
HAL Id: hal-00340437
https://hal.archives-ouvertes.fr/hal-00340437

Submitted on 20 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

OpenDF - A Dataflow Toolset for Reconfigurable
Hardware and Multicore Systems

Shuvra S. Bhattacharyya, Gordon Brebner, Jörn W. Janneck, Johan Eker,
Carl von Platen, Marco Mattavelli, Mickaël Raulet

To cite this version:
Shuvra S. Bhattacharyya, Gordon Brebner, Jörn W. Janneck, Johan Eker, Carl von Platen, et al..
OpenDF - A Dataflow Toolset for Reconfigurable Hardware and Multicore Systems. Multi-Core
Computing. MCC 2008. First Swedish Workshop on, Nov 2008, Ronneby, Sweden. pp.CD. �hal-
00340437�

https://hal.archives-ouvertes.fr/hal-00340437
https://hal.archives-ouvertes.fr


OpenDF – A Dataflow Toolset for Reconfigurable

Hardware and Multicore Systems

Shuvra S. Bhattacharyya

Dept. of ECE and UMIACS

University of Maryland, College Park, MD 20742

USA

Gordon Brebner, Jörn W. Janneck

Xilinx Research Labs

San Jose, CA 95123

USA

Johan Eker, Carl von Platen

Ericsson Research

Mobile Platforms

SE-221 83, Lund

Sweden

Marco Mattavelli

Microelectronic Systems Lab

EPFL

CH-1015 Lausanne

Switzerland

Mickaël Raulet

IETR/INSA Rennes

F-35043, Rennes

France

Abstract

This paper presents the OpenDF framework and recalls

that dataflow programming was once invented to address

the problem of parallel computing. We discuss the prob-

lems with an imperative style, von Neumann programs,

and present what we believe are the advantages of using a

dataflow programming model. The CAL actor language is

briefly presented and its role in the ISO/MPEG standard is

discussed. The Dataflow Interchange Format (DIF) and re-

lated tools can be used for analysis of actors and networks,

demonstrating the advantages of a dataflow approach. Fi-

nally, an overview of a case study implementing an MPEG-

4 decoder is given.

1 Introduction

Time after time, the uniprocessor system has managed

to survive in spite of rumors of its imminent death. Over

the last three decades hardware engineers have been able

to achieve performance gains by increasing clock speed,

and introducing cache memories and instruction level par-

allelism. However, current developments in the hardware

industry clearly shows that this trend is over. The frequency

in no longer increasing, but instead the number of cores on

each CPU is. Software development for uniprocessor sys-

tems is completely dominated by imperative style program-

ming models, such as C or Java. And while they provide a

suitable abstraction level for uniprocessor systems, they fail

to do the same in a multicore setting. In a time when new

hardware meant higher clock frequencies, old programs al-

most always ran faster on more modern equipment. How-

ever, this is not true when programs written for single core

system execute on multicore. And the bad news is that there

is no easy way of modifying them. Tools such as OpenMP

will help the transition, but likely fail to utilize the full po-

tential of multicore systems.

Over the years considerable attention has been put to the

data flow modeling, which is a programming paradigm pro-

posed in the late 60s, as a means to address parallel pro-

gramming. It is well researched area with a number of inter-

esting results pertaining to parallel computing. Many mod-

ern forms of computation are very well suited for data flow

description and implementation, examples are complex me-

dia coding [1], network processing [2], imaging and digital

signal processing [3], as well as embedded control [4]. To-

gether with the move toward parallelism, this represents a

huge opportunity for data flow programming.

2 Why C etc. Fail

Before diving into dataflow matters, we will give a brief

motivation why a paradigm shift is necessary. The control

over low-level detail, which is considered a merit of C, tends

to over-specify programs: not only the algorithms them-

selves are specified, but also how inherently parallel com-

putations are sequenced, how inputs and outputs are passed

between the algorithms and, at a higher level, how compu-

tations are mapped to threads, processors and application-

specific hardware. It is not always possible to recover the

original knowledge about the program by means of analysis

and the opportunities for restructuring transformations are

limited.

1



Code generation is constrained by the requirement of

preserving the semantic effect of the original program.

What constitutes the semantic effect of a program depends

on the source language, but loosely speaking some observ-

able properties of the program’s execution are required to

be invariant. Program analysis is employed to identify the

set of admissible transformations; a code generator is re-

quired to be conservative in the sense that it can only per-

form a particular transformation when the analysis results

can be used to prove that the effect of the program is pre-

served. Dependence analysis is one of the most challenging

tasks of high-quality code generation (for instance see [5]).

It determines a set of constraints on the order, in which the

computations of a program may be performed. Efficient uti-

lization of modern processor architectures heavily depends

on dependence analysis, for instance:

• To determine efficient mappings of a program onto

multiple processor cores (parallelization),

• to utilize so called SIMD or “multimedia” instructions

that operate on multiple scalar values simultaneously

(vectorization), and

• to utilize multiple functional units and avoid pipeline

stalls (instruction scheduling).

Determining (a conservative approximation of) the depen-

dence relation of a C program involves pointer analysis.

Since the general problem is undecideable, a trade-off will

always have to be made between the precision of the analy-

sis and its resource requirements [6].

3 Dataflow Networks

A dataflow program is defined as a directed graph, where

the nodes represent computational units and the arcs rep-

resent the flow of data. The lucidness of dataflow graphs

can be deceptive. To be able to reason about the effect of

the computations performed, the dataflow graph has to be

put in the context of a computation model, which defines

the semantics of the communication between the nodes.

There exists a variety of such models, which makes dif-

ferent trade-offs between expressiveness and analyzability.

Of particular interest are Kahn process networks [7], and

synchronous dataflow networks [8]. The latter is more con-

strained and allows for more compile-time analysis for cal-

culation of static schedules with bounded memory, leading

to synthesized code that is particularly efficient. More gen-

eral forms of dataflow programs are usually scheduled dy-

namically, which induces a run-time overhead.

It has been shown that dataflow models offer a represen-

tation that can effectively support the tasks of paralleliza-

tion [8] and vectorization [9]—thus providing a practical

means of supporting multiprocessor systems and utilizing

vector instructions.

3.1 Actors

The fundamental entity of this model is an actor [10],

also called dataflow actor with firing. Dataflow graphs,

called networks, are created by means of connecting the in-

put and output ports of the actors. Ports are also provided by

networks, which means that networks can nested in a hier-

archical fashion. Data is produced and consumed as tokens,

which could correspond to samples or have a more complex

structure. This model has the following properties:

• Strong encapsulation. Every actor completely encap-

sulates its own state together with the code that oper-

ates on it. No two actors ever share state, which means

that an actor cannot directly read or modify another

actor’s state variables. The only way actors can inter-

act is through streams, directed connections they use

to communicate data tokens.

• Explicit concurrency. A system of actors connected

by streams is explicitly concurrent, since every sin-

gle actor operates independently from other actors in

the system, subject to dependencies established by the

streams mediating their interactions.

• Asynchrony, untimedness. The description of the ac-

tors as well as their interaction does not contain spe-

cific real-time constraints (although, of course, imple-

mentations may).

4 The CAL Actor Language

CAL [11] is a domain-specific language that provides

useful abstractions for dataflow programming with actors.

CAL has been used in a wide variety of applications and

has been compiled to hardware and software implementa-

tions, and work on mixed HW/SW implementations is un-

der way. Below we will give a brief introduction to some

key elements of the language.

4.1 Basic Constructs

The basic structure of a CAL actor is shown in the Add

actor below, which has two input ports t1 and t2, and one

output port s, all of type T. The actor contains one action

that consumes one token on each input ports, and produces

one token on the output port. An action may fire if the avail-

ability of tokens on the input ports matches the port pat-

terns, which in this example corresponds to one token on

both ports t1 and t2.

actor Add() T t1, T t2 ⇒ T s :

action [a], [b] ⇒ [sum]

do

sum := a + b;

end

end

2



An actor may have any number of actions. The untyped

Select actor below reads and forwards a token from ei-

ther port A or B, depending on the evaluation of guard con-

ditions. Note that each of the actions have empty bodies.

actor Select () S, A, B ⇒ Output:

action S: [sel], A: [v] ⇒ [v]

guard sel end

action S: [sel], B: [v] ⇒ [v]

guard not sel end

end

An action may be labeled and it is possible to constrain

the legal firing sequence by expressions over labels. In the

PingPongMerge actor, see below, a finite state machine

schedule is used to force the action sequence to alternate

between the two actions A and B. The schedule statement

introduces two states s1 and s2.

actor PingPongMerge () Input1, Input2 ⇒ Output:

A: action Input1: [x] ⇒ [x] end

B: action Input2: [x] ⇒ [x] end

schedule fsm s1:

s1 (A) --> s2;

s2 (B) --> s1;

end

end

The Route actor below forwards the token on the input

port A to one of the three output ports. Upon instantiation

it takes two parameters, the functions P and Q, which are

used as predicates in the guard conditions. The selection of

which action to fire is in this example not only determined

by the availability of tokens and the guards conditions, by

also depends on the priority statement.

actor Route (P, Q) A ⇒ X, Y, Z:

toX: action [v] ⇒ X: [v]

guard P(v) end

toY: action [v] ⇒ Y: [v]

guard Q(v) end

toZ: action [v] ⇒ Z: [v] end

priority

toX > toY > toZ;

end

end

For an in-depth description of the language, the reader is

referred to the language report [11]. A large selection of ex-

ample actors is available at the OpenDF repository, among

them the MPEG-4 decoder discussed below.

4.2 Networks

A set of CAL actors are instantiated and connected to

form a CAL application, i.e. a CAL network. Figure 1

shows a simple CAL network Sum, which consists of the

previously defined Add actor and the delay actor shown be-

low.

Z(v=0)

Add

Sum

B

A

Out Out

Out

In

In

Figure 1. A simple CAL network.

actor Z (v) In ⇒ Out:

A: action ⇒ [v] end

B: action [x] ⇒ [x] end

schedule fsm s0:

s0 (A) --> s1;

s1 (B) --> s1;

end

end

The source that defined the network Sum is found be-

low. Please, note that the network itself has input and output

ports and that the instantiated entities may be either actors

or other networks, which allows for a hierarchical design.

network Sum () In ⇒ Out:

entities

add = Add();

z = Z(v=0);

structure

In --> add.A;

z.Out --> add.B;

add.Out --> z.In;

add.Out -- > Out;

end

4.3 ISO-MPEG standardisation

The data-driven programming paradigm of CAL

dataflow lends itself naturally to describing the processing

of media streams that pervade the world of media coding.

In addition, the strong encapsulation afforded by the actor

model provides a solid foundation for the modular specifi-

cation of media codecs.

MPEG has produced several video coding standards such

as MPEG-1, MPEG-2, MPEG-4 Video, AVC and SVC.

However, the past monolithic specification of such stan-

dards (usually in the form of C/C++ programs) lacks flexi-

bility and does not allow to use the combination of coding

algorithms from different standards enabling to achieve spe-

cific design or performance trade-offs and thus fill, case by

case, the requirements of specific applications. Indeed, not

all coding tools defined in a profile@level of a specific stan-

dard are required in all application scenarios. For a given

3



application, codecs are either not exploited at their full po-

tential or require unnecessarily complex implementations.

However, a decoder conformant to a standard has to support

all of them and may results in a non-efficient implementa-

tion.

So as to overcome the limitations intrinsic of specify-

ing codecs algorithms by using monolithic imperative code,

CAL language has been chosen by the ISO/IEC standard-

ization organization in the new MPEG standard called Re-

configurable Video Coding (RVC) (ISO/IEC 23001-4 and

23002-4). RVC is a framework allowing users to define a

multitude of different codecs, by combining together ac-

tors (called coding tools in RVC) from the MPEG stan-

dard library written in CAL, that contains video technology

from all existing MPEG video past standards (i.e. MPEG-

2, MPEG- 4, etc. ). The reader can refer to [12] for more

information about RVC. CAL is used to provide the refer-

ence software for all coding tools of the entire library. The

essential elements of the RVC framework include:

• the standard Video Tool Library (VTL) which contains

video coding tools, also named Functional Units (FU).

CAL is used to describe the algorithmic behaviour of

the FUs that end to be video coding algorithmic com-

ponents self contained and communicating with the ex-

ternal world only by means of input and output ports.

• a language called Functional unit Network Language

(FNL), an XML dialect, used to specify a decoder con-

figuration made up of FUs taken from the VTL and the

connections between the FUs.

• a MPEG-21 Bitstream Syntax Description Language

(BSDL) schema which describes the syntax of the bit-

stream that a RVC decoder has to decode. A BSDL

to CAL translator is under development as part of the

OpenDF effort.

In summary the components and processes that lead to

the specification and implementation of a new MPEG RVC

decoder are based on the CAL dataflow model of computa-

tion and are:

• a Decoder Description (DD) written in FNL describing

the architecture of the decoder, in terms of FUs and

their connections.

• an Abstract Decoder Model (ADM), a behavioral

(CAL) model of the decoder composed of the syntax

parser specified by the BSDL schema, FUs from the

VTL and their connections.

• the final decoder implementation that is either gener-

ated by substituting any proprietary implementation,

conformant in terms of I/O behavior, of the standard

RVC FUs, or obtained directly from the ADM by gen-

erating SW and/or HW implementations by means of

appropriate synthesis tools.

Thus, based on CAL dataflow formalism, designers can

build video coding algorithm with a set of self-contained

modular elements coming from the MPEG RVC standard

library (VTL). However, the new CAL based specification

formalism, not only provide the flexibility required by the

process itself of specifying a standard video codec, but also

yields a specification of such standard that is the appropriate

starting point for the implementation of the codec on the

new generations of multicore platforms. In fact the RVC

ADM is nothing else that a CAL datatflow specification that

implicitly expose all concurrency and parallelism intrinsic

to the model, features that classical generic specifications

based on imperative languages have not provided.

5 Tools

CAL is supported by a portable interpreter infrastructure

that can simulate a hierarchical network of actors. This in-

terpreter was first used in the Moses1 project. Moses fea-

tures a graphical network editor, and allows the user to mon-

itor actors execution (actor state and token values). The

project being no longer maintained, it has been superseded

by the Open Dataflow environment (OpenDF2 for short).

OpenDF is also a compilation framework. Today there

exists a backend for generation of HDL(VHDL/Verilog)

[13], and another backend for that generates C for integra-

tion with the SystemC tool chain [14]. A third backend tar-

geting ARM11 and embedded C is under development [15]

as part of the EU project ACTORS3. It is also possible to

simulate CAL models in the Ptolemy II4 environment.

5.1 Analysis Support

A related tool is the dataflow interchange format (DIF),

which is a textual language for specifying mixed-grain

dataflow representations of signal processing applications,

and TDP5 (the DIF package), which is a software tool for

analyzing DIF specifications. A major emphasis in DIF

and TDP is support for working with and integrating dif-

ferent kinds of specialized dataflow models of computation

and their associated analysis techniques. Such functional-

ity is useful, for example, as a follow-on step to the au-

tomated detection of specialized dataflow regions in CAL

networks. Once such regions are detected, they can be an-

notated with corresponding DIF keywords — e.g., CSDF

1http://www.tik.ee.ethz.ch/ moses/
2http://opendf.sourceforge.net
3http://www.actors-project.eu
4http://ptolemy.eecs.berkely.edu
5http://www.ece.umd.edu/DSPCAD/dif

4



(cyclo-static dataflow) and SDF (synchronous dataflow) —

and then scheduled and integrated with appropriate TDP-

based analysis methods. Such a linkage between CAL and

TDP is under active development as a joint effort between

the CAL and DIF projects.

A particular area of emphasis in TDP is support for de-

veloping efficient coarse-grain dataflow scheduling tech-

niques. For example, the generalized schedule tree rep-

resentation in TDP provides an efficient format for stor-

ing, manipulating, and viewing schedules [16], and the

functional DIF dataflow model provides for flexible pro-

totyping of static, dynamic, and quasi-static scheduling

techniques [3]. Libraries of static scheduling techniques

and buffer management models for SDF graphs, as well

as an SDF-to-C translator are also available in TDP [17].

The set of dataflow models that are currently recognized

and supported explicitly in the DIF language and TDP in-

clude Boolean dataflow [18], enable-invoke dataflow [3],

CSDF [19], homogeneous synchronous dataflow [8, 20],

multidimensional synchronous dataflow [21], parameter-

ized synchronous dataflow [22], and SDF [8]. These al-

ternative dataflow models have useful trade-offs in terms of

expressive power, and support for efficient static or quasi-

static scheduling, as well as efficient buffer management.

The set of models that is supported in TDP, as well as the

library of associated analysis techniques are expanding with

successive versions of the TDP software.

The initial focus in integrating TDP with CAL is to

automatically-detect regions of CAL networks that conform

to SDF semantics, and can leverage the significant body

of SDF-oriented analysis techniques in TDP. In the longer

term, we plan to target a range of different dataflow mod-

els in our automated “region detection” phase of the design

flow. This appears significantly more challenging as most

other models are more complex in structure compared to

SDF; however, it can greatly increase the flexibility with

which different kinds of specialized, streaming-oriented

dataflow analysis techniques can be leveraged when syn-

thesizing hardware and software from CAL networks.

6 Why dataflow might actually work

Scalable parallelism. In parallel programming, the

number of things that are happening at the same time can

scale in two ways: It can increase with the size of the

problem or with the size of the program. Scaling a reg-

ular algorithm over larger amounts of data is a relatively

well-understood problem, while building programs such

that their parts execute concurrently without much interfer-

ence is one of the key problems in scaling the von Neu-

mann model. The explicit concurrency of the actor model

provides a straightforward parallel composition mechanism

that tends to lead to more parallelism as applications grow

in size, and scheduling techniques permit scaling concurrent

descriptions onto platforms with varying degrees of paral-

lelism.

• Modularity, reuse. The ability to create new abstrac-

tions by building reusable entities is a key element in

every programming language. For instance, object-

oriented programming has made huge contributions to

the construction of von Neumann programs, and the

strong encapsulation of actors along with their hierar-

chical composability offers an analog for parallel pro-

grams.

• Scheduling. In contrast to procedural programming

languages, where control flow is made explict, the ac-

tor model emphasizes explicit specification of concur-

rency.

• Portability. Rallying around the pivotal and unify-

ing von Neumann abstraction has resulted in a long

and very successful collaboration between processor

architects, compiler writers, and programmers. Yet,

for many highly concurrent programs, portability has

remained an elusive goal, often due to their sensitivity

to timing. The untimedness and asynchrony of stream-

based programming offers a solution to this problem.

The portability of stream-based programs is evidenced

by the fact that programs of considerable complexity

and size can be compiled to competitive hardware [13]

as well as software [14], which suggests that stream-

based programming might even be a solution to the

old problem of flexibly co-synthesizing different mixes

of hardware/software implementations from a single

source.

• Adaptivity. The success of a stream programming

model will in part depend on its ability to configure

dynamically and to virtualize, i.e. to map to collec-

tions of computing resources too small for the entire

program at once. The transactional execution of actors

generates points of quiescence, the moments between

transactions, when the actor is in a defined and known

state that can be safely transferred across computing

resources.

7 The MPEG-4 Case Study

One interesting usage of the collection of CAL actors,

which constitutes the MPEG RVC tools library, is as a vehi-

cle for video coding experiments. Since it provides a source

of relevant application of realistic sizes and complexity, the

tools library also enables experiments in dataflow program-

ming, the associated development process and development

tools.

5



Figure 2. Top-level dataflow graph of the

MPEG-4 decoder.

Some of the authors have performed a case study[13], in

which the MPEG-4 Simple Profile decoder was specified in

CAL and implemented on an FPGA using a CAL-to-RTL

code generator. Figure 2 shows a top-level view of decoder.

The main functional blocks include a bitstream parser, a re-

construction block, a 2D inverse cosine transform, a frame

buffer and a motion compensator. These functional units

are themselves hierarchical compositions of actor networks.

The objective of the design was to support 30 frames of

1080p in the YUV420 format per second, which amounts

to a production of 93.3 Mbyte of video output per second.

The given target clock rate of 120 MHz implies 1.29 cycles

of processing per output sample on average.

The results of the case study were encouraging in that

the code generated from the CAL specification did not only

outperformed the handwritten reference in VHDL, both in

terms of throughput and silicon area, but also allowed for

a significantly reduced development effort. Table 3 shows

the comparison between CAL specification and the VHDL

reference.

It should be emphasized that this counter-intuitive result

cannot be attributed to the sophistication of the synthesis

tool. On the contrary the tool does not perform a number

of potential optimizations; particularly it does not consider

optimizations involving more than one actor. Instead, the

good results appear to be due to the development process.

A notable difference was that the CAL specification went

through significantly more design iterations than the VHDL

reference —in spite of being performed in a quarter of the

development time. Whereas a dominant part of the develop-

ment of the VHDL reference was spent getting the system

to work correctly, the effort of the CAL specification was

focused on optimizing system performance to meet the de-

sign constraints.

The initial design cycle resulted in an implementation

that was not only inferior to the VHDL reference, but one

that also failed to meet the throughput and area constraints.

Subsequent iterations explored several other points in the

design space until arriving at a solution that satisfied the

constraints. At least for the case study, the benefit of short

design cycles seem to outweigh the inefficiencies that were

induced by high-level synthesis and the reduced control

over implementation details.

Size Speed Code size Dev. time

slices, BRAM kMB/S kLOC MM

CAL 3872, 22 290 4 3

VHDL 4637, 26 180 15 12

Improv. 1.2 1.6 3.75 4

factor

Figure 3. Hardware synthesis results for an

MPEG-4 Simple Profile decoder. The num-

bers are compared with a reference hand

written design in VHDL.

In particular, the asynchrony of the programming model

and its realization in hardware allowed for convenient ex-

periments with design ideas. Local changes, involving only

one or a few actors, do not break the rest of the system in

spite of a significantly modified temporal behavior. In con-

trast, any design methodology that relies on precise speci-

fication of timing —such as RTL, where designers specify

behavior cycle-by-cycle— would have resulted in changes

that propagate through the design.

Figure 3 shows the quality of result produced by the RTL

synthesis engine for a real-world application, in this case an

MPEG-4 Simple Profile video decoder. Note that the code

generated from the high-level dataflow description actually

outperforms the VHDL design in terms of both throughput

and silicon area for a FPGA implementation.

8 Summary

We believe that the move towards parallelism in com-

puting and the growth of application areas that lend them-

selves to dataflow modeling present a huge opportunity for a

dataflow programming model that could supplant or at least

complement von Neumann computing in many fields.

We have discussed some properties that comes with us-

ing a dataflow model, such as explicit parallelism and de-

coupling of scheduling and communication. The open

source simulation and compilation framework OpenDF was

presented together with the CAL language and the DIF/TDP

analysis tools. Finally, the work on the MPEG-4 decoder

verifies the potential of the dataflow approach.

References

[1] J. Thomas-Kerr, J. W. Janneck, M. Mattavelli, I. Bur-

nett, and C. Ritz, “Reconfigurable Media Coding:

6



Self-describing multimedia bitstreams,” in Proceed-

ings IEEE Workshop on Signal Processing Systems—

SiPS 2007, October 2007, pp. 319–324.

[2] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek,

“The Click modular router,” SIGOPS Oper. Syst. Rev.,

vol. 33, no. 5, pp. 217–231, 1999.

[3] W. Plishker, N. Sane, M. Kiemb, K. Anand, and S. S.

Bhattacharyya, “Functional DIF for rapid prototyp-

ing,” in Proceedings of the International Symposium

on Rapid System Prototyping, Monterey, California,

June 2008, pp. 17–23.

[4] S. S. Bhattacharyya and W. S. Levine, “Optimization

of signal processing software for control system im-

plementation,” in Proceedings of the IEEE Symposium

on Computer-Aided Control Systems Design, Munich,

Germany, October 2006, pp. 1562–1567, invited pa-

per.

[5] H. Zima and B. Chapman, Supercompilers for parallel

and vector computers. New York, NY, USA: ACM,

1991.

[6] M. Hind, “Pointer analysis: haven’t we solved this

problem yet?” in PASTE ’01: Proceedings of the

2001 ACM SIGPLAN-SIGSOFT workshop on Pro-

gram analysis for software tools and engineering.

New York, NY, USA: ACM, 2001, pp. 54–61.

[7] G. Kahn, “The semantics of simple language for par-

allel programming,” in IFIP Congress, 1974, pp. 471–

475.

[8] E. A. Lee and D. G. Messerschmitt, “Synchronous

dataflow,” Proceedings of the IEEE, vol. 75, no. 9, pp.

1235–1245, September 1987.

[9] S. Ritz, M. Pankert, V. Živojnović, and H. Meyr, “Op-

timum vectorization of scalable synchronous dataflow

graphs,” in Intl. Conf. on Application-Specific Array

Processors. Prentice Hall, IEEE Computer Society,

1993, pp. 285–296.

[10] C. Hewitt, “Viewing control structures as patterns of

passing messages,” Artif. Intell., vol. 8, no. 3, pp. 323–

364, 1977.

[11] J. Eker and J. W. Janneck, “Cal language report,”

University of California at Berkeley, Tech. Rep.

UCB/ERL M03/48, December 2003.

[12] C. Lucarz and J. J. Marco Mattavelli, Joseph Thomas-

Kerr, “Reconfigurable media coding: A new specifica-

tion model for multimedia coders,” in Proceedings of

IEEE Workshop on Signal Processing Systems, 2007,

pp. 481–486.

[13] J. W. Janneck, I. D. Miller, D. B. Parlour, G. Roquier,

M. Wipliez, and M. Raulet, “Synthesizing hardware

from dataflow programs: an MPEG-4 simple profile

decoder case study,” in Proceedings of the 2008 IEEE

Workshop on Signal Processing Systems (SiPS), 2008.

[14] G. Roquier, M. Wipliez, M. Raulet, J. W. Janneck,

I. D. Miller, and D. B. Parlour, “Automatic software

synthesis of dataflow programs: an MPEG-4 simple

profile decoder case study,” in Proceedings of the 2008

IEEE Workshop on Signal Processing Systems (SiPS),

2008.

[15] C. von Platen and J. Eker, “Efficient realization of a

cal video decoder on a mobile terminal,” in Proceed-

ings of IEEE Workshop on Signal Processing Systems,

2008.

[16] M. Ko, C. Zissulescu, S. Puthenpurayil, S. S. Bhat-

tacharyya, B. Kienhuis, and E. Deprettere, “Parame-

terized looped schedules for compact representation

of execution sequences in DSP hardware and software

implementation,” IEEE Transactions on Signal Pro-

cessing, vol. 55, no. 6, pp. 3126–3138, June 2007.

[17] C. Hsu, M. Ko, and S. S. Bhattacharyya, “Software

synthesis from the dataflow interchange format,” in

Proceedings of the International Workshop on Soft-

ware and Compilers for Embedded Systems, Dallas,

Texas, September 2005, pp. 37–49.

[18] J. T. Buck and E. A. Lee, “Scheduling dynamic

dataflow graphs using the token flow model,” in Pro-

ceedings of the International Conference on Acous-

tics, Speech, and Signal Processing, April 1993.

[19] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peper-

straete, “Cyclo-static dataflow,” IEEE Transactions on

Signal Processing, vol. 44, no. 2, pp. 397–408, Febru-

ary 1996.

[20] S. Sriram and S. S. Bhattacharyya, Embedded Multi-

processors: Scheduling and Synchronization. Marcel

Dekker, Inc., 2000.

[21] P. K. Murthy and E. A. Lee, “Multidimensional syn-

chronous dataflow,” IEEE Transactions on Signal Pro-

cessing, vol. 50, no. 8, pp. 2064–2079, August 2002.

[22] B. Bhattacharya and S. S. Bhattacharyya, “Parame-

terized dataflow modeling for DSP systems,” IEEE

Transactions on Signal Processing, vol. 49, no. 10, pp.

2408–2421, October 2001.

7


