strategy using k searhers,until one reahes a situation in whih either the whole network is lear, or all searh strategieshave been exhausted. In the latter ase, Algorithm A proeeds with k + 1 searhers by allingfor a new searher at the homebase u0. From now on, we assume that k is �xed. The k searhersare denoted by a1; : : : ; ak, where the ID of ai is simply its index i. Algorithm A is desribedin Figure 1. We detail its struture. Algorithm A returns a boolean possible. If possible istrue then learing the network with k searhers is possible, in whih ase the stak Q returnedby Algorithm A is valid, and ontains a monotone onneted searh strategy learing G with ksearhers.In Algorithm A, the stak Q is initially empty, and only a1 is plaed at u0. the othersearhers a2; : : : ; ak are available. In addition to the entralized stak Q, Algorithm A usesa global variable state that takes two possible values lear or baktrak whose meaningwill appear lear later on. Finally, Algorithm A uses a boolean variable deided that is falseuntil either a monotone onneted searh strategy using k searhers learing the network isdisovered, or all possible monotone onneted searh strategies using k searhers have beenonsidered. Hene the main while-loop of Algorithm A is based on the value of deided (f.Figure 1). This main while-loop mainly ontains two bloks of instrutions. These bloks areexeuted depending on the value of state (lear or baktrak).The algorithm enters one of these two bloks unless all searhers are available, in whihase a searh strategy has been found. Initially, a1 is plaed at u0 and is thus not available.Case lear orresponds to a situation in whih Algorithm A has just leared an edge, i.e., thelast exeution of the main while-loop has resulted in pushing some extended move in Q. Casebaktrak orresponds to a situation when the last exeution of main while-loop has resultedin popping the stak Q, i.e., in reontaminating an edge.Let us fous on the ase state = lear. Algorithm A fouses on spei� extended moves,only those that do not imply reontamination (this is beauseA eventually omputes a monotonestrategy). More formally, let us onsider a valid state S of the stak Q, i.e., S is a sequene ofextended moves denoted by M1j : : : jMr. Pushing an extended move M in Q results in a newstate, denoted by SjM . We say that a extended move M is valid aording to Q if S0 = SjM isa valid state. Note that A does not maintain the set X of lear edges and the set of availablesearhers. Indeed, given a valid state S of the stak Q, one an easily onstrut XS by exeutingthe partial searh strategy desribed by S. A searher is then available if either it stands at anode not in Æ(XS) or it stands at a node oupied by another searher, of lower index. Thereis therefore a simple haraterization of a valid extended move M aording to a valid state Sof Q:� If S = ;, then M is valid aording to Q if and only if either u0 is a 1-degree node andM = (a1; a1; 1), or k > 1 and M = (a2; a1; 1).9



� If S 6= ;, M = (ai; aj ; p) is valid aording to Q if and only if either i = j, ai stands at anode u 2 Æ(XS), and p is the only ontaminated port of node u, or i 6= j, ai is available,aj stands at a node u 2 Æ(XS), and p is a ontaminated port of node u.The �rst instrution of the ase state = lear onsists in heking whether there exists avalid extended move aording to Q. The key issue is to hoose whih extended move to apply,among all possible valid extended moves. For this hoie, the extended moves are ordered inlexiographi order.De�nition 3 Let M = (ai; aj ; p) and M 0 = (ai0 ; aj0 ; p0) be two extended moves. We de�neM �M 0 if and only if either (i < i0), or (i = i0, and j < j0), or (i = i0, j = j0, and p < p0).If there is an extended move that is valid aording to Q then Algorithm A hooses theone that has minimum lexiographi order among all extended moves that are valid aordingto Q. If there is no extended moves that are valid aording to Q, then A swithes to thestate baktrak. For this purpose, the last move in Q is popped out, and stored in theglobal variable Mlast. If fat, if Q = ;, then baktraking is not possible, and A deides that ksearhers are not suÆient to lear the network.Let us now fous on the ase state = baktrak. A onsiders the move Mlast. If there isan extend move M � Mlast that is valid aording to the stak, then A performs the smallestsuh move by pushing M in the stak, and going bak to state lear. Otherwise A arries onbaktraking by popping out the last extended move from the stak.3.2 Proof of orretness of Algorithm ALemma 1 After any exeution of the while-loop in Algorithm A, the state of the stak is valid.Proof. Initially, the stak is empty, orresponding to the strategy in whih a1 is oupyingnode u0, and hene is valid. Assume that the state of Q before exeuting the while-loop isvalid, and onsider the state of Q after the loop. Independently from whether state = learor state = baktrak, there are two ases depending on a push or a pop is performed. Theresult of the push is a valid state beause only extended moves that are valid aording to Qare pushed in Q. The result of the pop is also valid state sine it orresponds to the partialsearh strategy desribed by Q before the loop, in whih the last extended move is removed.The next lemma requires to order the states of the stak, the same way, we ordered extendedmoves.De�nition 4 Given two states of the stak Q, S =M1j � � � jMr and S0 =M 01j � � � jM 0r0 , we de�neS � S0 if and only if there exists i � minfr; r0g suh that Mi �M 0i and, for any j < i, Mj =M 0j.The order on the staks de�ned above is a total order. Sine the extended move pushed in thestak in the ase lear of Algorithm A is the minimum extended move aording to the urrentstate of the stak, we get that the sequene of staks onstruted by Algorithm A respets thistotal order. Preisely, we have:Lemma 2 All valid states onstruted by Algorithm A are ompatible with the total order ofDe�nition 4, in the sense that if r is the �rst exeution of the while loop at whih some state Sappears, then all valid states S0 � S appeared before, and no valid state S00 � S appeared before.We say that a valid sequene of extended moves is omplete if the orresponding searhstrategy lears the whole network. The following is a diret onsequene of Lemma 210



| The Algorithm A |Input: k � 1 searhers a1; a2; � � � ; ak and a node u0 of a graph G:a1 is plaed at u0; a2; � � � ; ak are available.Output: a boolean possible, and a stak Q of extended moves.beginQ ;;state lear;deided false;while not deided doif all searhers are available thendeided true;possible true;else/* ase state = lear */if state = lear thenif there exists a valid extended move aording to Q then(ai; aj ; p) minimum valid extended move aording to Q;push(ai; aj ; p);elseif Q 6= ; thenMlast  pop();state baktrak;elsedeided true;possible false;endifendif/* ase state = baktrak */elseLet Mlast = (ai; aj ; p);if there exists a valid extended move aording to Q larger than (ai; aj ; p) then(a0i; a0j ; p0) minimum valid extended move aording to Q, and larger than (ai; aj ; p);push(a0i; a0j ; p0);state lear;elseif Q 6= ; then Mlast  pop();elsedeided true;possible false;endifendifendifendifendwhilereturn(possible;Q);end. Figure 1: The Algorithm A
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Lemma 3 Let S = M1j : : : jMr be a sequene of extended moves orresponding to a partialexeution of a searh strategy using at most k searhers. Either there exists a omplete sequeneS0 of extended moves with S0 � S, or Algorithm A eventually omputes state S of the stak.Lemma 4 If ms(G;u0) > k then Algorithm A returns (false; ;) for k.Proof. Let S be the maximum valid sequene of extended moves aording to the orderof De�nition 4. Sine the graph annot be leared using k searhers, starting from u0, weget that, for any valid sequene S0 � S, S0 is not omplete. By Lemma 3, Algorithm Aeventually omputes the state S of the stak. After that, the algorithm always remains in thease baktrak and it suessively pops all extended moves out of the stak. Thus, we reahthe situation where Q = ; and there is no more valid extended move. Thus, Algorithm Areturns (false; ;).Lemma 5 Assume ms(G;u0) = k. Let S be the smallest omplete sequene of valid extendedmoves orresponding to a monotone onneted searh strategy starting from u0. Algorithm Areturns (true;Q) for k, where Q is in state S.Proof. By Lemma 3, sine S is the smallest omplete sequene of valid extended moves,Algorithm A omputes S. At this step of Algorithm A, all nodes of the graph are lean. Thus,all the searhers are available, and therefore Algorithm A returns (true;Q).As a diret onsequene of the previous lemmas, we get:Theorem 2 Algorithm A ompletes for k = ms(G;u0), and then the stak Q desribes amonotone onneted searh strategy starting at u0 and using k searhers.4 Fully Distributed Searh StrategyIn this setion, we desribe the main features of protool dist searh. In this desription, weassume that searhers are able to ommuniate by exhanging messages of size O(log k) bitswhere k is the number of searhers urrently involved in the searh. With this faility, wewill show that dist searh aptures the intruder with ms(G;u0) searhers. Using an addi-tional searher for implementing the ommuniations between the ms(G;u0) other searhers,dist searh aptures the intruder with ms(G;u0) + 1 searhers. Assuming that the searhersan ommuniate by exhanging messages is only for the purpose of simplifying the presentation.The fat that an additionnal searher an implement the ommuniations between searhers willappear lear while desribing the protool dist searh. The main reasons for whih this anbe done is that �nding its way in the lear part of the network is easy thanks to the informationstored on the whiteboards. The sender of a message is always the searher that has performedthe last ation, and an ation is always the result of a reeption of a message.Moreover, for the sake of simpliity, we assume that two searhers on the same node an"see" eah other and exhange their states. This is not a restritive assumption sine this anbe implemented with the whiteboards, but it would unneessarily ompliate the presentation.First, we desribe the data struture used by dist searh.4.1 Data Struture of dist searhEvery searher has a loal state variable that an take k + 2 di�erent values where k is theurrent number of searhers. These k + 2 states are: lear, baktrak, and (help; j), forj = 1; : : : ; k. Initially, all searhers are in state lear. During the exeution of the protool,we have: 12



� a searher is in state lear if it has just leared an edge;� a searher is in state baktrak if it has just baktraked through an edge that it haspreviously leared;� a searher is in state (help; j) if it is aiming at joining searher j to help him learingthe network (i.e., one of the two searhers will guard a node, while the other will lear anedge inident to this node).The messages that searhers an exhange are of four types: start, move, help and sorry.� start is an initialization message, that is only used to start Protool dist searh (onlysearher a1 reeives this message, at the very beginning of the protoole exeution).� If a searher i reeives a message (move; j) from searher aj , then it is the turn of searherai to proeed. (As it should appear lear later, the searhers shedule themselves so thatexatly one searher performs an ation at a time).� If a searher ai reeives a message (help; j) from searher aj, then aj is urrently justarriving at the same node as ai to help ai. (Note that ai and aj ould use the whiteboardto ommuniate, and this type of messages is just used for a purpose of uni�ation withthe other message types).� If a searher ai had reeived a message (move; j) or (help; j) from searher aj and, afterhaving possibly performed several ations, it turns out that these ations are useless, thenai sends a message (sorry; i) bak to searher aj .The whiteboard of every node ontains a loal stak, and two vetors diretion[℄ andleared port[℄. The protool insures that, after the node has been visited by a searher,diretion[0℄ indiates the port number to take for reahing the homebase, and, for i > 0,diretion[i℄ is the port number of the edge that searher ai has used to leave the urrent nodethe last time it was at this node. At node v, for any 1 � p � deg(v), leared port[p℄ = 1 if andonly if the edge orresponding to the port number p is lear, otherwise leared port[p℄ = 0.When a searher at a node v deides to perform any ation, it saves a trae of this ation inthe loal stak of the node. A trae is a triple (X; a; x) where X is a symbol, a is a searher'sID, and x is either a port number, or a searher's ID, depending on symbol X. More preisely:� (CC; i; p) means that p is the only ontaminated (C) port, and searher ai deided to lear(C) the edge that orresponds to p;� (CJ; i; p) means that some searher joined (J) ai at this node, and ai deided to lear (C)the edge that orresponds to p;� (JJ; i; j) means that searher ai deided to join (J) searher aj;� (RT; i; j) means that searher ai reeived (R) a message from searher aj ;� (ST; i; j) means that searher ai deided to send (S) a message to searher aj ;� (AC; i; p) means that searher ai arrived (A) at v by port p after learing (C) the orre-sponding edge;� (AH; i; p) means that searher ai arrived (A) at v by port p in order to join another (H)searher. 13



Program of searher i at node v.begin/* Searher i reeives a message */Case:message = startdeide();message = (move; j)push(RT; i; j);deide();message = (help; j)push(RT; i; j);p smallest ontaminated port;lear edge(CJ; i; p)message = (sorry; j)bak();

/* Searher i arrives at node v by port p */Case:state = learif no other searher is at v thenerase whiteboard;diretion[0℄ p;leared port[p℄ 1;push(AC; i; p);if i 6= 1 thenpush(ST; i; 1);send message (move; i) to 1;else deide();state = (help; j)push(AH; i; p);join(j);state = baktrakbak();endFigure 2: Skeleton of Protool dist searh4.2 The algorithm dist searhThe protool dist searh organizes the movements of the searhers, and the messages ex-hanged between them, in a spei� order. Based on a lexiographi order of the searhers'ations, dist searh orders them to always exeute the smallest ation that an be performed.As for Algorithm A, the priniple of dist searh is to try every possible monotone onnetedsearh strategy using k searhers, until either the whole graph is lear, or no searher an movewithout implying reontamination. In the latter ase, the searher that made the last movebaktraks, and dist searh tries the next ation aording to the lexiographi order on theations.The termination of dist searh is insured as follows. The graph is leared at time t if andonly if all searhers are oupying lear nodes at this time, i.e., nodes whose all inident edgesare lear. This on�guration is identi�ed by the searhers beause searher a1 tries to helpall the other searhers, from a2 to ak, but none of them need help. Conversely, the searhersidentify that k searhers are not suÆient to lear the graph when they are all oupying thehomebase, and try to pop the loal stak that is empty. In this ase, a1 alls for a new searher,and the k + 1 searhers are ready to try again apturing the intruder from the homebase.A skeleton of the protool dist searh is given in Figures 2-4. More preisely, Figure 2desribe the global behavior of a searhers, using subroutines desribed in Figures 3-4. Asearher reats to either the reeption of a message (f. left part of Figure 2), or to its arrivalat a node (f. right part of Figure 2). The message type start is uniquely for the purposeof the initialization: initially, searher a1 reeives a message start (and hene alls proeduredeide()).We now examine the overall desription od dist searh as it appears on Figure 2.If searher ai reeives a message (move; j), then, by de�nition of suh a message, it simplymeans that it is the turn of ai to proeed. Therefore, ai writes on the whiteboard of the nodewhere it is urrently standing that it reeived a message from searher aj giving it turn toproeed. For this purpose, ai pushes (RT; i; j) in the loal stak. The nature of the next ationsof ai depends on the result of proedure deide(). Before desribing this latter proedure, let us14



list all other ases depending on the message reeived by ai. If ai reeives a message (help; j)then it means that aj has just arrived at the same node as ai to help him. Thus, ai pushes(RT; i; j) in the loal stak, and lears the edge with the smallest port number p among allontaminated edges inident to the node where ai is standing. This ation is performed byalling proedure lear edge(CJ; i; p). Finally, if ai reeives a message (sorry; j), then it meansthat ai had sent a message (move; i) or a message (help; i) to aj but aj ould not do anything,or all ations aj attempted lead to baktraking. Therefore, ai alls proedure bak() to �gureout whih searher it an help next.The ation of searher ai arriving at some node v by port p depends on its loal state.In state (help; j), ai aims at joining aj to help him learing the network. Hene ai pushes(AH; i; p) in the loal stak to indiate that it arrived here by port p in order to join anothersearher, and then alls proedure join() to �gure out what to do next in order to join aj.In state baktrak, ai simply alls proedure bak() to arry on its baktraking. The asewhere ai arrives at a node v in state lear is more evolved. If there is no other searher atv then ai erases the whiteboard sine it was aessible to the intruder, and thus its ontent ismeaningless (when a searhers erases a whiteboard, it resets all loal variables to 0, and the loalstak to ;). Then ai sets diretion[0℄ to p to indiate that it arrived here via port p, and setsleared port[p℄ to 1 to indiate that the edge of port p is lear. It then pushes (AC; i; p) in theloal stak at v to indiate that indeed ai arrived at v by port p after learing the orrespondingedge. At this point, the behavior of ai depends on whether i = 1 or not. While a1 simply allsdeide() to �gure out what to do next, ai, for i > 1, proposes to a1 to proeed next. For thispurpose, ai sends a message (move; i) to a1. Of ourse, to keep trae of this ation, ai pushes(ST; i; 1) in the loal stak.Remark. Before entering into the details of the proedures mentioned above, note that theations are ordered. For instane, if several inident edges an be leared then the leared oneis with the smallest port number. Similarly, after learing an edge, ai proposes to the smallestsearher a1 to proeed next. As we will see in the details of the proedures deide() and bak(),protool dist searh always tries to perform the smallest ation. This is in partiular the roleof proedure next searher(i) desribed on the right hand side of Figure 3.We now desribe the proedures of Figures 3-4. Unless spei�ed otherwise, searher ai isthe one exeuting the proedure.Proedure next searher()Proedure next searher() aims at determining whih searher aj proeeds next. In the asewhere ai is the searher with smallest index oupying the node, j = i+1. Otherwise, i.e., ai isnot the searher with smallest index oupying the node, j is the smallest index > i suh thataj is not oupying the same node as ai. One j is found, ai o�ers to aj to proeed next, bysending it a message (move; i). As always, a trae of this ation is kept at the urrent node bypushing (ST; i; j) in the loal stak. If there is no aj with j > i not oupying the same nodeas ai, then ai alls bak() for the purpose of baktraking.The proedures lear edge() andmove() desribed in the left side of Figure 3 exeute learingan edge, and traversing an edge, respetively. (Of ourse, learing an edge requires traversingit).Proedure lear edge():The searher ai exeuting Proedure lear edge(X; i; p) �rst pushes the trae (X; i; p) on theloal stak, sets leared port[p℄ to 1 for speifying that the edge of port p is lear, resets its15



lear edge(ation X, ID i, port p)/* X 2 fCC;CJg */beginpush(X; i; p);leared port[p℄ 1;state lear;move(p; i);endmove(port number p, ID i)begindiretion[i℄ p;leave the urrent vertex by port number p;end
next searher(searher ID i)beginj  i+ 1;if i is not the smallest searher at node v thenwhile (j is at node v) and (j � k) doj  j + 1;if j � k thenpush(ST; i; j);send (move; i) to j;elsebak()endFigure 3: Proedures lear edge, next searher and move.loal state to lear, and �nally leaves the node through port p to lear the orresponding edge.Proedure move():The searher ai exeuting Proedure move(p; i) simply leaves the urrent node via port p. Butbefore doing so, it sets diretion[i℄ = p to speify that, in order to reah ai from that node,one should take port p.We now desribe proedures deide(), bak(), and join() detailed in Figure 4.Proedure deide()Proedure deide() is alled at a node when the onerned searher ai aims at deiding whatsearh ation it has to perform. Let v be the node where searher ai applies deide().If node v is lear, or at least another searher a`, ` < i, stands at v, then ai is not requiredto guard node v. Thus ai tries to help another searher. Aording to the order mentionedabove, ai tries to help the searher with the smallest ID. Hene, ai applies join(2) if i = 1, andjoin(1) otherwise. (The internal boolean variable terminated of a1 is set to true if i = 1; reallthat this variable is used to insure termination of Protool dist searh).If there is a single ontaminated edge inident to v, then searher ai lears it by applyingproedure lear edge.Otherwise (i.e., ai is the searher with smallest ID urrently standing at vertex v, and v hasmore than one inident ontaminated edge), ai annot move sine the protool insures that itis the searher with smallest ID at a node that preserves it from reontamination. Therefore, ifi = k (i.e., all searhers have tried to progress, but none of them an) then searher ai appliesbak() in order to baktrak. On the other hand, if i < k then ai applies next searher(i) tolet another searher the hane to progress.Proedure bak()Proedure bak() is alled for the purpose of baktraking, yielding reontamination in someases. Let v be a vertex where searher ai applies Proedure bak(). Searher ai �rst updates itsstate to baktrak, and pops the top of the loal stak, stored in the loal variable msg. The16



bak()beginstate baktrak;msg  pop();ase:msg = (RT; i; j)send (sorry; i) to j;msg = (JJ; i; j)if (i = k and j = i� 1) then bak();else if (i 6= k and j = k) thennext searher(i);elseif j + 1 6= i then ` j + 1;else ` j + 2;push(JJ; i; `);join(`);msg = (CC; i; p)leared port[p℄ 0;if i = k then bak()else next searher(i);msg = (CJ; i; p)leared port[p℄ 0;if 9q the smallest ontaminated portwith q > p then lean edge(CJ; i; q);elsemsg2 pop();if msg2 = (AH; i; p) then move(p; i);else msg2 = (RT; i; j) thensend (sorry; i) to j;msg = (AC; i; p)leared port[p℄ 0;move(p; i);msg = (AH; i; p)move(p; i);msg = (ST; i; j)bak();msg = ;k  k + 1;initialisation(k);end

deide()beginif node v is learor there is another searher ` < i at v thenif i = 1 thenj  2;terminated true;else j  1;push(JJ; i; j);join(j);else if 9 unique ontaminated port p thenlear edge(CC; i; p);else if i 6= k thennext searher(i);else bak();endjoin(j)beginstate (help; j);if j is present at v thenif v is lean thenif i = 1 and terminated and j = kthen "The graph is lear";else bak();elseif i = 1 then terminated false;Let q be the smallest ontaminated port;if j < i thenpush(ST; i; j);send (help; i) to j;elselear edge(CJ; i; q);elsep diretion[j℄;if p = 0 do p diretion[0℄;move(p; i);endFigure 4: Proedures bak, deide, and join, exeuted by searher ai.behaviour of ai then depends on msg, and leads to eight ases. These eight ases orrespondto the as many di�erent types of traes let at the top of the stak.� Case msg = (RT; i; j): it means that searher aj had sent a message to ai to let him ahane to progress. Sine ai applies bak(), it means that ai atually annot do anythingnow (note however that ai might have done something before, and later baktraked).Thus, ai sends message (sorry; i) to aj in order to deline, and to let aj the possibility todo something else.� Case msg = (JJ; i; j): it means that, at some previous step of the strategy, searher ai,17



standing at vertex v, had deided to help searher aj . Sine ai applies bak(), it meansthat its attempt to help searher aj did not sueded. Several situations must then beonsidered:If there is another searher that ai has not tried to help yet (i.e., j < k and i 6= k, or,i = k and j < k � 1), then ai tries to help among those the searher that has smallest ID(denoted by a`), by applying join(`).Otherwise, if i = k (i.e., all searhers have tried to progress, but none of them ould) thensearher ai applies bak() again in order to baktrak again. But if i < k then searher aiapplies next searher(i) to let another searher the hane to progress.� Case msg = (CC; i; p): it means that ai is the searher with smallest ID at vertex v, andv has a single inident ontaminated edge, with port p. Sine ai applies bak(), it meansthat ai just baktraked from learing this edge, letting it be reontaminated. Hene, aiannot do anything else. Thus, either i = k (i.e., all searhers have tried to progress, butnone of them ould) and then searher ai applies bak() again in order to baktrak again,or, i < k and then searher ai applies next searher(i) to let another searher the haneto progress.� Case msg = (CJ; i; p): it means that ai just baktraked from learing the edge orre-sponding to port number p, letting it be reontaminated. Moreover, this learing involvedanother searher aj (with j > i). Two ases are then possible depending on whethersearher ai had ome at v to help searher aj or the other way around. The former aseis alled Case 1, and the latter Case 2.If there is an edge that ai has not try to lear yet (i.e., a ontaminated edge with portnumber q > p), then searher ai applies Proedure lear edge(CJ; i; q) to lear this edge(CJ indiates that suh a move is possible beause of the presene of another searher atv).Otherwise, p is the largest port number assoiated to a ontaminated edge. Therefore, inCase 1, searher ai had tried to help aj (resp., in Case 2, aj had tried to help ai) withoutsuess. In both ases, ai has to baktrak again, and thus, it pops the top of the loalstak in a loal variable alled msg2. If msg2 = (AH; i; q), then we are in Case 1, andthus searher ai goes bak through the edge from whih it had ome (i.e., the edge withport number q). If msg2 6= (AH; i; q), then the only possible ase is msg2 = (RT; i; j),whih orresponds to Case 2. That is, searher aj had ome at v to help searher ai, and,sine i < j, searher aj had sent the message (help; j) to ai (f. Proedure join()). Inthis latter ase, searher ai informs searher aj that its help has been unsuessfull, bysending message (sorry; i) to aj .� Case msg = (AC; i; p): it means that searher ai had ome to this vertex by the edge withport number p, after learing this edge. Sine searher ai is applying bak(), ai baktraks,i.e., goes bak through the same edge letting this edge be reontaminated.� Case msg = (AH; i; p): it means that searher ai had ome to this vertex by the edgewith port number p, in order to help a searher (i.e., this edge was already lear). Sinesearher ai is applying bak(), ai baktraks its move by going bak through the sameedge it ame from.� Case msg = (ST; i; j): it means that searher ai had send a message to searher aj , andthat aj just had sent to ai the message (sorry; j), meaning that aj ould not do anythingmore. Thus, ai applies bak() in order to baktrak again.18



� Case msg = ;: it means that all ations that searhers might have done before havebeen baktraked. Note that only searher a1 an be in suh a situation. Sine it is instate baktrak, it means that all strategies using k searhers have been tried withoutsuess. Thus, the protool arries on with one more searher.Proedure join()Let v be a vertex where searher ai applies join(j). Applying this proedure means that searherai has deided to help searher aj . First, ai updates its state to (help; j).If aj is standing at v then the behaviour of searher ai depends on whether v is lear or not.If v is lear, i = 1, terminated is true, and j = k, then searher a1 has tried to help all thesearhers but none of them need its help. Thus, the whole graph is lear. Else, but still underthe assumption that v is lear, searher ai baktraks its attempt of helping aj by applyingbak(), sine aj does not need any help. The last subase is when aj is standing at a node vthat is not lear. In this ase, the searher of smallest ID between ai and aj has to lear theontaminated edge with smallest port number (say q) inident to v. If i < j, then searherai applies lear edge(CJ; i; q) to lear the edge (CJ meaning that this leaning an be donethanks to the presene of another searher). If i > j, then searher ai sends (help; i) to aj , inorder to let searher aj know that it an lear some edge thanks to the presene of ai.If aj is not standing at v, then ai tries to join searher aj by following it (if aj has alreadyvisited node v), or by returning to the homebase. Preisely, ai uses indiations on whiteboards.Reall that if aj was at a node, the whiteboard ontains in diretion[j℄ the port numberthrough whih aj left that node. Agent ai returns to the homebase using diretion[0℄ until itpasses through a node where diretion[j℄ is set, in whih ase ai starts following this diretionto eventually �nd aj .5 Proof of Corretness of dist searhAt any step of dist searh, there is only one operation performed, on only one of the staksdistributed over all nodes of the network. Indeed, only the searher who has just reeiveda message an perform an ation, and, in partiular, modify a stak. Thus we an de�nea entralized virtual stak, Qvirtual, where we push or pop all the moves performed by thesearhers, at the same time they are pushed or popped in and out of the distributed staks.Preisely, a move is a pair (ai ! aj; p), to be interpreted as follows.� If i 6= j, then (ai ! aj ; p) means that ai leaves its urrent node by port p with theobjetive of joining aj;� The move (ai ! ai; p) means that ai leaves its urrent node by port p, learing theorresponding edge.An extended move orresponds to a sequene of moves. From the interpretation above, theextended move (ai; ai; p) is equivalent to the move (ai ! ai; p), and if i 6= j then the extendedmove (ai; aj ; p) is equivalent to the sequene of moves(ai ! aj; p1); (ai ! aj; p2); : : : ; (ai ! aj ; p`); (minfai; ajg ! minfai; ajg; p)where p1; : : : ; p` is a sequene of port numbers orresponding to a path (in the leared part ofthe graph) between the node oupied by ai and the node oupied by aj when the extendedmove (ai; aj ; p) is onsidered. 19



Qvirtual is updated in the following way. At every exeution of the Proedure move(), wepush or pop a move in Qvirtual as follows. If ai applies move(p; i) during the exeution ofProedure lear edge(X; i; p), then the move (ai ! ai; p) is pushed in Qvirtual. If ai appliesmove(p; i) during the exeution of Proedure join(j), then the move (ai ! aj ; p) is pushedin Qvirtual, where p is the port number set during the exeution of join(), before the all ofproedure move(). Finally, if a searher applies move(p; i) during the exeution of Proedurebak(), then Qvirtual is popped.With this de�nition of Qvirtual, we show that the stak Q of the entralized algorithm A,and the virtual stak Qvirtual are equivalent in the following way. Let Q = M1j � � � jMr be avalid sequene of extended moves (possibly empty). We de�ne the following notions:� Qvirtual is strongly equivalent to Q if, for any 1 � j � r, there exists a sequene Sj ofmoves that is equivalent to Mj , suh that Qvirtual = S1j � � � jSr.� Qvirtual is weakly equivalent to Q if, for any 1 � j � r, there exists a sequene Sj ofmoves that is equivalent to Mj , suh that Qvirtual = S1j � � � jSrjSr+1 where Sr+1 = (ai !ai0 ; p1); (ai ! ai0 ; p2); : : : ; (ai ! ai0 ; p`) where p1; � � � ; p` is a sequene of port numbersorresponding to a path between a searher ai and a searher ai0 , in the leared part ofthe graph (in the on�guration assoiated to Q in state M1j � � � jMr).It is easy to hek that two strongly equivalent staks orrespond to exatly the same strategy(i.e., at the end of both strategies, the set of leared edges, and the positions of the searhersare the same). If Q and Qvirtual are only weakly equivalent, then the strategy assoiated toQvirtual onsists in performing the strategy assoiated to Q and then to move some searherto the node oupied by some other searher (in the leared part of the graph, and withoutreontamination). We will see later why this weaker version of equivalene is important in ourproof.The two staks Qvirtual and Q are said equivalent if they are either strongly equivalent orweakly equivalent.The proof of dist searh proeeds by onsidering the algorithm step by step, where a stepis a stage of the exeution where an edge is either leared or reontaminated. That is, a step ofdist searh denotes a step of its exeution when a move of type (ai ! ai; p) is pushed in orpopped out Qvirtual.Formally, we prove that, for any t � 0, the virtual stak Qvirtual after step t of dist searhis equivalent to the stak Q onstruted by A. In other words, we prove that, at any step t � 0,both algorithms onstrut the same partial strategy. That is, at any step, the leared subgraphand the positions of the searhers that guard the border of this leared subgraph are the samefor both strategies. Simultaneously, we prove that for any step, when an extended move ispopped out in A, all the traes of the equivalent sequene of moves in dist searh are removedfrom the distributed whiteboardsOur proof is by indution on the number t of steps. We assume that the entralized stakQ and the virtual stak Qvirtual are equivalent up to step t, and we onsider the next step forproving that they are again equivalent. The diÆulty of the proof is due to the number ofdi�erent ases to onsider. There are atually exatly fourteen ases to onsider, grouped intwo groups:� Group A: Q and Qvirtual just leared an edge e. One ase orresponds to the graph beingentirely lear. Otherwise there are three ases: (1) a searher an lear a new edge edge,or (2) a searher an join another searher and one of them an lear a new edge, or (3)no other edge an be leared and the learing of e has to be aneled. These ases have20



to be ombined with three other ases depending on the way e has been leared. ThusGroup A yields seven ases in total.� Group B: Q and Qvirtual just anelled the learing of an edge. Then, either another edgee an be leared, or no other edge an be leared (and the last leared edge, say e0, has tobe aneled). In the former ase, there are three subases depending on the type of movethat has been popped out the stak (aneling orresponding to popping out the stak).In the latter ase, there are four subases depending on the way e0 had been leared. ThusGroup B yields seven other ases.The proof onsists in a areful analysis of eah of these fourteen ases. Before analysingthese ases, we �rst prove that the staks omputed at the �rst step of both algorithms areequivalent. Initially, both Q and Qvirtual are empty. In dist searh, a1 exeutes the deidefuntion.� If deg(u0) = 1, then Algorithm dist searh pushes (CC; 1; 1) and (AC; 1; p) on the dis-tributed whiteboards, while (a1 ! a1; 1) is pushed in Qvirtual. During the �rst exeutionof the while loop in Algorithm A, sine deg(u0) = 1, we get Q = ((a1; a1; 1)). Moreover,in both ases, the leared subgraph is one edge (u0; w) inident to u0 with a1 at node w,and all the others at node u0.� If deg(u0) > 1 and k = 1, then both algorithms state that another searher is needed.The two staks remain empty and only u0 is lear.� If deg(u0) > 1 and k > 1, then Algorithm dist searh pushes (ST; 1; 2), (RT; 2; 1),(JJ; 2; 1), (ST; 2; 1), (RT; 1; 2), (CC; 1; 1) and (AC; 1; p) on the distributed whiteboards,while (a1 ! a1; 1) is pushed in Qvirtual. Algorithm A pushes (a2; a1; 1) in Q. Thus, bothstaks are strongly equivalent. Indeed, a2 and a1 were already at the same node (thehomebase) and thus there is no move assoiated to the fat that a2 joins a1. Then, inboth staks, a1 lears the edge with port number 1 at u0.Let us assume that after step t of both algorithms, the two staks Q and Qvirtual areequivalent. We prove, for the fourteen ases previously enumerated, that after the next stept+1 of both algorithms, the searh strategy will remain the same for both algorithms, i.e., bothstaks remain equivalent, and the same on�gurations are ahieved by both algorithms. Thenext two subsetions onsider separately the ases in group A and in group B.5.1 Group AGroup A assumes that Q and Qvirtual have been reahed by learing an edge. Let S and Svirtualbe the states of Q and Qvirtual at this step of both algorithms. Sine, Q and Qvirtual has beenreahed by learing an edge, they are strongly equivalent. Thus, there exist a sequene S0 ofvalid extended moves, and a sequene S0virtual of moves, with S0 and S0virtual strongly equivalent,and there exist an extended move M , and a sequene M 0 of moves, with M 0 equivalent to M ,suh that S = S0jM and Svirtual = S0virtualjM 0.We �rst prove that the next step of the exeution of Algorithm dist searh starts with a1applying Proedure deide(). Let 1 � j � k be the ID of the searher that has just leared thelast ontaminated edge. Searher aj arrived at a node in state lear. Either j = 1, and ajapplied Proedure deide(), or aj sent (move; j) to a1, who reeived (move; j) from j. In bothases, a1 applies Proedure deide().Now, we onsider the subases of Group A.21



5.1.1 Case A.1In Case A.1, the whole graph is assumed to be leared. In this ase, by Lemma 5, AlgorithmA terminates. Let us prove it is also the ase for Algorithm dist searh. Searher a1 appliesProedure deide(). Sine the graph is lear, the vertex v1 where a1 stands, is lear. Thus, a1pushes (JJ; 1; 2) and applies Proedure join(2) after having set terminated to true. ApplyingProedure join(), a1 omputes a port number p1 that is either diretion[2℄ if a2 has alreadybeen at vertex v1, and diretion[0℄ otherwise (reall that diretion[0℄ is the diretion of thehomebase). The former ase is identi�ed by the fat that diretion[2℄ 6= 0. We push (1! 2; p1)in Qvirtual. Then, a1 takes the edge orresponding to port p1 at v1, and arrives at a new nodev2 by port q1, in state (help; 2). At v2, searher a1 writes (AH; 1; q1) on the whiteboard, andapplies again the join() proedure. This is repeated until a1 eventually joins a2, at a node vt.Let P = v1; v2; : : : ; vt be the path followed by a1 from v1 until it reahes a2 at vt. Let pi (resp.,qi) be the port number of the edge fvi; vi+1g at vi (resp., vi+1). At every node vi, i � 2, searhera1 writes (AH; 1; qi�1) during the exeution of join(). In Qvirtual, we push (a1 ! a2; pi) fori = 1; : : : ; t� 1. Sine vt is lear, searher a2 does not need help, and thus a1 applies Proedurebak(). Therefore, it pops (AH; 1; qt�1) from the whiteboard of vt, and returns to vt�1. At everynode vi, for i = t � 1; : : : ; 2, searher a1 arrives in state baktrak, and thus pops the loalstak, that ontains (AH; 1; qi�1). As a result, it goes to vi�1 using port qi�1. Simultaneously,we pop (a1 ! a2; pi) that we had previously pushed in Qvirtual. Eventually, a1 is bak at v1 isstate baktrak. At v1, searher a1 applies Proedure bak(), and thus pops (JJ; 1; 2) fromthe loal stak. This proedure asks a1 to try helping every possible searher ai, for 3 � i � k.For this purpose, a1 suessively applies Proedure join(i) for i = 3; : : : ; k. Sine the wholegraph is lear, no searher needs help, and therefore the same situation as for a2 ours fori = 3; : : : ; k� 1, i.e., a1 joins ai, and goes bak to v1 sine ai does not need help. The sequeneof pushes and pops is the same for ai as for a2. When a1 eventually reahs ak, the state variableterminated of a1 is still equal to true, and thus Algorithm dist searh terminates. The virtualstak satis�es Qvirtual = Svirtualj(a1 ! ak; r1)j � � � j(a1 ! ak; r`) where r1; : : : ; r` is the sequeneof port numbers from v1 to the node where a1 meets ak. The stak Q is again in state S beauseno extended moves have been pushed in it. Sine, by the indution hypothesis, both staks Qand Qvirtual were equivalent before these sequene of moves, the new state S of stak Q, andthe new state Svirtualj(a1 ! ak; p1)j � � � j(a1 ! ak; p`) of stak Qvirtual, are weakly equivalent.5.1.2 Case A.2Case A.2 assumes that a valid extended move an be performed in the urrent on�guration ofthe searh strategy. In this ase, Algorithm A pushes in Q the smallest valid extended move M(thus, the state of Q beomes SjM). Let us prove it is also the ase for Algorithm dist searh,independentely from the type of M . We prove that there exists a sequene M 0 of moves that isequivalent to M , and suh that, after the next step, the state of Qvirtual beomes SvirtualjM 0.� Case A.2.1: M is of type (ai; ai; p).We onsider only the ase i > 1, as the ase i = 1 easily follows. For any 1 � j < i, ajis guarding some node vj that has more than one inident ontaminated edge, and aj isthe searher with the smallest ID at vj . Moreover, the node vi where searher ai standshas only one inident ontaminated edge. Let p be the port number orresponding tothis unique ontaminated edge. In Algorithm dist searh, a1 applies deide(). Applyingthis proedure, searher a1 writes (ST; 1; 2) and sends (move; 1) to a2. For any 2 �j � i, searher aj reeives (move; j � 1) from aj�1 and writes (RT; j; j � 1). ApplyingProedure deide(), searher aj writes (ST; j; j + 1) and sends (move; j) to aj+1. When22



ai reeives the message (move; i � 1) from ai�1, it applies deide() that alls Proedurelear edge(CC; i; p). Thus, ai writes (CC; i; p) on the whiteboard of vi and takes the edgeorresponding to port p of vi, learing this edge. Then, searher ai arrives at a new nodev. Finally, ai writes (AC; i; q) and (ST; i; 1) on the whiteboard of v. We push the move(ai ! ai; p) in Qvirtual. Thus, the state of Qvirtual beomes Svirtualj(ai ! ai; p) whih isstrongly equivalent to the state Sj(ai; ai; p) of Q.� Case A.2.2: M is of type (a1; aj ; p) with j > 1.In this ase, searher aj is the searher with the smallest ID, that stands at a ontaminatedvertex, say vj . In partiular, searher a1 stands at a lear vertex, say v1, and is aiming athelping searher aj . a1 applies Proedure deide(). Sine the vertex v1 is lear, a1 pushes(JJ; 1; 2) and applies Proedure join(2) after having set terminate to true. Similarily tothe Case A.1, this proedure asks a1 to try helping every possible searher ai, for 3 � i � j.For any i = 3; : : : ; j�1, sine searher ai does not need help, searher a1 applies Proedurebak() after having reahed ai. Then a1 goes bak to v1 and applies join(i+1) (f., CaseA.1). When a1 eventually reahs aj at vj , the state variable terminated of a1 is set tofalse. The virtual stak satis�es Qvirtual = Svirtualj(a1 ! aj; r1)j � � � j(a1 ! aj ; r`) wherer1; : : : ; r` is the sequene of port numbers from v1 to the node where a1 meets aj. Let p bethe smallest port number of a ontaminated edge inident to vj. Then, searher a1 appliesProedure lear edge(CJ; 1; p), that is, it writes (CJ; 1; p) and lears the orrespondingedge. The move (a1 ! a1; p) is pushed in Qvirtual. Thus, the smallest valid extendedmove is performed in both algorithms. Moreover, after this step, the state of Qvirtual isSvirtualj(a1 ! aj; r1)j � � � j(a1 ! aj ; r`)j(a1 ! a1; p), whih is strongly equivalent to thestate Sj(a1; aj ; p) of Q.� Case A.2.3: M is of type (ai; a1; p) with i > 1.In this ase, for any ` < i, searher a` is alone at a vertex v` with more than one on-taminated inident edge. Moreover, searher ai stands at vi, a lear vertex or a vertexoupied by a searher a`, with ` < i. In the distributed algorithm dist searh, a1applies Proedure deide(). Applying this proedure, searher a1 writes (ST; 1; 2) andsends (move; 1) to a2. For any 2 � j � i, searher aj reeives (move; j � 1) from aj�1 andwrites (RT; j; j � 1). Applying Proedure deide(), searher aj writes (ST; j; j + 1) andsends (move; j) to aj+1. When ai reeives the message (move; i � 1) from ai�1, it appliesdeide() that alls Proedure join(1). This proedure is alled until ai eventually joinsa1. Let P = w1; w2; : : : ; wr be the path followed by ai from w1 = vi until wr = v1. Let pj(resp., qj) be the port number of the edge fwj ; wj+1g at wj (resp., wj+1). At every nodewj , j � 2, searher ai writes (AH; i; qj�1) during the exeution of join(). In Qvirtual, wepush (ai ! a1; pj) for j = 1; : : : ; r � 1. At wr, searher ai writes (ST; i; 1) and sends themessage (help; i) to searher a1. Then, a1 writes (RT; 1; i) and (CJ; 1; p), and lears theorresponding edge. The move (a1 ! a1; p) is pushed in Qvirtual. Thus, the smallest validextended move is performed in both algorithms. Moreover, after this step, the state ofQvirtual is Svirtualj(ai ! a1; p1)j � � � j(ai ! a1; pr)j(a1 ! a1; p), whih is strongly equivalentto the state Sj(ai; a1; p) of Q.5.1.3 Case A.3Case A.3 assumes that there does not exist any valid extended move aording to the urrentstate of the stak Q. Therefore, AlgorithmA pops the last exeuted extended moveM from S =S0jM . Let us prove that Algorithm dist searh does the same. Let us assume that ai, i � 1,23



has leared the last edge e = (v; w) by taking the port p of v. Reall that Svirtual = S0virtualjM 0with M 0 a sequene of moves equivalent to M . There are three ases to be onsidered:� Case A.3.1: M = (ai; ai; p). In this ase, M 0 is the 1-element sequene (ai ! ai; p).� Case A.3.2: There exists s, i < s � k, suh that M = (ai; as; p). In this ase, searherai leaves a node, say vi to join searher as at node v. Then searher ai lears the edgeorresponding to the port p of v. Let P = w1; w2; : : : ; wr be the path followed by ai fromw1 = vi until wr = v. Let pj (resp., qj) be the port number of the edge fwj ; wj+1g at wj(resp., wj+1). By the indution hypothesis, M 0 = (ai ! as; p1)j � � � j(ai ! as; pr)j(ai !ai; p)� Case A.3.3: There exists s, i < s � k, suh that M = (as; ai; p). In this ase, searheras leaves a node, say vs to join searher ai at node v. Then searher ai lears the edgeorresponding to the port p of v. Let P = w1; w2; : : : ; wr be the path followed by as fromw1 = vs until wr = v. Let pj (resp., qj) be the port number of the edge fwj ; wj+1g at wj(resp., wj+1). By the indution hypothesis, M 0 = (as ! ai; p1)j � � � j(as ! ai; pr)j(ai !ai; p)Searher ai has arrived at the node w by port number, say q, and ai has pushed (AC; i; q).If i > 1, ai has also pushed (ST; i; 1) and sent (move; i) to a1, who has pushed (RT; 1; i) at itsurrent vertex. Then, searher a1 applied Proedure deide(). Sine there does not exist anyvalid extended move, it means that, for any 1 � j � k, searher aj is at a vertex vj whih hasmore than one inident ontaminated edge, and for any 1 � j < ` � k, vj 6= v`. For any j < k,aj writes (ST; j; j + 1) and sends (move; j) to aj+1 by applying Proedure next searher(j)in Proedure deide(). Then searher aj+1 pushes (RT; j + 1; j) at its urrent vertex beforeapplying Proedure deide() too. When ak reeives the message (move; k � 1) from ak�1, itapplies Proedure deide() that alls Proedure bak(). Then, ak pops (RT; k; k� 1) and sends(sorry; k) to searher ak�1. For any j > 1, aj reeives (sorry; j +1) from aj+1. Then searheraj applies Proedure bak() that pops (ST; j; j+1), then pops (RT; j; j�1), and sends (sorry; j)to aj�1. When a1 reeives (sorry; 2), a1 applies Proedure bak() that pops (ST; 1; 2), thenpops (RT; 1; i), and sends (sorry; 1) to ai. By applying Proedure bak(), ai pops (ST; i; 1),then (AC; i; q). Finally, ai puts leared port[q℄ to false and goes bak to v (letting the edgee be reontaminated). Searher ai arrives in state baktrak by port number p. THus, themove (ai ! ai; p) is popped from Qvirtual. Then ai puts leared port[p℄ to false. Thus, theedge e is known to have been reontaminated and ai has returned to his previous position.Thus, both algorithms have baktraked the learing of the last leared edge. Note that in thethree subases, we only popped the move (ai ! ai; p). Thus, the new state of Qvirtual dependson the ase:� Case A.3.1: S0virtual� Case A.3.2: S0virtualj(ai ! as; p1)j � � � j(ai ! as; p`)� Case A.3.3: S0virtualj(as ! ai; p1)j � � � j(as ! ai; p`)Therefore, S0virtual is equivalent to the state S0 of Q (strongly equivalent in ase A.3.1, andweakly equivalent in the two other ases).5.2 Group BCases in Group B assumes that Q and Qvirtual have been ahieved by baktraking the learingof an edge. LetM be the extended move popped by AlgorithmA during the previous step. Let S24



and Svirtual be the states of Q and Qvirtual at this step in the two algorithms respetively. Thus,there exist i � 1, a vertex v, a port p of v orresponding to an edge e, suh that searher ai hasjust arrived in state baktrak, at vertex v, by port p, letting the edge e be reontaminated.Thus, in these ases, the next step of the exeution of Algorithm dist searh starts with aiapplying Proedure bak().5.2.1 Case B.1Case B.1 assumes that there exists a valid extended move larger thanM . In this ase, AlgorithmA pushes the smallest valid extended move M 0 �M in Q. In the following, M 0 an be of threedi�erent types de�ned bellow. Let us prove that Algorithm dist searh exeutes a sequeneof moves equivalent to M 0. There are three ases depending on the type of the extended moveM .� Case B.1.1: M = (ai; ai; p). This ase ours after the removal operation as in ase A:3:1.Thus S and Svirtual are atually strongly equivalent. In this ase, there exist i < j � ` � kand 0 � q � n suh that the extended move M 0 = (aj ; a`; q) is larger thanM . That is, j isthe smallest ID larger than i suh that aj an perform a valid extended move. By applyingProedure bak(), ai pops (CC; i; p) at v. Thus, ai alls proedure next searher(i), thenpushes (ST; i; i + 1) at v, and sends (move; i) to ai+1. In the same way as for Case A.2,the message (move; j � 1) is reeived by aj whih an perform a valid extended move. Asin Case A.2 again, searher aj performs this move and we push in Qvirtual a sequene ofmoves equivalent to M 0. Thus, both staks remains strongly equivalent.� Case B.1.2: M = (ai; aj ; p) with i < j.This ase ours after the removal operation as in ase A:3:2. Thus S and Svirtual areweakly equivalent. More preisely, there exit a state S0virtual that is strongly equivalentto S, and a sequene (p1; : : : ; pt�1) of port numbers, suh that Svirtual = S0virtualj(ai !aj ; p1)j � � � j(ai ! aj ; pt�1). Let vi (resp., vj) be the vertex where searher ai (resp.,aj) stands in the on�guration assoiated to S0virtual. Note that vj = v. The sequene(p1; : : : ; pt�1) is exatly the sequene of port numbers that searher ai has followed alonga path from vi to vj . Let P = w1; � � � ; wt be this path, with w1 = vi and wt = vj. Morepreisely, the on�guration assoiated to Svirtual is got from the on�guration assoiatedto S0virtual (whih is also the on�guration assoiated to S) by moving searher ai alongthe path from vi to vj by following the sequene (p1; : : : ; pt�1) of port numbers. Let qbe the port number of vj orresponding to the edge fwt�1; vjg. Reall that, when it hadjoined aj at vj, searher ai had written (AH; i; q). Then, sine i < j, ai had written(CJ; i; p) and had leared the edge.To prove that both staks remain equivalent, we onsider the type of the extended moveM 0. There are three ases:{ Case B.1.2.a: there is a port number r of vj , larger than p suh that the orrespondingedge is ontaminated. In this ase, M 0 = (ai; aj ; r).{ Case B.1.2.b: there is a searher with ID ` � k, larger than j, at vertex v`, and aport number r of v` suh that the orresponding edge is ontaminated. In this ase,M 0 = (ai; a`; r).{ Case B.1.2.: there is a searher with ID ` � k, larger than i, at vertex v`, thatan preform a valid extended move. That is, there exist ` < u � k and r suh thatM 0 = (a`; au; r). 25



Note that the extended move in Case B.1.2.a is smaller than the extended move in CaseB.1.2.b that is smaller than the extended move in Case B.1.2..Now, let us onsider what is the exeution of Protool dist searh after having bak-traked the learing of e. By applying Proedure bak(), ai pops (CJ; i; p). Then, Algo-rithm dist searh �rst heks whether there exists a port number r > p of a ontaminatededge inident to vj. Let us assume that suh a port number exists. This orresponds tothe Case B.1.2.a:{ Algorithm A pushes M 0 = (ai; aj ; r) in Q. Searher ai pushes (CJ; i; r) at vj andlear the orresponding edge, arriving at a new node by port, say o. Searher aipushes (AC; i; o) and (ST; i; 1) at the new node, and then send message (move; i) toa1. We push (ai ! ai; r) in Qvirtual. Thus, the state of Q is SjM 01 and the stateof Qvirtual is S0virtualj(ai ! aj ; p1)j � � � j(ai ! aj ; pt�1)j(ai ! ai; r). Therefore, bothstaks are strongly equivalent.Now, let us assume that there does not exist a port number of vj , larger than p, orre-sponding to a ontaminated edge. In this ase, ai applies Proedure bak(). Therefore,it pops (AH; i; q) from the whiteboard of wt = vj, and returns to wt�1. At every nodewf , for f = t� 1; : : : ; 2, searher ai arrives in state baktrak, and thus pops the loalstak, that ontains (AH; i; qf ) where qf is the port number leading to wf�1. As a result,it goes to wf�1 using port qf�1. Simultaneously, we pop (ai ! aj; pf ) that we had previ-ously pushed in Qvirtual. Eventually, ai is bak at vi in state baktrak. At this stageof the exeution of dist searh, the urrent state of Qvirtual is S0virtual that is stronglyequivalent to S. Then, by applying Proedure bak(), ai pops (JJ; i; j). Then, Algorithmdist searh heks whether searher ai an help a searher with ID larger than j. Byapplying Proedure bak(), ai pushes (JJ; i; j + 1) and applies Proedure join(j + 1).Similarily to the Case A.1, this proedure asks ai to try helping every possible searherat, for j + 1 � t � k. Let us assume that there is a searher with ID ` � k, larger than j,at vertex v`, and a port number r of v` suh that the orresponding edge is ontaminated.This orresponds to the Case B.1.2.b:{ Algorithm A pushesM 0 = (ai; a`; r) in Q. For any f = j+1; : : : ; `�1, sine searheraf does not need help, searher ai applies Proedure bak() after having reahed af .Then ai goes bak to vi and applies join(f +1) (f., Case A.1). When ai eventuallyreahs a` at v`, the virtual stak satis�es Qvirtual = Svirtualj(ai ! a`; p1)j � � � j(ai !a`; pt) where p1; : : : ; pt is the sequene of port numbers from vi to v`. Then, searherai applies Proedure lear edge(CJ; i; r), that is, it writes (CJ; i; r) and lears theorresponding edge. The move (ai ! ai; r) is pushed in Qvirtual. Thus, the smallestvalid extended move is performed in both algorithms. Moreover, after this step,the state of Qvirtual is Svirtualj(ai ! a`; p1)j � � � j(ai ! a`; pt)j(ai ! ai; r), whih isstrongly equivalent to the state Sj(ai; a`; r) of Q.Now, we onsider the ase where there is no ` > j suh that searher a` stands at a vertexv` inident to a ontaminated edge. Thus, ai reahs bak vi after having tried to help allsearhers a`, for j < ` � k (by iteratively applying Proedure join() as in the previousase). At this stage of the exeution dist searh, the urrent state of Qvirtual is S0virtualthat is strongly equivalent to S (the urrent state of Q). When ai reahs bak vi, it pops(JJ; i; k). Thus, Proedure bak() alls Proedure next searher(i). Therefore, ai pushes(ST; i; i + 1) and sends (move; i) to searher ai+1. Let us assume that there is a searher26



with ID ` � k, larger than i, at vertex v`, that an preform a valid extended move. Thisorresponds to the Case B.1.2.:{ In this ase, there exist ` � u � k and r � n suh that Algorithm A pushesM 0 = (a`; au; r) in Q. As for the ase A:2:3, for any i � f � `, searher af reeives(move; f � 1) from af�1 and writes (RT; f; f � 1). Applying Proedure deide(),searher af writes (ST; f; f + 1) and sends (move; f) to af+1. When a` reeives themessage (move; ` � 1) from a`�1, it applies the deide() proedure. Then the movem0 is performed as for the ase A.2. Thus, both staks beome strongly equivalent.� Case B.1.3: M = (aj; ai; p) with i < j.This ase ours after the removal operation as in ase A:3:3. Thus S and Svirtual areweakly equivalent. More preisely, there exit a state S0virtual that is strongly equivalentto S, and a sequene (p1; : : : ; pt�1) of port numbers, suh that Svirtual = S0virtualj(aj !ai; p1)j � � � j(aj ! ai; pt�1). Let vi (resp., vj) be the vertex where searher ai (resp.,aj) stands in the on�guration assoiated to S0virtual. Note that vi = v. The sequene(p1; : : : ; pt�1) is exatly the sequene of port numbers that searher aj has followed along apath from vj to vi. Let w1; � � � ; wt be this path, with w1 = vj and wt = vi. More preisely,the on�guration assoiated to Svirtual is got from the on�guration assoiated to S0virtual(whih is also the on�guration assoiated to S) by moving searher aj along the pathfrom vj to vi by following the sequene (p1; : : : ; pt�1) of port numbers. Let q be the portnumber of vi orresponding to the edge fwt�1; vig. Reall that, when it had joined ai atvi, searher aj had written (AH; j; q). Then, sine i < j, aj had pushed (ST; j; i) at viand sent (help; j) to searher ai. Then, searher ai has pushed (RT; i; j) and (CJ; i; p) atvi, and had leared the edge.To prove that both staks remain equivalent, we onsider the type of the extended moveM 0. There are three ases:{ Case B.1.3.a: there is a port number r of vi, larger than p suh that the orrespondingedge is ontaminated. In this ase, M 0 = (aj ; ai; r).{ Case B.1.3.b: there is a searher with ID ` � k, larger than i, at vertex v`, and aport number r of v` suh that the orresponding edge is ontaminated. In this ase,M 0 = (aj ; a`; r).{ Case B.1.3.: there is a searher with ID ` � k, larger than j, at vertex v`, thatan preform a valid extended move. That is, there exist ` < u � k and r suh thatM 0 = (a`; au; r).Note that the extended move in Case B.1.3.a is smaller than the extended move in CaseB.1.3.b that is smaller than the extended move in Case B.1.3..Now, let us onsider what is the exeution of Protool dist searh after having bak-traked the learing of e. By applying Proedure bak(), ai pops (CJ; i; p). Then, Algo-rithm dist searh �rst heks whether there exists a port number r > p of a ontaminatededge inident to vj. Let us assume that suh a port number exists. This orresponds tothe Case B.1.3.a.{ As for the ase B.1.2..a, searher ai lears the edge orresponding to the port numberr and both staks remain strongly equivalent.If there does not exist a port number of vj, larger than p, orresponding to a ontaminatededge, ai applies Proedure bak(). Searher ai pops (CJ; i; p), then (RT; i; j), and sends27



(sorry; i) to searher aj. Then, searher aj applies Proedure bak(). Therefore, it pops(ST; j; i) and (AH; i; q) from the whiteboard of wt = vi, and returns to wt�1. At everynode wf , for f = t� 1; : : : ; 2, searher aj arrives in state baktrak, and thus pops theloal stak, that ontains (AH; j; qf ) where qf is the port number of wf leading to wf�1.As a result, it goes to wf�1 using port qf�1. Simultaneously, we pop (aj ! ai; pf ) thatwe had previously pushed in Qvirtual. Eventually, aj is bak at vj in state baktrak.At this stage of the exeution of dist searh, the urrent state of Qvirtual is S0virtual thatis strongly equivalent to S. Then, by applying Proedure bak(), aj pops (JJ; j; i). Then,Algorithm dist searh heks whether searher aj an help a searher with ID largerthan i. Then, Case B.1.3.b is similar to Case B.1.2.b, and Case B.1.3. is similar to CaseB.1.2.. Thus, both staks beome strongly equivalent.5.2.2 Case B.2Case B.2 assumes that there does not exist a valid extended move greater than M . In thisase, either S = ; or there is a valid move M 0 and a sequene of valid extended moves S0 suhthat S = S0jM 0. In the former ase, Algorithm A laims that another searher is required. Inthe latter ase, Algorithm A pops M 0 from Q. Let us prove it is also the ase for Algorithmdist searh. There are four ases aording to whether S = ; or not, and depending on thetype of M 0.� Case B.2.1 If S = ;, there are two ases. Either k = 1 and u0 has more than oneinident edge, or k > 1. In the former ase, searher a1 applies Poredure deide(), thenProedure bak() that asks for a seond searher. In the latter ase, M must be the ex-tended move (ak; ak�1; p) where p is the greatest port number of u0. Indeed, if M is notthis extended move, then an extended move greater than M would be valid. In this ase,searher ak�1 has just arrived in state baktrak, at vertex u0 by port p. Moreover,all searhers are standing at u0. Beside, the whiteboard of u0 ontains exatly the se-quene ((ST; 1; 2); (RT; 2; 1); � � � ; (ST; i; i+1); (RT; i+1; i); � � � ; (ST; k� 1; k); (RT; k; k �1); (JJ; k; k � 1); (ST; k; k � 1); (RT; k � 1; k); (CJ; k � 1; p)). Thus, Svirtual = ;. Thus, Qand Qvirtual are strongly equivalent. Moreover, it is easy to hek that Proedure bak()asks for a (k + 1)th searher.Let us assume that S 6= ;. Reall that, in Case B., a searher ai has just arrived bak instate baktrak, at the vertex v, by port p, letting the edge e be reontaminated. Thus, inthese ases, the next step of the exeution of Algorithm dist searh starts with the ai applyingProedure bak().Let f = (v0; w0) be the edge leared by the move M 0. Let s � k be the ID of the searherthat has leared f , arriving by port r0 of w0. Let r be the port number of v0 orresponding tof . Let us onsider the three possible types for the move M 0:� Case B.2.2 M 0 = (as; as; r). In this ase, there is a sequene of valid moves S0virtualstrongly equivalent to S0, and a sequene of valid moves Mvirtual equivalent to M suhthat Svirtual = S0virtualj(as ! as; r)jMvirtual .� Case B.2.3 There exists s0 < s suh that M 0 = (as; as0 ; r). In this ase, there is a se-quene of valid moves S0virtual strongly equivalent to S0, a sequene of valid moves Mvirtualequivalent to M , and a sequene (p1; : : : ; pt�1) of port numbers, suh that Svirtual =S0virtualj(as ! as0 ; p1)j � � � j(as ! as0 ; pt�1)j(as ! as; r)jMvirtual.� Case B.2.4 There exists s0 < s suh that M 0 = (as0 ; as; r). In this ase, there is a se-quene of valid moves S0virtual strongly equivalent to S0, a sequene of valid moves Mvirtual28



equivalent to M , and a sequene (p1; : : : ; pt�1) of port numbers, suh that Svirtual =S0virtualj(as0 ! as; p1)j � � � j(as0 ! as; pt�1)j(as ! as; r)jMvirtual.After having leared f , searher as has pushed (AH; s; r0), then (ST; s; 1), and sent (move; s)to searher a1. Then a1 applies deide(). Applying this proedure, searher a1 writes (ST; 1; 2)and sends (move; 1) to a2. For all 2 � j � i� 1, searher aj reeives (move; j� 1) from aj�1 andwrites (RT; j; j � 1). Applying Proedure deide(), searher aj writes (ST; j; j + 1) and sends(move; j) to aj+1. When ai reeives the message (move; i� 1) from ai�1, it pushes (RT; i; i� 1)at its urrent vertex vi, and applies deide(). Let vi be the vertex where ai is standing at thisstage of the exeution of Protool dist searh.Let us onsider the type of the extended move M . Let p be the port number of v or-responding to e. Sine there is no valid extended move larger than M , only three ases arepossible:� M = (ai; ai; p) and for any i < j � k, searher aj stands alone at a vertex, say vj . Bybaktraking suh a move, Protool dist searh insures that Q and Qvirtual are stronglyequivalent (f., Case A.3.1). Thus, v = vi. In this ase, searher ai arrives bak at v instate baktrak. Applying bak(), ai pops (CC; i; p), pushes (ST; i; i + 1) at vi, andsends (move; i) to searher ai+1. For any i+ 1 � j � k, searher aj reeives (move; j � 1)from aj�1 and writes (RT; j; j�1). Applying deide(), searher aj writes (ST; j; j+1) andsends (move; j) to aj+1. When ak reeives the message (move; k�1) from ak�1, searher akapplies deide(), then bak(). Searher ak pops (ST; k; k�1) and sends (sorry; k) to ak�1.For any k > j > i, searher aj reeives (sorry; j + 1) from aj+1 and pops (ST; j; j + 1).Applying bak(), searher aj pops (RT; j � 1; j) and sends (sorry; j) to aj�1. Whensearher ai reeives (sorry; i+ 1), it pops (ST; i; i+ 1), and then pops (RT; i; i� 1) fromthe loal stak of vi.� i < k, M = (ai; ak; p) and for any i < j � k, searher ak stands alone at a vertex,say vj . In this ase, there exists a state S0virtual that is strongly equivalent to S and a se-quene (p1; : : : ; pt�1) of port numbers, suh that Svirtual = S0virtualj(ai ! ak; p1)j � � � j(ai !ak; pt�1). Note that in the on�guration assoiated to S0virtual (resp., to Svirtual), searherai stands at vi (resp., v). Searher ak stands at v in both on�gurations. The sequene(p1; : : : ; pt�1) is exatly the sequene of port numbers that searher ai has followed alonga path from vi to v. Let P = w1; � � � ; wt be this path, with w1 = vi and wt = v.For 2 � f � t, let qf br the port number leading of wf orresponding to the edgefvf�1; wfg. Reall that, ai had followed the path P to join ak. Then, searher a1 hadwritten (AH; i; qt). Then, sine i < j, ai had written (CJ; i; p) and had leared the edge.Now, let us onsider what is the exeution of Protool dist searh after having bak-traked M . Arriving at v, by port p, in state baktrak, ai applies Proedure bak().Therefore, it pops (AH; i; qt) from the whiteboard of v, and returns to wt�1. For f =t� 1; : : : ; 2, searher ai arrives in state baktrak at every node wf . Then, it pops theloal stak, that ontains (AH; i; qf ). As a result, it goes to wf�1 using port qf�1. Simul-taneously, we pop (ai ! ak; pf ) that we had previously pushed in Qvirtual. Eventually,ai is bak at vi in state baktrak. At this stage of the exeution of dist searh, theurrent state of Qvirtual is S0virtual that is strongly equivalent to S. Then, by applyingbak(), ai pops (JJ; i; k), pushes (ST; i; i + 1) at vi, and sends move; i) to searher ai+1.For any i+1 � j � k, searher aj reeives (move; j�1) from aj�1 and writes (RT; j; j�1).Applying deide(), searher aj writes (ST; j; j + 1) and sends (move; j) to aj+1. When akreeives the message (move; k � 1) from ak�1, searher ak applies deide(), then bak().Searher ak pops (ST; k; k � 1) and sends (sorry; k) to ak�1. For any k > j > i, searher29



aj reeives (sorry; j + 1) from aj+1 and pops (ST; j; j + 1). Applying bak(), searher ajpops (RT; j� 1; j) and sends (sorry; j) to aj�1. When searher ai reeives (sorry; i+1),it pops (ST; i; i + 1), and then pops (RT; i; i � 1) from the loal stak of vi.� i = k and M 0 = (ai; ak�1; p). Similarily to the previous ase, one an prove that thereexists a round of the exeution of dist searh when ai pops (RT; i; i� 1) from the loalstak of vi.Thus, whatever be the type of M , there is a round of the exeution of dist searh whenai pops (RT; i; i � 1) from the loal stak of vi. Moreover, at this round, Q and Qvirtual arestrongly equivalent.If i = k, searher ak applies bak(). Otherwise, ai alls next searher(i), pushes (ST; i; i+1)and sends (move; i) to ai+1. Then, for i < j < k, aj pushes (RT; j; j�1) and (ST; j; j+1) at itsurrent node, and sends (move; j) to aj+1. When ak reeives message (move; k � 1), it appliesbak(). Searher ak sends (sorry; k) to searher ak�1. Then, for k � j > i, aj pops (ST; j; j+1)and (RT; j; j� 1), and sends (sorry; j) to aj�1. Finally, ai reeives (sorry; i+1) from searherai+1, and applies bak(). For all j, i � j > s, aj pops (ST; j; j+1) and (RT; j; j� 1), and sends(sorry; j) to aj�1. Finally, as reeives (sorry; s + 1) from searher as+1 and applies bak().Then, searher as pops (AC; s; r0) from the loal stak of w0. Then, it goes bak to v0 in statebaktrak, letting reontaminated the edge f . We pop (as ! as; r) from Qvirtual. Thus, inCase B.2.2 (resp., B.2.3 and B.2.4), Q and Qvirtual beomes strongly equivalent (resp., weaklyequivalent).We have proved, that in any ase, both staks remain equivalent after a step of the exeutionof Protool dist searh (that is, they represent the same searh strategy). Moreover, bothalgorithms terminate in the same state. Thus, the proof of Theorem 1 follows diretly fromTheorem 2.5.3 Size of whiteboardsLemma 6 Let G be a onneted n-node graph. Let m � 0 be the number of edges of G. Duringthe exeution of dist searh, starting from u0 2 V (G), at most O(m (log� + log k)) bits arestored in any node's whiteboard, where � is the maximum degree of G and k = ms(G;u0) .Proof. First, note that during the exeution of Protool dist searh, when a move is bak-traked, all its traes are erased from the whiteboards. We an only onsider the traes of anextended move that has atually be performed. We study the ase when a searher ai has tojoin another searher aj (j < i), and searher aj lears an edge e. In this ase, the numberof traes is the largest possible. Let f be the edge that has just been leared by a searher,say a`. Let vi (resp., vj) be the node where ai (resp., aj) is standing after the learing of f .After having leared the edge f , a` sends the message move to a1. Then, for any 1 � t � i,the message move is transmitted from searher at to searher at+1 until message move reahs ai.By Proedure next searher(), if more than two searhers are on the same node, only the twosmallest of them reeive the message. It is unneessary to send the message to the other ones.Indeed, if the two smallest annot do anything, the others as well. Thus, between the learing ofthe two edges f and e, at most two traes of type (RT; `; s) and two traes of type (ST; `; s) arewritten on every whiteboard. When it reeives move from searher ai�1, searher ai deides tojoin aj and pushes (JJ; i; j) at vi. By joining aj , ai writes routing traes. That is, ai pushes onetrae (AH; i; j) on every whiteboard of the path between vi and vj. Finally, ai sends messagehelp to aj who lears the edge. That is, searher ai pushes (ST; i; j) at vj. Then,searher ajpushes (RT; j; i) and (CJ; j; p) at vj. Finally aj lears the edge e and (AC; j; q) and (ST; j; 1)30
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