D. J. Aldous, Brownian excursions, critical random graphs and the multiplicative coalescence, Ann. Probab, vol.25, pp.812-854, 1997.

D. J. Aldous, Deterministic and Stochastic Models for Coalescence (Aggregation and Coagulation): A Review of the Mean-Field Theory for Probabilists, Bernoulli, vol.5, issue.1, pp.3-48, 1999.
DOI : 10.2307/3318611

E. Bender and E. Canfield, The asymptotic number of labeled graphs with given degree sequences, Journal of Combinatorial Theory, Series A, vol.24, issue.3, pp.296-307, 1978.
DOI : 10.1016/0097-3165(78)90059-6

J. Bertoin, Random Fragmentation and Coagulation Processes, 2006.
DOI : 10.1017/CBO9780511617768

URL : https://hal.archives-ouvertes.fr/hal-00103015

J. Bertoin, Two solvable systems of coagulation equations with limited aggregations, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol.26, issue.6
DOI : 10.1016/j.anihpc.2008.10.007

URL : https://hal.archives-ouvertes.fr/hal-00289599

J. Bertoin, V. Sidoravicius, and M. E. Vares, A system of grabbing particles related to Galton-Watson trees, Random Structures and Algorithms, vol.34
DOI : 10.1002/rsa.20310

URL : https://hal.archives-ouvertes.fr/hal-00270344

B. Bollobás, A Probabilistic Proof of an Asymptotic Formula for the Number of Labelled Regular Graphs, European Journal of Combinatorics, vol.1, issue.4, pp.311-316, 1980.
DOI : 10.1016/S0195-6698(80)80030-8

T. Britton, M. Deijfen, and A. Martin-löf, Generating Simple Random Graphs with Prescribed Degree Distribution, Journal of Statistical Physics, vol.66, issue.6, pp.1377-1397, 2006.
DOI : 10.1007/s10955-006-9168-x

URL : http://arxiv.org/abs/1509.06985

M. Dwass, The total progeny in a branching process and a related random walk, Journal of Applied Probability, vol.1, issue.03, pp.682-686, 1969.
DOI : 10.1007/BF00531752

H. Van-der-hofstad, R. Hooghiemstra, and G. , Universality for the distance in finite variance random graphs, J. Stat. Phys, pp.133-169202, 2008.

B. Haas, J. Pitman, and M. Winkel, Spinal partitions and invariance under re-rooting of continuum random trees, The Annals of Probability, vol.37, issue.4
DOI : 10.1214/08-AOP434

URL : https://hal.archives-ouvertes.fr/hal-00149050

R. Van-der-hofstad, G. Hooghiemstra, and P. Van-mieghem, Distances in random graphs with finite variance degrees, Random Structures and Algorithms, vol.410, issue.8, pp.76-123, 2005.
DOI : 10.1002/rsa.20063

R. Van-der-hofstad, G. Hooghiemstra, and D. Znamenski, Distances in Random Graphs with Finite Mean and Infinite Variance Degrees, Electronic Journal of Probability, vol.12, issue.0, pp.703-766, 2007.
DOI : 10.1214/EJP.v12-420

M. Molloy and B. Reed, A critical point for random graphs with a given degree sequence, Random Structures & Algorithms, vol.3, issue.2-3, pp.161-179, 1995.
DOI : 10.1002/rsa.3240060204

M. Molloy and B. Reed, The Size of the Giant Component of a Random Graph with a Given Degree Sequence, Combinatorics, Probability and Computing, vol.7, issue.3, pp.295-305, 1998.
DOI : 10.1017/S0963548398003526

M. E. Newman, The Structure and Function of Complex Networks, SIAM Review, vol.45, issue.2, pp.167-256, 2003.
DOI : 10.1137/S003614450342480

M. E. Newman, S. Strogatz, and D. Watts, Random graphs with arbitrary degree distributions and their applications, Physical Review E, vol.64, issue.2, p.26118, 2001.
DOI : 10.1103/PhysRevE.64.026118

URL : http://arxiv.org/abs/cond-mat/0007235

J. R. Norris, Smoluchowski's coagulation equation: uniqueness, nonuniqueness and a hydrodynamic limit for the stochastic coalescent, The Annals of Applied Probability, vol.9, issue.1, pp.78-109, 1999.
DOI : 10.1214/aoap/1029962598

J. Pitman, Combinatorial Stochastic Processes. ´ Ecole d'´ eté de Probabilités de St-Flour Available via, Lect. Notes in Maths, vol.1875, 2006.

N. C. Wormald, Some problems in the enumeration of labelled graphs, Bulletin of the Australian Mathematical Society, vol.21, issue.01, 1978.
DOI : 10.1017/S0004972700011436