Some operations and transductions that preserve rationality

Abstract : We give a unified framework to treat the following problem. Let (L_1, ..., L_n) → f(L_1, ..., L_n) be an operation on languages. Given monoids recognizing the languages L_1, ..., L_n, give an explicit construction of a monoid recognizing f(L_1, ..., L_n). Our method gives in particular a simple way to prove that an operation preserves rational languages. The scope of our method is quite broad and goes from classical operations such as union, intersection, concatenation, quotient, shuffle, inverse and direct morphisms, etc., to less classical ones such as infiltration, Dyck reduction, longest common prefix, Straubing's counting, etc. It includes also questions that are not expressed directly as operations on languages, as, for example, Reutenauer's theorem on TOL-systems. The key idea of our construction is to consider an operation as the inverse of a transduction.
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger
Contributeur : Jean-Eric Pin <>
Soumis le : samedi 22 novembre 2008 - 10:15:41
Dernière modification le : mercredi 20 février 2019 - 14:41:44
Document(s) archivé(s) le : lundi 7 juin 2010 - 19:58:20


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00340780, version 1


Jean-Eric Pin, Jacques Sakarovitch. Some operations and transductions that preserve rationality. 6th GI Conference, 1983, Berlin, Germany. pp.277-288. ⟨hal-00340780⟩



Consultations de la notice


Téléchargements de fichiers