
HAL Id: hal-00341726
https://hal.science/hal-00341726

Submitted on 25 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Context-Aware Middleware Platform for Autonomous
Application Services in Dynamic Wireless Networks

Nicolas Le Sommer, Frédéric Guidec, Hervé Roussain

To cite this version:
Nicolas Le Sommer, Frédéric Guidec, Hervé Roussain. A Context-Aware Middleware Platform for
Autonomous Application Services in Dynamic Wireless Networks. InterSense’06, May 2006, Nice,
France. pp.9, �10.1145/1142680.1142692�. �hal-00341726�

https://hal.science/hal-00341726
https://hal.archives-ouvertes.fr


1

A Context-Aware Middleware Platform for

Autonomous Application Services in Dynamic

Wireless Networks
Nicolas Le Sommer, Frédéric Guidec and Hervé Roussain

VALORIA Laboratory

University of South Brittany, France

{Nicolas.Le-Sommer, Frederic.Guidec, Herve.Roussain}@univ-ubs.fr

Abstract— Dynamic wireless networks, and especially mobile
ad hoc networks, impose new constraints regarding the design
and the implementation of service-oriented middleware platforms
dedicated to mobile computing. Indeed from now, these platforms
must be able to capture the context in which they operate in
order to provide the services they host with an abstraction
of their running context, and to notify them of the variations
occurring in this context. These middleware platforms must
also implement communication means that make it possible for
services to support the frequent and unpredictable connection
disruptions. In this paper, we present the design of a service-
oriented middleware platform capable of environmental context
introspection and of asynchronous communications.

I. INTRODUCTION

In a near future, thanks to the recent technological advances

realised in the wireless networking and computing hardware

domains, the number and the diversity of the computing

devices populating the physical environment in which we leave

should increase significantly, thus giving to this environment

some smartness capacities. Sensors and actuators are some

examples of these new types of devices. The prospect of

integrating such devices in pre-existent infrastructure-based

networks, or in ad hoc networks, to provide people with

information about their environment (e.g. forecast weather,

road conditions, accident warnings) appears as an attractive

one. However, the mobility, the volatility, the limitation of the

communication range of wireless interfaces and the massive

decentralisation of devices impose new constraints regarding

the design and the implementation of the services deployed

on such devices, as well as on the middleware platforms

hosting these services. Indeed, the context in which these

services and platforms operate suffers from frequent and

unpredictable changes, requiring therefore from these middle-

ware and services some capabilities that traditional services

and platforms do not support, such as context-awareness,

autonomous behaviour, adaptivity, proactivity and collabo-

ration capabilities. Furthermore, in view of the dynamicity

of this context, the synchronous communication paradigm

appears to be not suitable, since it assumes that the involved

services are present at the same time during the interactions.

In contrast, with asynchronous communications, messages can

be stored temporarily on certain hosts while being routed

or disseminated in the network, and can be forwarded later

when circumstances permit. Such a communication paradigm

thus makes it possible for a message to eventually reach a

destination that was not reachable at the time the message

was sent originally.

In this paper, we present the design of a middleware plat-

form with which we address the issues raised by the discovery

and the access of resources in dynamic networks composed of

heterogeneous devices. This middleware is able to perform a

proactive and reactive introspection of the context in order to

discover what resources are available in the environment (e.g.

neighbouring devices, remote services), and to dynamically

reify some abstractions modelling this context in order to

provide the services it hosts with facilities for adapting their

behaviour to the variations occurring in their running context.

It also implements a collaborative and asynchronous commu-

nication paradigm to support the frequent and unpredictable

transmission disruptions.

The remainder of the paper is organised as follows. Sec-

tion II describes an application example, brings to the fore

some fundamental issues using this example, and outlines

our approach to address them. Section III presents the asyn-

chronous communication service we have implemented in our

middleware platform, and Section IV details the context-aware

functionalities provided by this platform. Section V presents

related work, and finally, Section VI concludes the paper.

II. MOTIVATIONS AND BACKGROUND

In this section, we present an application example involving

both mobile and static devices operating within a dynamic

ubiquitous environment. On the basis of this example we

bring out some issues that must be considered when designing

and implementing the application services and the middleware

platforms that are likely to be used in such a context.

A. Motivating example

For the sake of illustration, let us consider the scenario

presented in Figure 1. This figure illustrates a dynamic ubiq-

uitous environment on a city scale. This environment includes

distinct or discontinuous infrastructure-based networks and of

mobile ad hoc networks. These networks are composed of both

static devices, such as sensors and IEEE 802.11 (a.k.a. Wi-

Fi) access points providing wireless access to wired domains



2

(including the Internet), and mobile devices equipped with

Wi-Fi communication interfaces, such as the portable devices

used by nomadic people (e.g. personal digital assistants,

smartphones) and those embedded in vehicles. The standard

IEEE 802.11 makes it possible for mobile devices to be

connected to the access points of infrastructure-based networks

or to communicate directly in ad hoc mode (i.e. without

resorting to any kind of infrastructure-based network). The

ad hoc networks considered in this scenario can appear and

evolve spontaneously as mobile devices themselves appear,

move and disappear dynamically in/from the network.

Fig. 1. Illustration of a dynamic ubiquitous environment on a city scale.

In this scenario, we mainly focus on the person who arrives

by plane in the city, and who wants to go to its hotel all

by herself. We also suppose that this person has a PDA

(Personal Digital Assistant) equipped with an IEEE 802.11

communication interface, and that she has installed on her

device a cartography and positioning application service that is

able to display the map images it downloads from the Internet

and to indicate the position of the user on these images thanks

to the information it obtains from remote positioning services.

B. Context-awareness and discovery of resources and services

The environment in which the nomadic person operates

is brought to evolve dynamically throughout its journey be-

cause networks, devices and services are likely to appear

and disappear spontaneously. So as to provide acceptable

quality of service to its user and, consequently, to improve

the satisfactions of the later, the cartography and position-

ing application service has to be context-aware and able

to adapt its behaviour to context changes. For instance, by

performing a proactive and/or reactive introspection of the

context, this application service should be able to discover

itself the wireless network deployed in the airport when the

person arrives in, and to identify what neighbouring devices

offer a positioning service. Another application, also having

communication needs with third devices, should be able to

achieve the same context introspection task. Consequently, it

is suitable that the introspection of the context be performed

by the middleware rather than by the services themselves.

Such an approach requires from the middleware the ability to

provide the services it hosts with abstractions modelling their

running context and to notify these services of the variations

occurring in it, and from services the ability to exhibit their

non-functional properties regarding their running conditions.

By providing such information, services ask their platform for

not being notified of all variations systematically, but only of

the variations they are interested in. For example, at startup, the

cartography and positioning application service could indicate

to its hosting middleware platform that it requires a positioning

service for running. In return, this middleware platform is

expected to notify this application service when it discovers a

positioning service in the environment.

C. Selection and provision of services

The devices populating an environment comparable to that

presented in Figure 1 can be extremely heterogeneous, and

can potentially act as clients and/or providers of services.

Consequently, a service provider can hardly found a uniform

quality of service for all end clients because these ones can

have radically different characteristics. Similarly, it can be

difficult for clients to found and to select services that fit their

own software and hardware capacities. We thus believe that

client services should be able to provide information about the

hardware and software capabilities of the devices on which

they run, and that providers should be able to exhibit both

their functional and non-functional properties. For example,

by providing service providers with information about the

hardware characteristics of the PDA used by the nomadic

person considered in Figure 1, the cartography and positioning

application service helps these providers to deliver images

whose resolution is compatible with the display capabilities

of the device. By specifying the image resolution they can

provide, service providers are expected to help the cartography

and positioning application service to select suitable services.

Service access continuity is another important issue in dy-

namic networks. Indeed, in contrast of the wireless standards

fostering the ”Always On, Always connected” scenario, and

where mobile devices are actually considered as terminals with

which users can access services offered by infrastructure-based

networks, the dynamic networks we consider involve static

and mobile devices equipped with communication interfaces

whose transmission range is limited. Consequently, any device

can only communicate directly with neighbouring devices.

Multi-hop transmissions can sometimes be obtained by imple-

menting a dynamic routing algorithm on each device, but it is

observed that a realistic ad hoc network often presents itself as

a fragmented network, and that devices that belong to distinct

islands cannot communicate together, because no transmis-

sion is possible between islands. An additional problem with

dynamic ad hoc networks is that in many realistic scenarios

such networks present themselves as disconnected networks.

As a consequence, direct transmissions between any pair of

devices are not always feasible, as such transmissions require

that both devices are active simultaneously in the network,

and that a connected-path can be established between these

devices at transmission time. Asynchronous communications



3

should help at overcoming these constraints and at improv-

ing service access. Indeed, as mentioned in the Section 1,

messages are not simply routed and disseminated within the

network, they can be stored temporarily on certain hosts while

travelling from host to host, and be forwarded later when

circumstances permit. This propagation model is inherently

a probabilistic one, as eventual message delivery cannot be

guaranteed. However, theoretical studies based on simulations

(on variants of this model [1], [2]) show that is many realistic

scenarios, the probability that messages actually reach their

destination can be quite high. For example, before leaving

the network island where the owner of the PDA and the bus

reside, the car may have collected some messages that must be

sent in the Internet (e.g. request sent by the cartography and

positioning application service for downloading map images).

When, it comes in the area covered by the access points of the

infrastructure-based network deployed in the Town hall, this

car can sent these messages in the Internet and broadcast the

responses in the network, thus allowing other devices to store

these responses. Thus, the Jeep should be able to deliver the

data requested by the cartography and positioning application

service when it joins the ad hoc network formed by the bus and

the PDA owned by the nomadic person. With such a approach,

the application service can have an Internet access even if it

is not in a network providing such a access.

III. ASYNCHRONOUS COMMUNICATION SERVICE

In the recent years, message delivery issues in disconnected

mobile ad hoc networks have been considered several times

and following different ways. For instance, a new network

architecture relying on the general principle of message

switching in a store-and-forward mode has been proposed

in [3]. In this approach data are transported as so-called

bundles between bundle forwarders, which are capable of

storing messages (or bundles) before sending them again in

the network. In epidemic routing [4], [1], [5], messages are

buffered in mobile hosts, and the exchanges of messages

between these hosts are expected to allow message deliv-

ery in partially-connected networks. The models proposed

in these papers mostly address the problem of message de-

livery in disconnected networks from a theoretical point of

view. Indeed, they propose new algorithms and heuristics for

delivering messages in such networks, and they report the

results of simulations that are meant to demonstrate how

these algorithms should run in realistic conditions. In contrast,

the asynchronous communication service we present in this

section is more practical, since it consists in an implementation

of a middleware-level service for message dissemination in

dynamic mobile networks. This service is meant to be used

by application services running on our middleware platform.

The general architecture of our communication service is

presented in Figure 2. With this message-oriented communi-

cation service, any message sent in the network is maintained

as long as possible in a local cache by as many devices as

possible, so it can remain available for devices that could not

receive it at the time it was sent originally. The underlying

idea is that the dissemination of multiple copies of the same

message may contribute to overcome the volatility of devices,

while the mobility of these devices can itself help transport

information between islands in a fragmented network or in

distinct networks. Besides providing a caching system where

messages can be maintained in mobile devices, our service also

provides facilities for message advertisement, message discov-

ery, and message transport between neighbouring devices. For

example, a device can sporadically or periodically notify its

neighbours about all or part of the messages stored in its cache.

It can also look for specific messages in its neighbourhood,

and either push messages toward or pull messages from its

neighbours. Like JMS [6], our communication service provides

basic primitives for sending and receiving messages, and for

looking for messages from the cache. It also offers facilities

for application services for being notified when a new message

concerning them is inserted in the cache.

Fig. 2. General architecture of the asynchronous communication service.

A. Message structure

A message descriptor is associated with a each message.

The descriptor of a message is meant to provide information

about the message (type, client service, keywords, content,

etc.). A message may encapsulate its own descriptor, but the

descriptor can also be handled separately (which means it can

for example be sent and stored separately).

<transfer-descriptor

message-id="fb0097820f0b371"

origin="172.17.96.37/map_service

destination="*/gps_service"

number-of-hops="5"

date="Jan 30 08:26:32 CET 2004"

lifetime="12:00:00"

advertisement-period="00:20:00"

/>

Fig. 3. An XML-formatted transfer descriptor of a message exchanged by
application-level services.

When an application-level message must be sent in the

network, it must be encapsulated in a transfer message, whose

descriptor specifies transmission parameters for this message.

Figure 3 shows a typical XML-formatted transfer descriptor.

The value of attribute message-id in a descriptor should be

unique. This condition makes it possible for a device receiving



4

a message from the network to verify if a copy of this message

is already available in its local cache.

The message descriptor in Figure 3 also specifies that this

message has been sent by the application service map_service

(attribute origin) and that it is addressed to all devices running

the service gps_service (attribute destination). The attribute

number-of-hops plays approximately the same role as the field

TTL (Time-To-Live) in IP packets. It ensures that a message

will not be propagated eternally in the network. The attribute

date specifies the date when the message was originally sent

in the network, and the attribute lifetime specifies that this

message should be considered as being valid for only twelve

hours after this date. The last attribute advertisement-period

indicates that once the message has been put in the local cache

of a device, this device may periodically announce that this

message is available, with a periodicity of 20 minutes.

Advertisement and request messages make it possible to

implement on each device some procedures ensuring proactive

and/or reactive behaviours. A device behaving as a proactive

consumer can send requests in order to ask for the direct

transmission of specific messages, or in order to discover that

some of its neighbours own messages it may be interested in.

After receiving an advertisement for a message it is interested

in, a reactive consumer can ask for the immediate transmission

of this message. Similarly, a device behaving as a proactive

producer can send advertisement messages in order to provide

its neighbours with descriptors of the messages it can send

them on demand.

It must be notice that a device that considers that its cache

needs to be cleaned up has no obligation to maintain a message

in this cache until it becomes obsolete. Likewise, a device

has no obligation to announce that it owns a message, even

if the descriptor of the message suggests an announcement

period. In any case, attributes specifying a message’s lifetime

or suggesting a period for announcing the availability of this

message are meant to serve as guidelines about how this

message should be handled by devices. The actual behaviour

of each device with respect to the messages it maintains in

its cache can be guided by such suggestions, but it can also

conform to default strategies defined by higher-level services,

or according to user-defined global strategies applying equally

to all messages.

B. Implementation details

The asynchronous communication service presented in this

section was implemented in Java as an OSGi service [7].

Messages and message descriptors are thus reified as standard

Java objects, which can be sent in the network either as

serialised Java objects, or as XML-formatted documents. In the

current implementation, message dissemination is performed

by broadcasting UDP datagrams. We thus assume, for the

time being, that each message is small enough to fit in

a single datagram. In the future we plan to improve this

communication service so as to address issues pertaining on

message segmentation and reassembly. Both implementation

details and utilisation examples of this service can be found

in [8].

IV. INTROSPECTION AND MODELLING OF THE CONTEXT

As mentioned previously, our work aims to foster the de-

sign and the implementation of application services endowed

with context-awareness and autonomous behaviour capabili-

ties. Seen from this point of view, we have designed and im-

plemented a middleware-level service capable of proactive and

reactive context introspection. Likewise the previous service,

this service is implemented in Java as an OSGi service. This

section presents this service.

A. Modelling of resources

Fig. 4. Object-oriented modelling of resources

Software and hardware resources populating dynamic per-

vasive environments, such as that considered in Figure 1,

can be of various nature. Consequently, the service respon-

sible of performing context introspection must be able to

define and to handle dynamically some abstractions modelling

these different kinds of resources. These abstractions must

also be used by the application-level services hosted by the

middleware platform in order to adapt their behaviour to

their running context. Three kinds of abstractions can be

dynamically reified as first-class objects: resources, resource

descriptors and resource observation reports. A resource object

implements functionalities to use and control the resource it

reifies. Resource descriptor provides ”static” information about

the resource, whereas the resource observation report gives

information about the current state of the resource.

All resource objects implement the interface Resource

presented in Figure 4. This interface extends the interface

Observable, which defines a method observe() that returns an

observation report (i.e. an object implementing the interface

ObservationReport). A resource object is also designed to

return a resource descriptor (i.e. an object implementing the

interface ResourceDescriptor) when the method getDescrip-

tor() is called. A resource descriptor provides a reference to

the considered resource, a textual description of this resource

and a set of attributes (objects implementing the interface

ResourceAttribute) that describe the properties of this one

(e.g. hardware characteristics for devices, functional and non-

functional properties for services). Furthermore, in order to

make resource reification easier, our framework provides a set



5

of interfaces reflecting a resource taxonomy. This taxonomy

makes it possible to classify resources following their re-

source category (e.g. hardware, conceptual) and depending on

whether they are observable, listenable, etc. These interfaces

are used to define the operations that should be provided by

the resource objects (i.e. by the objects reifying resources).

For instance, an object modelling a CPU resource should

implement the interfaces Observable and HardwareResource.

This implementation makes it possible to observe the CPU

resource by invoking appropriate methods on the CPU object.

Similarly, conceptual resources –which mostly make sense at

application level (sockets, files, threads, the software packages

and the services, etc.)– should implement the interfaces Con-

ceptualResources, Observable and Listenable. Further details

about the reification of resources are given in [9].

In many circumstances, resource descriptors and observation

reports must be sent in the network (e.g. at the resource

advertisement process time). So as to facilitate both their

dissemination within the network and their treatment, these ob-

jects are transformed into XML documents. An XML resource

descriptor includes the identifier of the resource it describes,

the object class of the descriptor, and a description of the

resource. A resource descriptor can be reified dynamically

from a XML document. For example, such descriptors can be

used to provide an XML-formatted description of the hardware

characteristics of a personal digital assistant. Similarly, to

describe services running on this PDA, it is possible to use

the simple XML description of application services provided

by our middleware platform.

This context introspection service was designed so as to

be highly extensible. Hence new classes can be developed in

the future in order to model new resources, new observation

reports and new resource descriptors.

B. Tracking and selection of resources

Resources can appear and disappear frequently in the en-

vironment. It is thus suitable to have a mean to identify and

to keep track of available resources. Our middleware provides

such a mean via the resource objects and a resource register.

Indeed, all resource objects are designed to register a descrip-

tion of themselves (i.e. their own resource descriptor) with a

resource register at creation time (see Figure 5). By consulting

this register periodically, it is thus possible for an adaptive

service deployed on a mobile device to obtain information

about its local execution context. For instance in Figure 5, the

service Service#1 can call the method getResources() of the

resource register in order to obtain a list of the local resources.

Such a service can also act as listener of the resource register,

and thus can be notified of the variations of the local context

(i.e. of the appearance and disappearance of resources). As

shown in Figure 5, the service Service#2 has registered itself

as listener with the resource register in order to be notified

when a new resource appears in the environment (e.g. the

resource Resource#2 in Figure 5).

Fig. 5. Tracking of resources

In certain circumstances, it could be suitable to focus only

on a specific resource –or on a specific kind of resources.

For example, a service such as the service Service#2 in

Figure 5 should be notified only when a given resource become

available in the environment. Such a need requires to be

able to select resources according to a predefined criterion.

Our framework provides such a functionality with the notion

of ”resource pattern”. A resource pattern defines a function

isMatchedby(), which takes a resource descriptor object as

a parameter, and returns a boolean whose value depends on

whether this object satisfies the considered selection criterion

or not. In a simple case resource selection can rely on the

actual type of the resource which is submitted to the test.

But one can also implement more sophisticated selection

mechanisms by taking resource type and resource attributes

into account.

C. Introspection of the local system

In the approach we propose, the introspection of the network

context is fundamental, but it is not sufficient. Indeed, services

must also have information about the resources offered by

the device on which they run. The introspection of the local

system can be easily performed by obtaining a description of

the local resources from the resource register and by moni-

toring the local resources. These resources can be monitored

following either a synchronous or an asynchronous mode. The

synchronous monitoring is obtained by implementing a call-

back mechanism in resource objects. Any resource objects can

admit one or several listeners. Whenever a variation of the

resource occurs –or when a method is called on a conceptual

resource–, the resource object informs all its registered listen-

ers (see Figure 5). All resources cannot be monitored using

the synchronous approach, though. For example, access to the

CPU is not achieved by calling methods explicitly. Instead it is

controlled directly by the scheduler of the underlying operating

system. In order to deal with system resources such as the CPU

(system memory, network interfaces, etc.), which can hardly be

monitored synchronously, we propose to do with asynchronous

monitoring. Monitoring a resource asynchronously consists in

consulting the state of this resource explicitly every now and

then, in such a way that the time of the observation does not

necessarily coincide with the time of an attempt to use the

resource. This observation can be performed by calling the

method observe() on the object that models the resource that



6

must be observed. This method gives an observation report

(i.e. an object implementing the interface ObservationReport

described in Figure 4) in return.

Fig. 6. Monitoring of resources.

D. Introspection of the network neighbourhood

The introspection of the network neighbourhood aims to

discover what resources are available in the physical envi-

ronment. In contrast of the introspection of the local system,

which can be simply achieved using the resource register and

the objects modelling the local resources, the introspection

of the network neighbourhood requires a more sophisticated

mechanism to discover automatically the resources available

in the environment. Indeed, as brought out in the Section II,

the network context in which mobile and static devices operate

suffers from frequent and unpredictable changes.

The context introspection service implemented in our mid-

dleware platform provides facilities to address this issues.

First, it provides facilities to discover the close wireless

networks, to configure the wireless communication interface of

mobile devices automatically, and to identify what hosts can

be reached in these networks. Obviously, owners of mobile

devices can configure this functionality in order to select

themselves the network they want to join. In its current

implementation, this service relies on the system commands of

the Linux operating system (e.g. wireless tools). The discovery

of neighbouring hosts and of remote services is achieved

using the asynchronous communication service presented in

the previous section.

The discovery of hosts can thus be made either proactively

by sending host discovery requests in the network, or reac-

tively by analysing the unsolicited advertisements sent by other

devices in the network (each device is responsible to manage

its perception of its environment). When the service responsi-

ble of the context introspection receives an advertisement from

a remote host, it reifies this advertisement as a resource object

(i.e. as a host descriptor object) and registers it in the resource

register dedicated to remote resources.

The discovery of the remote services is performed following

the same mode. In the proactive approach the middleware

sends in the network an XML document containing the service

request. This request is formally describe using a resource

pattern. The service providers, which have a service whose

descriptor fits the pattern specified in the request, send in

response an XML document containing the description of

the service they can offer. The service discovery can also be

performed following a reactive mode. In this mode, service

providers send unsolicited advertisements (i.e. service descrip-

tors).

V. RELATED-WORK

A. Asynchronous Communication in mobile networks

The asynchronous communication service presented in Sec-

tion III can obviously be compared with that proposed by

Vahdat and Becker in [1], where they introduce the concept

of Epidemic Routing. In their model, messages are buffered in

mobile hosts and are exchanged randomly among hosts. This

model makes the delivery of messages possible in partially-

connected ad hoc networks. Although Vahdat and Becker are

mostly concerned with unicast transmissions in their paper,

they suggest that Epidemic Routing is also appropriate for

supporting multicast traffic. A variant of Epidemic Routing

has been proposed in [2]. This variant introduces probabilistic

heuristics in order to increase the chances that a message is

routed toward its destination.

The approach we investigate with our asynchronous com-

munication service can also be compared with that of IRTF1’s

group working on delay-tolerant networks (DTNRG: Delay-

Tolerant Network Research Group2). This group focuses on

the deployment of networks in high dynamic environments in

which end-to-end connectivity cannot be guaranteed. It has

defined a new network architecture relying on the general

principle of message switching in a store-and-forward mode.

This approach consists in transporting pieces of information –

called bundles– and implementing forwarders that are capable

of storing messages (i.e. the bundles) before they can be sent

againin the network [3].

B. Middleware Support for Adaptive Services and Pervasive

Computing

The middleware Centaurus [10] and Mobishare [11] pro-

vides owners of mobile devices with facilities to dis-

cover the services that are offered spontaneously within an

infrastructure-based network, as well as to access to these

services remotely. Both Centaurus and Mobishare implement

a centralised approach of service management: service as

are deployed on predefined servers, service discovery relies

on the utilisation of a unique service repository, etc. Such

middleware are designed to be used in close smart environ-

ments (e.g. home, office) including low mobile devices. Since

service clients do not suffer from frequent and unpredictable

service disconnection, these middleware do not implement

mechanisms to ensure service access continuity for nomadic

people. Moreover, the centralised approach implemented by

these middleware do not allow to take advantages of wireless

communication. Indeed, in contrast of a peer-to-peer approach,

1IRTF: Internet Research Task Force (http://www.irtf.org).
2http://www.dtnrg.org



7

a centralised approach does not favour the collaboration of

mobile devices to achieve service provision.

Many recent middleware platforms designed to be used in

mobile dynamic environments (e.g. ad hoc networks) imple-

ment peer-to-peer technologies in order to make it possible for

mobile devices to collaborate spontaneously. These technolo-

gies provide means to describe, to advertise, to request, and

to retrieve services. For instance, in domotic environments,

such technologies permit people to control their domestic

devices (e.g. light, tv). UPnP (Universal Plug and Play) [12],

SLP (Service Location Protocol) [13] are some example of

these technologies. The middleware Konark [14] relies on an

implementation of the UPnP technology in order to describe,

to announce and to discover services in mobiles ad hoc

networks. The services considered in Konark are Web Services

that can be invoked using the protocol SOAP. Like Centaurus

and Mobishare, Konark is designed to be used in wireless

environments including low mobile devices.

The middleware 7DS [15] and XMIDDLE [16] are not

designed to provide services, but are designed to find, to relay,

to disseminate and to share information in peer-to-peer mobile

ad hoc networks. 7DS implements sophisticated prefetching

and collaborative mechanisms that could be used to relay, and

to provide access to services asynchronously in high dynamic

mobile networks, such as delay-tolerant ad hoc network. The

middleware XMIDDLE is dedicated as for it, to the sharing

of XML documents in mobile networks composed of hetero-

geneous devices. It implements replication and reconciliation

mechanisms in order to allow nomadic people to have copies

of documents on their own devices, and thus to make it

possible for them to access to these documents autonomously.

The reconciliation mechanisms aims at ensuring the update of

the copies when devices are connected.

None of the above-presented works are designed to support

adaptive services, and thus do not the services deployed on the

mobile devices with mechanisms that allow them to perform

an introspection of both their network context and their local

context. Yet, as shown in this paper, it could be relevant to

deploy adaptive services on mobile devices in order to offer

service access continuity to owners of mobile devices. In the

remainder of this section we present some works designed to

support adaptive services.

The project Molène [17] aims at offering an object-oriented

framework to implement adaptive applications. This frame-

work defines a notification system of context variations based

on a set of resource monitors organised in two levels, and a

customisable system of reaction. The monitors of the first level

are specialised monitors (e.g. battery monitor, network inter-

face monitor). The monitor of the second level are designed

to analyse information they received from the monitors of the

first level, and to notify applications of the variations of their

context according the directives they received at startup.

The aim of the project AMPROS [18] is to design and to

develop a middleware platform in dynamic wireless networks

with the generalisations that can be used for such services as

emergency aid, crisis managements etc. Seen from this point

of view, AMPROS proposed an approach, that is similar to

ours, since it mostly relies on the deployment of disconnected-

components on mobile devices in order to ensure service

continuity (the disconnected-components provide a service

identical to those offer by the remote components). AMPROS

also implements reconciliation mechanisms in order to ensure

that the state of the local disconnected-components remains

the same that that of the remote components. However, the

deployment of component – and of services– require to have

security mechanisms in order to monitor the components at

runtime. Indeed, a component could be introduced in the

network by a malevolent device in order to put the system

in jeopardy by destroying crucial data files for instance.

Like Molène and AMPROS, the middleware Carisma [19]

implements some context introspection mechanisms in order

to make the development of adaptive application easier. Seen

from this point of view, this middleware provides to the

application it hosts an abstraction of their running context and

a set of reflexive mechanisms in order to act on this context

using this abstraction.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented key services of a service-

oriented middleware platform we have designed and im-

plemented in order to foster the development of applica-

tion services with context-awareness, autonomous behaviour,

adaptivity, proactivity and spontaneous collaboration proper-

ties. The first service presented in this paper permits the

asynchronous dissemination of messages in dynamic wireless

networks, such as those composed of highly mobile and

volatile communicating devices. It proposes an asynchronous,

peer-to-peer, message-oriented propagation model, where each

message received by a device can be maintained in a local

cache in this device, so it can later be sent again in the

network, either spontaneously, or after a request for this

message has been received from another device. This approach

is expected to help do with the volatility of devices, since

it permits that messages reach devices that are only active

sporadically in the network. It is also expected to permit

information dissemination in a fragmented network, taking

advantage of the mobility of devices which can serve as

carriers between disconnected parts of the network or between

distinct networks. The second service presented in this paper

is designed to perform a continuous context introspection, to

reify dynamically objects modelling the resources populating

the context, and to notify the application services hosted by

the middleware platform of the variations occurring in their

running context.

Since the development of the middleware platform is not

complete, no extensive performance evaluation has been per-

formed so far. However, preliminary experiments we have

made prove to be promising. Before starting an evaluation

process of our middleware, we plan to improve the discovery

and delivery of services. Indeed, the asynchronism inherent

to delay-tolerant networks raises specific difficulties. For in-

stance, the scope in time and space of the discovery queries

and service announcement must be controlled. To achieve this

goal we plan to introduce the concept of context attribute

as an effective, flexible means to exploit relevant context



8

information during the service discovery and delivery process.

Context attributes can express various context information

including user’s preferences, quality of service, network con-

ditions, service availability, etc. Such attributes aims at helping

middleware –or users– to choose the best services that fulfil

their needs.

REFERENCES

[1] A. Vahdat and D. Becker, “Epidemic Routing for Partially-Connected
Ad Hoc Networks,” Tech. Rep. CS-2000-06, UCSD, July 2000.

[2] A. Lindgren, A. Doria, and O. Schelen, “Probabilistic Routing in
Intermittently Connected Networks,” in Proceedings of the Fourth ACM

International Symposium on Mobile Ad Hoc Networking and Computing

(MobiHoc 2003), June 2003.
[3] K. Fall, “A Delay-Tolerant Architecture for Challenged Internets,” in

Proceedings of the ACM Special Interest Group on Data Communication

2003 (SIGCOMM 2003), (Karlsruhe, Germany), ACM, Aug. 2003.
[4] P. Poupyrev, M. Kosuga, and P. Davis, “Analysis of Wireless Message

Broadcast in Large Ad Hoc Networks of PDAs,” in Proceedings of

the Fourth IEEE conference on Mobile and Wireless Communications

Networks, pp. 299–303, 2002.
[5] A. Qayyum, L. Viennot, and A. Laouiti, “Multipoint Relaying; an

Efficient Technique for Flooding in Mobile Wireless Networks,” Reseach
Report 3898, INRIA, Mar. 2000.

[6] S. Microsystems, “Java Message Service Specification - Version 1.1,”
Apr. 2002.

[7] O. Alliance, “Osgi service platform, release 3,” Mar. 2003.
http://www.osgi.org/.

[8] F. Guidec and H. Roussain, “Asynchronous Document Dissemination
in Dynamic Ad Hoc Networks,” in Second International Symposium on

Parallel and Distributed Processing and Applications (ISPA’04) (J. C.
et al., ed.), vol. 3358 of LNCS, (Hong-Kong, China), pp. 44–48, Springer
Verlag, Dec. 2004.

[9] N. Le Sommer, “Towards Dynamic Resource Contractualisation for
Software Components,” in 2nd International Working Conference on

Component Deployment (CD 2004), vol. 3083 of LNCS, (Edinburg,
Scotland, UK), Springer Verlag, May 2004.

[10] L. Kagal, V. Korolev, H. Chen, A. Joshi, and T. Finin, “Centaurus:
A Framework for Intelligent Services in a Mobile Environment,” in
International Workshop on Smart Appliances and Wearable Computing

(IWSAWC), at the 21st International Conference on Distributed Com-

puting Systems (ICDCS), Apr. 2001.
[11] E. Valavanis, C. Ververidis, M. Vazirgianis, and G. Polyzos, “MobiShare:

Sharing Context-Dependent Data and Services from Mobile Sources,”
in IEEE/WIC International Conference on Web Intelligence (WI’03),
(Halifax, Canada), Oct. 2003.

[12] UPnP Forum, “UPnP Device Architecture,” tech. rep., UPnP Forum,
June 2000.

[13] E. Guttman, C. Perkins, J. Veiades, and M. Day, “Service Location
Protocol, Version 2,” RFC 2608, Internet Engineering Task Force (IETF),
June 1999.

[14] S. Helal, N. Desai, V. Verma, and C. Lee, “Konark : Service Discovery
and Delivery Protocol for Ad-hoc Networks,” in Third IEEE Conference

on Wireless Communication Networks (WCNC), (New Orleans, USA),
Mar. 2003.

[15] M. Papadopouli and H. Schulzrinne, “Seven Degrees of Separation in
Mobile Ad Hoc Networks,” in IEEE GLOBECOM, Nov. 2000.

[16] C. Mascolo, L. Capra, S. Zachariadis, and W. Emmerich, “XMIDDLE:
A Data-Sharing Middleware for Mobile Computing,” Personal and

Wireless Communications Journal 21(1), 2002.
[17] F. Andre and M. Segarra, “A Framework for Dynamic Adaptation in

Wireless Environments,” in Proceedings of TOOLS Europe 2000, (Mont
St. Michel, France), June 2000.

[18] D. Conan, C. Taconet, D. Ayed, L. Chateigner, N. Kouici, and
G. Bernard, “A Pro-Active Middleware Platform for Mobile Environ-
ment,” in International Conference on Software Engineering (IASTED

2004), (Innsbruck, Austria), Feb. 2004.
[19] L. Capra, W. Emmerich, and C. Mascolo, “CARISMA: Context-Aware

Reflexive mIddleware System for Mobile Applications,” in IEEE Trans-

actions on Software Engineering, Nov. 2003.


