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Abstract

We extend the notion of belief function to the case where the underlying struc-
ture is no more the Boolean lattice of subsets of some universal set, but any lattice,
which we will endow with a minimal set of properties according to our needs. We
show that all classical constructions and definitions (e.g., mass allocation, common-
ality function, plausibility functions, necessity measures with nested focal elements,
possibility distributions, Dempster rule of combination, decomposition w.r.t. sim-
ple support functions, etc.) remain valid in this general setting. Moreover, our
proof of decomposition of belief functions into simple support functions is much
simpler and general than the original one by Shafer.
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1 Introduction

The theory of evidence, as established by Shafer [16] after the work of Dempster [4], and
brought into a practically usable form by the works of Smets in particular [17, 18], has
become a popular tool in artificial intelligence for the representation of knowledge and
making decision. In particular, many applications in classification have been done [5, 6].
The main advantage over more traditional models based on probability is that the model
of Shafer allows for a proper representation of ignorance.

On a mathematical point of view, belief functions, which are at the core of the the-
ory of evidence, possess remarkable properties, in particular their links with the Möbius
transform [15] and the co-Möbius transform [9, 10], called commonality by Shafer. Re-
marking that belief functions are non negative isotone functions defined on the Boolean
lattice of subsets, one may ask if all these properties remain valid when more general lat-
tices are considered. The aim of this paper is precisely to investigate this question, and
we will show that amazingly they all remain valid. A first investigation of this question
was done by Barthélemy [1], and our work will complete his results. We are not aware of
other similar works, except the one of Kramosil [12], where belief functions are defined
on Boolean lattices but take value in a partially ordered set, and the notion of bi-belief
proposed by Grabisch and Labreuche [11], where the underlying lattice is 3n.

On an application point of view, one may ask about the usefulness of such a general-
ization, apart from its mathematical beauty. A general answer to this is that the objects
we manipulate (events, logical propositions, etc.) may not form a Boolean lattice, i.e.,
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distributive and complemented. Thus, a study on a weaker yet rich structure has its
interest. Let us give some examples.

• Case where the universal set Ω is the set of possible outcomes, states of nature,
etc. In the classical case, all subsets of Ω (called events) are considered, but it may
happen that some events are not observable or realizable, meaningful, etc. Then,
the structure of the events is no more the Boolean lattice 2Ω.

• Case where the universal set Ω is the set of propositional variables, either true or
false. As argued by Barthélemy [1], in non-classical logics, the set of propositions
need not be 2Ω, and as we will see later, probability theory applies as far as the
lattice induced by propositional calculus is distributive, and this covers intuitionistic
logic and paraconsistent logic. If distributivity does not hold, then belief functions
appear as a natural candidate, since as it will be shown, belief functions can live
on any lattice.

• Case where the universal set is the set of players/agents in some cooperative game
or multiagent situation. Subsets of Ω are called coalitions, and most of the time,
it happens that some coalitions are infeasible, .i.e., they cannot form, due to some
inherent impossibility depending on the context. For example, in voting situations,
clearly all coalitions of political parties cannot form. The same holds for agents or
players in general where some incompatibilities exist between them.

• Knowledge extraction and modeling: objects under study are often structured as
lattices. For example, the popular Formal Concept Analysis of Ganter and Wille
[8] build lattices of concepts, from a matrix of objects described by qualitative
attributes.

• Finally, in some cases, objects of interest are not subsets of some universal set. This
is the case for example when one is interested into the collection of partitions of some
set (again, this happens in game theory under the name “game in partition function
form” [20], and also in knowledge extraction where the fundamental problem is to
partition attributes), or when objects of interest are “bi-coalitions” like for bi-belief
functions. A bi-coalition is a pair of subsets with empty intersection, and it may
represent the set of criteria which are satisfied and the one which are not satisfied.

The paper is organized as follows. Section 2 recalls necessary material on lattices and
classical belief functions. Section 3 gives the main results on belief defined over lattices,
while the last one examine the case of necessity measures.

Throughout the paper, we will deal with finite lattices.

2 Background

2.1 Lattices

We begin by recalling necessary material on lattices (a good introduction on lattices can
be found in [3] and [14]), in a finite setting. A poset is a set P endowed with a partial
order ≤ (reflexive, antisymmetric, transitive). A lattice L is a poset such that for any
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x, y ∈ L their least upper bound x ∨ y and greatest lower bound x ∧ y always exist. For
finite lattices, the greatest element of L (denoted ⊤) and least element ⊥ always exist.
x covers y (denoted x ≻ y) if x > y and there is no z such that x > z > y. Let P be a
poset, Q ⊆ P is a downset if for any y ∈ P such that y ≤ x, x ∈ Q, then y ∈ Q. The set
of all downsets of P is denoted by O(P ).

A linear lattice, or chain, is such that ≤ is a total order. A chain C in L is maximal
if no element x ∈ L \ C can be added so that C ∪ {x} is still a chain.

Lattices can be represented by their Hasse diagram, where nodes are elements of the
lattice, and there is an edge between x and y, with x above y, if and only if x ≻ y. Fig. 1
shows three lattices. The middle and right ones are two different diagrams of the lattice
of subsets of {1, 2, 3} ordered by inclusion.
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Figure 1: Examples of lattices

Let P, Q be two posets, and consider f : P → Q. f is isotone (resp. antitone) if
x ≤ y implies f(x) ≤ f(y) (resp. f(x) ≥ f(y)). P and Q are isomorphic (resp. anti-
isomorphic), denoted by P ∼= Q (resp. P ∼= Q∂), if it exists a bijection f from P to Q

such that x ≤ y ⇔ f(x) ≤ f(y) (resp. f(x) ≥ f(y)). Isomorphic posets have same Hasse
diagrams, up to the labelling of elements.

For any poset (P,≤), one can consider its dual by inverting the order relation, which
is denoted by (P,≤∂) (or simply P ∂ if the order relation is not mentionned), i.e., x ≤ y

if and only if y ≤∂ x. Autodual posets are such that P ∼= P ∂ (i.e., they have the same
Hasse diagram). The lattices of Fig. 1 are all autodual, and Fig. 2 shows their dual.
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Figure 2: Dual of the lattices of Fig. 1

A lattice L is lower semimodular (resp. upper semimodular) if for all x, y ∈ L,
x ∨ y ≻ x and x ∨ y ≻ y imply x ≻ x ∧ y and y ≻ x ∧ y (resp. x ≻ x ∧ y and y ≻ x ∧ y

imply x ∨ y ≻ x and x ∨ y ≻ y). A lattice being upper and lower semimodular is called
modular. The lattice is distributive if (x∨y)∧z = (x∧z)∨(y∧z) holds for all x, y, z ∈ L.

3



a b c

Figure 3: The lattices M3 (left) and N5 (right)

(L,≤) is said to be lower (upper) locally distributive if it is lower (upper) semimodular,
and it does not contain a sublattice isomorphic to M3. These are weaker conditions than
distributivity, and if L is both lower and upper locally distributive, then it is distributive.

An element j ∈ L is join-irreducible if j = x ∨ y implies either j = x or j = y, i.e., it
cannot be expressed as a supremum of other elements. Equivalently j is join-irreducible if
it covers only one element. Join-irreducible elements covering ⊥ are called atoms, and the
lattice is atomistic if all join-irreducible elements are atoms. The set of all join-irreducible
elements of L is denoted J (L). On Fig. 1 and 2, they are figured as black nodes.

Similarly, meet-irreducible elements cannot be written as an infimum of other ele-
ments, and are such that they are covered by a single element. We denote by M(L) the
set of meet-irreducible elements of L. Co-atoms are meet-irreducible elements covered
by ⊤.

For any x ∈ L, we say that x has a complement in L if there exists x′ ∈ L such that
x∧x′ = ⊥ and x∨x′ = ⊤. The complement is unique if the lattice is distributive. L is said
to be complemented if any element has a complement. On Fig. 1 (left), no element has
a complement, except top and bottom, while the two others are complemented lattices.

Boolean lattices are distributive and complemented lattices, and in a finite setting,
they are of the type 2N for some set N , i.e. they are isomorphic to the lattice of subsets of
some set, ordered by inclusion (see Fig. 1 (middle,right)). Boolean lattices are atomistic,
and atoms correspond to singletons, while co-atoms are of the form N \ {i} for some
i ∈ N .

An important property is that in a lower locally distributive lattice, any element
x can be written as an irredundant supremum of join-irreducible elements in a unique
way (this is called the minimal decomposition of x). We denote by η∗(x) the set of
join-irreducible elements in the minimal decomposition of x, and we denote by η(x) the
normal decomposition of x, defined as the set of join-irreducible elements smaller or equal
to x, i.e., η(x) := {j ∈ J (L) | j ≤ x}. Hence η∗(x) ⊆ η(x), and

x =
∨

j∈η∗(x)

j =
∨

j∈η(x)

j.

Put differently, the mapping η is an isomorphism of L onto O(J (L)) (Birkhoff’s theorem).
Likewise, any element in a upper locally distributive lattice can be written as a unique

irredundant infimum of meet-irreducible elements. The decomposition are denoted by µ

and µ∗. Specifically, µ(x) := {m ∈ M(L) | m ≥ x}, and x =
∧

m∈µ(x)

m.

The height function h on L gives the length of a longest chain from ⊥ to any element
in L. A lattice is ranked if x ≻ y implies h(x) = h(y) + 1. A lattice is lower locally
distributive if and only if it is ranked and the length of any maximal chain is |J (L)|.
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2.2 The Möbius and co-Möbius transforms

We follow the general definition of Rota [15] (see also [2, p. 102]). Let (L,≤) be a
poset which is locally finite (i.e., any interval is finite) having a bottom element. For any
function f on (L,≤), the Möbius transform of f is the function m : L −→ R solution of
the equation:

f(x) =
∑

y≤x

m(y). (1)

This equation has always a unique solution, and the expression of m is obtained through
the Möbius function µ : L2 → R by:

m(x) =
∑

y≤x

µ(y, x)f(y) (2)

where µ is defined inductively by

µ(x, y) =







1, if x = y

−
∑

x≤t<y µ(x, t), if x < y

0, otherwise.
(3)

Note that µ depends solely on L.
The co-Möbius transform of f , denoted by q, is defined by [9, 10]:

q(x) :=
∑

y≥x

m(y), x ∈ L. (4)

2.3 Belief functions and related concepts

We recall only necessary definitions. For details, the reader is referred to, e.g., [17, 18],
or the monograph [13].

Let Ω be a finite space. A function m : 2Ω → [0, 1] is said to be a mass allocation
function (or simply a mass) if m(∅) = 0 and

∑

A⊆Ω m(A) = 1. A subset A ⊆ N is said
to be a focal element if m(A) > 0.

A belief function on Ω is a function bel : 2Ω → [0, 1] generated by a mass allocation
function as follows:

bel(A) :=
∑

B⊆A

m(B), A ⊆ Ω. (5)

Note that bel(∅) = 0 and bel(Ω) = 1. One recognizes m as being the Möbius transform
of bel (apply Eq. (1) to (L,≤) := (2Ω,⊆)). The inverse formula, obtained by using (2)
and (3), is:

m(A) =
∑

B⊆A

(−1)|A\B|bel(B). (6)

Given a mass allocation m, the plausibility function is defined by:

pl(A) :=
∑

B|A∩B 6=∅

m(B) = 1 − bel(Ac), A ⊆ Ω. (7)
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Similarly, the commonality function is defined by:

q(A) :=
∑

B⊇A

m(B), A ⊆ Ω. (8)

It is the co-Möbius transform of bel (see (4)). Remark that q(∅) = 1.
A capacity on Ω is a set function v : 2Ω → [0, 1] such that v(∅) = 0, v(Ω) = 1,

and A ⊆ B implies v(A) ≤ v(B) (monotonicity). Plausibility and belief functions are
capacities. For any capacity v, its conjugate is defined by v(A) := 1 − v(Ac). Hence,
plausibility functions are conjugate of belief functions (and vice versa). A capacity is
k-monotone (k ≥ 2) if for any family of k subsets A1, . . . , Ak of Ω, it holds:

v(
⋃

i∈K

Ai) ≥
∑

I⊆K,I 6=∅

(−1)|I|+1v(
⋂

i∈I

Ai), (9)

with K := {1, . . . , k}. A capacity is totally monotone if it is k-monotone for every k ≥ 2.
Shafer [16] has shown that a capacity is totally monotone if and only if it is a belief

function, hence there exists some mass allocation generating it.
Given two mass allocations m1, m2, the Dempster’s rule of combination computes a

combination of both masses into a single one:

m(A) =: (m1 ⊕ m2)(A) :=
∑

B1∩B2=A

m1(B1)m2(B2), ∀A ⊆ Ω, A 6= ∅, (10)

and m(∅) := 0. Note that m is no more a mass allocation in general, unless some
normalization is carried out. It is well known that the Dempster rule of combination can
be computed through the commonality functions much more easily. Specifically, calling
q, q1, q2 the commonality functions associated to m, m1, m2, one has:

q(A) = q1(A)q2(A), ∀A ⊆ Ω. (11)

A simple support function focused on A is a particular belief function belA whose mass
allocation is:

mA(B) :=











1 − wA, if B = A

wA, if B = Ω

0, otherwise.

(12)

with 0 < wA < 1. Smets [19], using results of Shafer, has shown that any belief function
such that m(Ω) 6= 0 can be decomposed using only simple support functions as follows:

bel =
⊕

A⊆Ω

belA (13)

with
wA =

∏

B⊇A

q(B)(−1)|B\A|+1

, ∀A ⊆ Ω. (14)

In the above decomposition, coefficients wA may be greater than 1. If this happens, the
corresponding belA is no more a belief function.
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A necessity function or necessity measure is a belief function whose focal elements form
a chain in (2Ω,⊆), i.e., A1 ⊆ A2 ⊆ · · · ⊆ An (Dubois and Prade, [7]). The characteristic
property of necessity functions is that for any subsets A, B, N(A∩B) = min(N(A), N(B)),
where N denotes a necessity function.

Conjugates of necessity functions are called possibility functions, denoted by Π, and are
particular plausibility functions. It is easy to see that their characteristic property is that
for any subsets A, B, Π(A∪B) = max(Π(A), Π(B)). This characteristic property implies
that Π is entirely determined by its value on singletons, i.e., Π(A) = maxω∈A Π({ω})
for any A ⊆ Ω. For this reason, π(ω) := Π({ω}) is called the possibility distribution
associated to Π. Note that necessarily there exists ω0 ∈ Ω such that π(ω0) = 1. Although
this is generally not considered, one may define as well a necessity distribution ν(ω) :=
N(Ω \ ω), with the property that N(A) = minω∈Ac ν(ω).

Let π be a possibility distribution on Ω := {ω1, . . . , ωn}, and assume that for some
permutation σ on {1. . . . , n}, it holds π(ωσ(1)) ≤ π(ωσ(2)) ≤ · · · ≤ π(ωσ(n)) = 1. Then it
can be shown that the focal elements of the mass allocation associated to Π are of the
form Aσ(i) := {ωσ(i), . . . , ωσ(n)}, i = 1, . . . , n, and m(Aσ(i)) = π(ωσ(i)) − π(ωσ(i−1)), with
the convention π(ωσ(0)) = 0.

3 Belief functions and capacities on lattices

Let (L,≤) be a finite lattice. A capacity on L is a function v : L → [0, 1] such that
v(⊥) = 0, v(⊤) = 1, and x ≤ y implies v(x) ≤ v(y) (isotonicity).

To define the conjugate of a capacity, a natural way would be to write v(x) := 1 −
v(x′), where x′ is the complement of x. But this would impose that L is complemented,
which is very restrictive. For example, the lattice 3n underlying bi-belief functions is
not complemented. Moreover, if distributivity is imposed in addition, then only Boolean
lattices are allowed, and we are back to the classical definition. We adopt a more general
definition.

Definition 1 A lattice L is of De Morgan type if it exists a bijective mapping n : L → L

such that for any x, y ∈ L it holds n(x ∨ y) = n(x) ∧ n(y), and n(⊤) = ⊥. We call such
a mapping a ∨-negation.

The following is immediate.

Lemma 1 Let L be a De Morgan lattice, with n a ∨-negation. Then:

(i) n(⊥) = ⊤.

(ii) n−1(x ∧ y) = n−1(x) ∨ n−1(y), for all x, y ∈ L (n−1 is called a ∧-negation).

(iii) If j is join-irreducible, then n(j) is meet-irreducible, and if m is meet-irreducible,
then n−1(m) is join-irreducible.

Proof: (i) n(x ∨ ⊥) = n(x) = n(x) ∧ n(⊥), for all x ∈ L, which implies n(⊥) = ⊤
because n is a bijection.

(ii) Putting x′ := n(x) and y′ := n(y), we have n−1(x′∧ y′) = n−1(n(x∨ y)) = x∨ y =
n−1(x′) ∨ n−1(y′).
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(iii) If j is join-irreducible, j = x ∨ y implies that j = x or j = y. Hence, n(j) =
n(x ∨ y) = n(x) ∧ n(y) is either n(x) or n(y), which means that n(j) is meet-irreducible.

�

A complemented lattice with unique complement is of De Morgan type with n(x) :=
x′. If L is isomorphic to its dual L∂, i.e. it is autodual, then it is of De Morgan type
since it suffices to take for n(x) the element in the Hasse diagram of L∂ which takes the
place of x in the Hasse diagram of L. In this case, we call n a horizontal symmetry. In
general, n is not unique since there is no unique way to draw Hasse diagrams. Taking
lattices of Fig. 1 as examples, for the left one, we would have n(a) = e, for the middle
one n(12) = 1, and for the right one n(12) = 3 (see Fig. 2). Since middle and right
lattices are the same, this shows that several n exist in general. Note that n for the right
lattice is nothing else than the usual complement.

The following result shows that in fact the only De Morgan type lattices are those
which are autodual.

Proposition 1 A lattice L is of De Morgan type if and only if it is autodual.

Proof: We already know that if L is autodual, then it is of De Morgan type. Conversely,
assuming it is of De Morgan type, it suffices to show that n is an anti-isomorphism.
We already know that n is a bijection. Taking x ≤ y implies that x ∨ y = y, hence
n(x ∨ y) = n(y) = n(x) ∧ n(y), which implies n(y) ≤ n(x). Conversely, n(y) ≤ n(x)
implies n(y) ∧ n(x) = n(y) = n(x ∨ y), hence x ∨ y = y since n is a bijection, so that
x ≤ y. �

In general, n and n−1 differ, that is, n is not always involutive. Take for example the
lattice M3 of Fig. 3, and n defined by n(⊤) = ⊥, n(⊥) = ⊤, n(a) = b, n(b) = c and
n(c) = a. Clearly, n is a ∨-negation, but n(n(a)) = c 6= a. The ∨-negation is involutive
whenever n is a horizontal symmetry on the Hasse diagram. If n is involutive, it is simply
called a negation.

Definition 2 Let L be an autodual lattice, and n a ∨-negation on L. For any capacity
v, its ∨-conjugate and ∧-conjugate (w.r.t. n) are defined respectively by

∨v(x) := 1 − v(n(x))
∧v(x) := 1 − v(n−1(x)),

for any x ∈ L. If n is a negation, then v(x) := 1 − v(n(x)) is the conjugate of v.

The following is immediate.

Lemma 2 Let L be an autodual lattice, and n a ∨-negation on L. For any capacity v,
it holds

(i) ∨v and ∧v are capacities on L.

(ii) ∨∧v = ∧∨v = v.
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Proof: (i) ∨v(⊤) = 1 − v(n(⊤)) = 1, similarly for ⊥. Isotonicity of ∨v follows from
antitonicity of n and isotonicity of v.

(ii) ∨∧v(x) = 1 − ∧v(n(x)) = 1 − (1 − v(x)) = v(x). �

The following definition of belief functions is in the spirit of the original one by Shafer.
We used it also for defining bi-belief functions [11].

Definition 3 A function bel : L → [0, 1] is called a belief function if bel(⊤) = 1,
bel(⊥) = 0, and its Möbius transform is non negative.

Referring to (1), we recall that

bel(x) =
∑

y≤x

m(y), ∀x ∈ L. (15)

Note that bel(⊤) = 1 is equivalent to
∑

x∈L m(x) = 1, and bel(⊥) = 0 is equivalent to
m(⊥) = 0. The inverse formula, giving m in terms of bel, has to be computed from (3),
and depends only on the structure of L.

Remark that bel is an isotone function by nonnegativity of m, and hence a capacity.
Thanks to the definition of conjugation, if L is autodual and n is a ∨-negation, one

can define plausibility functions as the ∨-conjugate of belief functions, which are again
capacities.

3.1 k-monotone functions

Barthélemy defines belief function as totally monotone functions. To detail this point,
we define k-monotone functions. For k ≥ 2, a function f : L → R is said to be k-
monotone (called weakly k-monotone by Barthélemy) if it satisfies, for any family of
elements x1, . . . , xk ∈ L:

f(
∨

i∈K

xi) ≥
∑

I⊆K,I 6=∅

(−1)|I|+1f(
∧

i∈I

xi) (16)

where K := {1, . . . , k}. A function is said to be totally monotone if it is k-monotone for
all k ≥ 2. One can prove that in fact, if |L| = n, total monotonicity is equivalent to
(n − 2)-monotonicity [1].

For k ≥ 2, a function is said to be a k-valuation if the inequality (16) degenerates
into an equality (called also Poincaré’s inequality). Similarly, a function is an infinite
valuation or total valuation if it is a k-valuation for all k ≥ 2. It is well known that
monotone infinite valuations satisfying f(⊤) = 1 and f(⊥) = 0 are probability measures.

The following lemma, cited in [1], summarizes well-known results from lattice theory
(see Birkhoff [2]).

Lemma 3 Let L be a lattice. Then

(i) L is modular if and only if it admits a strictly monotone 2-valuation.

(ii) L is distributive if and only if it is modular and every strictly monotone 2-valuation
on L is a 3-valuation.
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(iii) L is distributive if and only if it admits a strictly monotone 3-valuation.

(iv) L is distributive if and only if it is modular and every strictly monotone 2-valuation
on L is an infinite valuation.

Barthélemy showed in addition that any lattice admits a totally monotone function. In
view of this result, Barthélemy defines belief functions as totally monotone function being
monotone and satisfying f(⊤) = 1 and f(⊥) = 0. In summary, a belief function can be
defined on any lattice, while probability measures can live only on distributive lattices.

The following proposition shows the relation between both definitions. Before, we
state a result from [1].

Lemma 4 For any lattice L and any function m : L → [0, 1] such that m(⊥) = 0 and
∑

x∈L m(x) = 1, the function fm : L → [0, 1] defined by fm(x) :=
∑

y≤x m(y) is totally
monotone and satisfies fm(⊤) = 1 and fm(⊥) = 0.

Proposition 2 Any belief function is totally monotone.

Proof: Let bel be a belief function, and m its Möbius transform. We know that
m(⊥) = 0 and

∑

x∈L m(x) = 1. Hence, by Lemma 4, bel is totally monotone. �

A totally monotone function does not have necessarily a non negative Möbius function.
Simple examples show that monotonicity is a necessary condition. The question to know
whether monotonicity and total monotonicity imply non negativity of the Möbius function
is still open.

3.2 Properties of belief functions

A first result shown by Barthélemy shows that capacities collapse to belief functions when
L is linear [1].

Proposition 3 Any capacity on L is a belief function if and only if L is a linear lattice.

In the sequel, we address the combination of belief functions and their decomposition
in terms of simple support functions. We will see that classical results generalize.

Definition 4 Let bel1, bel2 be two belief functions on L, with Möbius transforms m1, m2.
The Dempster’s rule of combination of bel1, bel2 is defined through its Möbius transform
m by:

m(x) =: (m1 ⊕ m2)(x) :=
∑

y1∧y2=x

m1(y1)m2(y2), ∀x ∈ L.

Since m defines unambiguously the belief function, we may write as well bel = bel1⊕bel2
to denote the combination.

Proposition 4 Let bel1, bel2 be two belief functions on L, with co-Möbius transforms
q1, q2, and consider their Dempster combination. Then, if q denotes the co-Möbius trans-
form of bel := bel1 ⊕ bel2,

q(x) = q1(x)q2(x), ∀x ∈ L.

10



Proof: We have:

q(x) =
∑

y≥x

∑

y1∧y2=y

m1(y1)m2(y2) =
∑

y1∧y2≥x

m1(y1)m2(y2).

One can decompose the above sum since if y1 ≥ x and y2 ≥ x, then y1 ∧ y2 ≥ x and
reciprocally. Thus,

q(x) =
∑

y1≥x

m(y1)
∑

y2≥x

m(y2) = q1(x)q2(x).

�

The above proposition generalizes (11), and gives a simple means to compute the Demp-

ster combination.

Remark 1: In Def. 4, one may put as in the classical case m(⊥) = 0. This
does not affect the validity of Prop. 4, except for x = ⊥. Indeed, by Prop.
4, one obtains q(⊥) = 1, but q(⊥) =

∑

x∈L m(x) < 1 in general if one puts
m(⊥) = 0 in Def. 4.

Definition 5 Let y ∈ L. A simple support function focused on y, denoted by yw, is a
function on L such that its Möbius transform satisfies:

m(x) =











1 − w, if x = y

w, if x = ⊤

0, otherwise.

The decomposition of some belief function bel in terms of simple support functions is
thus to write bel under the form:

bel(x) =
⊕

y∈L

ywy(x). (17)

The following result generalizes the decomposition in the classical case (see Sec. 2.3).

Theorem 1 Let bel be a belief function such that its Möbius transform m satisfies
m(⊤) 6= 0. The coefficients wy of the decomposition (17) write

wy =
∏

x≥y

q(x)−µ(x,y)

where µ(x, y) is the Möbius function of L.

Proof: We try to find wy such that

bel(x) =
⊕

y∈L

ywy .

This expression can be written in terms of the co-Möbius transform:

q(x) =
∏

y∈L

qy(x), x ∈ L, (18)
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where qy is the co-Möbius transform of ywy :

qy(x) =

{

1, if x ≤ y

wy, otherwise.

From (18), we obtain:

log q(x) =
∑

y∈L

log qy(x) =
∑

y 6≥x

log wy

=
∑

y∈L

log wy −
∑

y≥x

log wy.

On the other hand,

q(⊤) =
∏

y∈L

qy(⊤) =
∏

y∈L

wy.

We supposed that q(⊤) = m(⊤) 6= 0, hence:

log q(x) = log q(⊤) −
∑

y≥x

log wy.

We set Q(x) := log q(x) and W (y) := log wy. The last equality becomes:

Q(x) = Q(⊤) −
∑

y≥x

W (y).

If we define Q′(x) = Q(⊤) − Q(x), we finally obtain:

Q′(x) =
∑

y≥x

W (y).

We recognize here the equation defining the Möbius transform of Q′, up to an inversion
of the order (dual order)(see (1)). Hence, using (2):

W (y) =
∑

x≥y

µ(x, y)Q′(x)

with µ defined by (3). Rewriting this with original notation, we obtain:

log wy =
∑

x≥y

µ(x, y)[log q(⊤) − log q(x)].

Remarking that
∑

x≥y µ(x, y) log q(⊤) is zero, since it corresponds to the Möbius trans-
form of a constant function, we finally get:

wy =
∏

x≥y

q(x)−µ(x,y).

�

Note that the above proof is much shorter and general than the original one by Shafer

[16].
As in the classical case, these coefficients may be strictly greater than 1, hence cor-

responding simple support functions have negative Möbius transform and are no more
belief functions.
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4 Necessity functions

Definition 6 A function N : L → [0, 1] is called a necessity function if it satisfies
N(x ∧ y) = min(N(x), N(y)), for all x, y ∈ L, and N(⊥) = 0, N(⊤) = 1.

The following result is due to Barthélemy [1].

Proposition 5 N is a necessity function if and only if it is belief function whose Möbius
transform m is such that its focal elements form a chain in L.

We define possibility functions as ∨-conjugates of necessity functions.

Definition 7 Let L be an autodual lattice, and n a ∨-negation on L. For any necessity
function N on L, its ∨-conjugate is called a possibility function.

Let Π be a possibility function. Then ∧Π is its corresponding necessity function by
Lemma 2 (ii).

Proposition 6 Let L be an autodual lattice, and n a ∨-negation on L. The mapping
Π : L → [0, 1] is a possibility function if and only if

Π(x ∨ y) = max(Π(x), Π(y)), ∀x, y ∈ L. (19)

Proof: Let Π be a possibility function being the ∨-conjugate of some necessity function
N . Then:

Π(x ∨ y) = 1 − N(n(x ∨ y)) = 1 − N(n(x) ∧ n(y))

= 1 − min(N(n(x)), N(n(y))) = max(1 − N(n(x)), 1 − N(n(y)))

= max(Π(x), Π(y)).

Conversely, let Π satisfy (19) and consider its ∧-conjugate ∧Π. We have:

∧Π(x ∧ y) = 1 − Π(n−1(x ∧ y)) = 1 − Π(n−1(x) ∨ n−1(y))

= 1 − max(Π(n−1(x)), Π(n−1(y)))

= min(∧Π(x), ∧Π(y)).

Hence ∧Π is a necessity function, which implies that Π is a possibility function since
∨∧Π = Π by Lemma 2 (ii). �

The next topic we address concerns distributions. Since we need the property of
decomposition of elements into supremum of join-irreducible elements, we impose that
L is lower locally distributive. Since L has to be autodual, then it is also upper locally
distributive, and so it is distributive. We propose the following definition.

Definition 8 Let L be an autodual distributive lattice, some ∨-negation n on L, and N
a necessity function. The possibility distribution π : J (L) → [0, 1] associated to N is
defined by π(j) := Π({j}), j ∈ J (L), with Π the possibility function which is ∨-conjugate
of N.

The necessity distribution ν : M(L) → [0, 1] associated to N is defined by ν(m) :=
N({m}), m ∈ M(L).
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Then, the value of Π and N at any x ∈ L can be computed as follows:

Π(x) = max(π(j) | j ∈ η∗(x)), N(x) = min(ν(m) | m ∈ µ∗(x)).

Remark that due to isotonicity of Π and N, and hence of π and ν, one can replace as
well η∗, µ∗ by η, µ. The above formulas are well-defined since the decomposition is unique
for distributive lattices. Lastly, remark that necessarily there exists j0 ∈ J (L) such that
π(j0) = 1, and m0 ∈ M(L) such that ν(m0) = 0, since Π(⊤) = 1 and N(⊥) = 0.

π and ν are related through conjugation since n maps join-irreducible elements to
meet-irreducible elements and vice-versa for n−1 (see Lemma 1 (iii)). Hence, for j ∈ J (L)
and m ∈ M(L):

π(j) = 1 − N(n(j)) = 1 − ν(mj)

ν(m) = 1 − Π(n−1(m)) = 1 − π(jm),

where mj := n(j), and jm := n−1(m).

Given a mass allocation defining some necessity function, it is easy to derive the
corresponding possibility distribution. The converse problem, i.e., given a possibility
distribution, find (if possible) the corresponding chain of focal elements and mass alloca-
tion giving rise to this possibility distribution, is less simple. Interestingly enough, this
problem has always a unique solution, which is very close to the classical case.

Theorem 2 Let L be autodual, distributive, and n be a ∨-negation on L. Let π be a
possibility distribution, and assume that the join-irreducible elements of L are numbered
such that π(j1) < · · · < π(jn) = 1. Then there is a unique maximal chain of focal elements
generating π, given by the following procedure:

Going from jn to j1, at each step k = n, n − 1, . . . , 1, select the unique join-
irreducible element ιk such that:

ιk 6∈ η(n(jk)), ιk ∈
k−1
⋂

l=1

η(n(jl)). (20)

Then the maximal chain is defined by Cπ := {ιn, ιn∨ ιn−1, . . . , ιn∨· · ·∨ ι2,⊤},
and

m(ιn ∨ ιn−1 ∨ · · · ∨ ιk) = π(jk) − π(jk−1), k = 1, . . . , n, (21)

with π(j0) := 0. Moreover, at each step k, it is equivalent to choose ιk as the
smallest in η(n(jk−1)) \ η(n(jk)).

Proof: For ease of notation, denote n(jk) by mk (meet-irreducible).
We first show that such a procedure can always work and leads to a unique solution for

Cπ. Assume that the poset J (L) has q connected components J1, . . . , Jq. By definition,
jn is one of the maximal elements of one of the connected components, say Jq0

. Clearly,
∧n

k=1 mk = n(
∨n

k=1 jk) = n(⊤) = ⊥. But
∨n−1

k=1 jk 6= ⊤, otherwise
(
⋃

l=1,...,q,l 6=q0
Jl

)

∪ J ′
q0

,
where J ′

q0
is a maximal downset of Jq0

\ {jn}, would be another downset corresponding
to ⊤, which is impossible since L is distributive (Birkhoff’s theorem). This implies that
there exists ιn ∈

⋂n−1
k=1 η(mk), and ιn 6∈ η(mn). Let us show that ιn is unique. Since L is
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distributive, it is ranked and any maximal chain has length |J (L)| = n. Hence,
∨n−1

k=1 jk

has height n − 1 (it is a co-atom), and
∧n−1

k=1 mk is an atom. Therefore,
⋂n−1

k=1 η(mk) is a
singleton.

For ιn−1 and subsequent ones, we apply the same reasoning on the lattice O(J (L) \
{ιn}), then on O(J (L) \ {ιn, ιn−1}), etc., instead of L = O(J (L)). Hence, there will be
n steps, and at each step one join-irreducible element is chosen in a unique way.

We prove now that the sequence {ιn, ιn ∨ ιn−1, . . . , ιn ∨ · · · ∨ ι2,⊤} is a maximal
chain, denoted Cπ. It suffices to prove that ιn ∨ ιn−1 ∨ · · · ∨ ιk ≻ ιn ∨ ιn−1 ∨ · · · ∨ ιk+1,
k = 1, . . . , n − 1. The fact that the former is greater or equal to the latter is obvious,
hence Cπ is a chain. To prove that it is maximal, we have to show that equality cannot
occur among any two subsequent elements. To see this, observe that at each step k:

ιk 6≤ mk, ιk ≤ mk−1, ιk ≤ mk−2, . . . , ιk ≤ m1. (22)

Hence ιk−1 6≤ ιk, otherwise ιk−1 ≤ mk−1 would hold, a contradiction. Hence, the sequence
ιn, ιn−1, . . . , ι1 is non decreasing, and equality cannot occur.

Let us prove that it suffices to choose ιk as the smallest in η(n(jk−1) \ η(n(jk)). If at
step k, a smallest ιk is not chosen in η(n(jk−1) \ η(n(jk)), it will be taken after, and the
sequence ιn, ιn−1, . . . , ι1 will be no more non decreasing, a contradiction.

It remains to prove that π is strictly increasing and to verify the expression of m. Let
us prove by induction that

π(jk) = 1 − m(ιn) − m(ιn ∨ ιn−1) − · · · − m(ιn ∨ · · · ∨ ιk+1), k = n, . . . , 1. (23)

We show it for k = n. We have

π(jn) = 1 − ν(mn) = 1 −
∑

x≤mn

x∈Cπ

m(x).

Since ιn 6∈ η(mn), no x in Cπ can be smaller than mn. Hence π(jn) = 1. Let us assume
(23) is true from n up to some k, and prove it is still true for k − 1. Using (22), we have:

π(jk−1) = 1 − ν(mk−1) = 1 −
∑

x≤mk−1

x∈Cπ

m(x)

= 1 −
∑

x≤mk
x∈Cπ

m(x) − m(ιn ∨ · · · ∨ ιk) = π(jk) − m(ιn ∨ · · · ∨ ιk),

which proves (23). Lastly, remark that the linear system of n equations (23) is triangular,
with no zero on the diagonal. Hence it has a unique solution, which is easily seen to be
(21). �

As illustration of the theorem, we give an example.

Example 1: Let us consider the distributive autodual lattice given on Fig.
4. Join-irreducible elements are a, b, c, d, e, f , while meet-irreducible ones are
α, b, γ, δ, ǫ, f . We propose as ∨-negation the following:
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a

b
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d e

f

a
b
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d
e

f

α

γ

δ
ǫ

Figure 4: Example of autodual distributive lattice L (right), with J (L) (left)

x n(x) x n(x)
a α d ǫ

b f e δ

c γ f b

Let us consider a possibility distribution satisfying

π(c) < π(d) < π(e) < π(a) < π(f) < π(b) = 1.

(observe that the sequence c, d, e, a, f, b is non decreasing, as requested). We
apply the procedure of Th. 2. For b, we have n(b) = f = c ∨ d ∨ e ∨ f , and
for f , we have n(f) = b = a ∨ b. Hence the first join-irreducible element of
the sequence, ι6, is a (not in η(f), and minimal in η(b)). Table 1 summarizes
all the steps. The maximal chain is in gray on Fig. 4. We deduce that:

step k x n(x) η(n(x)) ιk chain
6 b f c, d, e, f a a

5 f b a, b c a ∨ c

4 a α a, c, d, e, f b a ∨ c ∨ b

3 e δ a, b, c, d e a ∨ c ∨ b ∨ e

2 d ǫ a, b, c, e d a ∨ c ∨ b ∨ e ∨ d

1 c γ a, b, c, d, e f ⊤

Table 1: Computation of Cπ

π(b) = 1

π(f) = 1 − m(a)

π(a) = 1 − m(a) − m(a ∨ c)

π(e) = 1 − m(a) − m(a ∨ c) − m(a ∨ c ∨ b)

π(d) = 1 − m(a) − m(a ∨ c) − m(a ∨ c ∨ b) − m(a ∨ c ∨ b ∨ e)

π(c) = 1 − m(a) − m(a ∨ c) − m(a ∨ c ∨ b) − m(a ∨ c ∨ b ∨ e) − m(a ∨ c ∨ b ∨ e ∨ d)
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from which we deduce

m(a) = π(b) − π(f)

m(a ∨ c) = π(f) − π(a)

m(a ∨ c ∨ b) = π(a) − π(e)

m(a ∨ c ∨ b ∨ e) = π(e) − π(d)

m(a ∨ c ∨ b ∨ e ∨ d) = π(d) − π(c)

and m(⊤) = 1−m(a)−m(a∨c)−m(a∨c∨b)−m(a∨c∨b∨e)−m(a∨c∨b∨e∨d) =
π(c).
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